1
|
Wilson CB, Lee M, Yau WM, Tycko R. Conformations of a Low-Complexity Protein in Homogeneous and Phase-Separated Frozen Solutions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605144. [PMID: 39372747 PMCID: PMC11451737 DOI: 10.1101/2024.07.25.605144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Solutions of the intrinsically disordered, low-complexity domain of the FUS protein (FUS-LC) undergo liquid-liquid phase separation (LLPS) below temperatures TLLPS in the 20-40° C range. To investigate whether local conformational distributions are detectably different in the homogeneous and phase-separated states of FUS-LC, we performed solid state nuclear magnetic resonance (ssNMR) measurements on solutions that were frozen on sub-millisecond time scales after equilibration at temperatures well above (50° C) or well below (4° C) TLLPS. Measurements were performed at 25 K with signal enhancements from dynamic nuclear polarization. Crosspeak patterns in two-dimensional (2D) ssNMR spectra of rapidly frozen solutions in which FUS-LC was uniformly 15N,13C-labeled were found to be nearly identical for the two states. Similar results were obtained for solutions in which FUS-LC was labeled only at Thr, Tyr, and Gly residues, as well as solutions of a FUS construct in which five specific residues were labeled by ligation of synthetic and recombinant fragments. These experiments show that local conformational distributions are nearly the same in the homogeneous and phase-separated solutions, despite the much greater protein concentrations and more abundant intermolecular interactions within phase-separated, protein-rich "droplets". Comparison of the experimental results with simulations of the sensitivity of 2D crosspeak patterns to an enhanced population of β-strand-like conformations suggests that changes in conformational distributions are no larger than 5-10%. Statement of Significance Liquid-liquid phase separation (LLPS) in solutions of proteins with intrinsically disordered domains has attracted recent attention because of its relevance to multiple biological processes and its inherent interest from the standpoint of protein biophysics. The high protein concentrations and abundant intermolecular interactions within protein-rich, phase-separated "droplets" suggests that conformational distributions of intrinsically disordered proteins may differ in homogeneous and phase-separated solutions. To investigate whether detectable differences exist, we performed experiments on the low-complexity domain of the FUS protein (FUS-LC) in which FUS-LC solutions were first equilibrated at temperatures well above or well below their LLPS transition temperatures, then rapidly frozen and examined at very low temperatures by solid state nuclear magnetic resonance (ssNMR) spectroscopy. The ssNMR data for homogeneous and phase-separated frozen solutions of FUS-LC were found to be nearly identical, showing that LLPS is not accompanied by substantial changes in the local conformational distributions of this intrinsically disordered protein.
Collapse
Affiliation(s)
- C. Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Myungwoon Lee
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
- current address: Department of Chemistry, Drexel University, Philadelphia, PA 19104
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
2
|
Gochev GG, Campbell RA, Schneck E, Zawala J, Warszynski P. Exploring proteins at soft interfaces and in thin liquid films - From classical methods to advanced applications of reflectometry. Adv Colloid Interface Sci 2024; 329:103187. [PMID: 38788307 DOI: 10.1016/j.cis.2024.103187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
The history of the topic of proteins at soft interfaces dates back to the 19th century, and until the present day, it has continuously attracted great scientific interest. A multitude of experimental methods and theoretical approaches have been developed to serve the research progress in this large domain of colloid and interface science, including the area of soft colloids such as foams and emulsions. From classical methods like surface tension adsorption isotherms, surface pressure-area measurements for spread layers, and surface rheology probing the dynamics of adsorption, nowadays, advanced surface-sensitive techniques based on spectroscopy, microscopy, and the reflection of light, X-rays and neutrons at liquid/fluid interfaces offers important complementary sources of information. Apart from the fundamental characteristics of protein adsorption layers, i.e., surface tension and surface excess, the nanoscale structure of such layers and the interfacial protein conformations and morphologies are of pivotal importance for extending the depth of understanding on the topic. In this review article, we provide an extensive overview of the application of three methods, namely, ellipsometry, X-ray reflectometry and neutron reflectometry, for adsorption and structural studies on proteins at water/air and water/oil interfaces. The main attention is placed on the development of experimental approaches and on a discussion of the relevant achievements in terms of notable experimental results. We have attempted to cover the whole history of protein studies with these techniques, and thus, we believe the review should serve as a valuable reference to fuel ideas for a wide spectrum of researchers in different scientific fields where proteins at soft interface may be of relevance.
Collapse
Affiliation(s)
- Georgi G Gochev
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30239 Krakow, Poland; Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Richard A Campbell
- Division of Pharmacy and Optometry, University of Manchester, M13 9PT Manchester, UK
| | - Emanuel Schneck
- Physics Department, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - Jan Zawala
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30239 Krakow, Poland
| | - Piotr Warszynski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30239 Krakow, Poland
| |
Collapse
|
3
|
Smith JW, Carnevale LN, Das A, Chen Q. Electron videography of a lipid-protein tango. SCIENCE ADVANCES 2024; 10:eadk0217. [PMID: 38630809 PMCID: PMC11023515 DOI: 10.1126/sciadv.adk0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Biological phenomena, from enzymatic catalysis to synaptic transmission, originate in the structural transformations of biomolecules and biomolecular assemblies in liquid water. However, directly imaging these nanoscopic dynamics without probes or labels has been a fundamental methodological challenge. Here, we developed an approach for "electron videography"-combining liquid phase electron microscopy with molecular modeling-with which we filmed the nanoscale structural fluctuations of individual, suspended, and unlabeled membrane protein nanodiscs in liquid. Systematic comparisons with biochemical data and simulation indicate the graphene encapsulation involved can afford sufficiently reduced effects of the illuminating electron beam for these observations to yield quantitative fingerprints of nanoscale lipid-protein interactions. Our results suggest that lipid-protein interactions delineate dynamically modified membrane domains across unexpectedly long ranges. Moreover, they contribute to the molecular mechanics of the nanodisc as a whole in a manner specific to the protein within. Overall, this work illustrates an experimental approach to film, quantify, and understand biomolecular dynamics at the nanometer scale.
Collapse
Affiliation(s)
- John W. Smith
- Department of Materials Science and Engineering, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Lauren N. Carnevale
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Aditi Das
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Materials Research Laboratory, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Gochev GG, Schneck E, Miller R. Effects of Aqueous Isotopic Substitution on the Adsorption Dynamics and Dilational Rheology of β-Lactoglobulin Layers at the Water/Air Interface. J Phys Chem B 2024; 128:2821-2830. [PMID: 38471121 PMCID: PMC10961727 DOI: 10.1021/acs.jpcb.3c08417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
The effect of the degree of isotopic substitution of the aqueous medium on the adsorption kinetics and the surface dilational rheological behavior at the water/air interface of the globular protein β-lactoglobulin was investigated. Aqueous solutions with fixed concentrations of 1 μM protein and 10 mM hydrogenous buffer with controlled pH 7 were prepared in H2O, D2O, and an isotopic mixture of 8.1% v/v D2O in H2O (called air contrast matched water, ACMW). Using a bubble shape analysis tensiometer, we obtained various experimental dependencies of the dilational viscoelasticity modulus E as a function of the dynamic surface pressure and of the frequency and amplitude of bubble surface area oscillations, either in the course of adsorption or after having reached a steady state. In general, the results revealed virtually no effect from substituting H2O by ACMW but distinct albeit relatively weak effects for intermediate adsorption times for D2O as the aqueous phase. In the final stage of adsorption, established after around 10 h, the equilibrium adsorption and the dilational rheological behavior of all protein layers under investigation are only very weakly affected by the presence of D2O. The obtained results help to design experimental protocols for protein adsorption studies, for example, by neutron reflectivity.
Collapse
Affiliation(s)
- Georgi G. Gochev
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30239 Krakow, Poland
- Institute
of Physical Chemistry, Bulgarian Academy
of Sciences, 1113 Sofia, Bulgaria
| | - Emanuel Schneck
- TU Darmstadt, Institute for Condensed Matter Physics, 64289 Darmstadt, Germany
| | - Reinhard Miller
- TU Darmstadt, Institute for Condensed Matter Physics, 64289 Darmstadt, Germany
| |
Collapse
|
5
|
Giubertoni G, Feng L, Klein K, Giannetti G, Rutten L, Choi Y, van der Net A, Castro-Linares G, Caporaletti F, Micha D, Hunger J, Deblais A, Bonn D, Sommerdijk N, Šarić A, Ilie IM, Koenderink GH, Woutersen S. Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration. Proc Natl Acad Sci U S A 2024; 121:e2313162121. [PMID: 38451946 PMCID: PMC10945838 DOI: 10.1073/pnas.2313162121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/30/2023] [Indexed: 03/09/2024] Open
Abstract
Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water-collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H[Formula: see text]O/D[Formula: see text]O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self-assembly. We dissolve collagen in H[Formula: see text]O and D[Formula: see text]O and compare the growth kinetics and the structure of the collagen assemblies formed in these water isotopomers. Surprisingly, collagen assembly occurs ten times faster in D[Formula: see text]O than in H[Formula: see text]O, and collagen in D[Formula: see text]O self-assembles into much thinner fibrils, that form a more inhomogeneous and softer network, with a fourfold reduction in elastic modulus when compared to H[Formula: see text]O. Combining spectroscopic measurements with atomistic simulations, we show that collagen in D[Formula: see text]O is less hydrated than in H[Formula: see text]O. This partial dehydration lowers the enthalpic penalty for water removal and reorganization at the collagen-water interface, increasing the self-assembly rate and the number of nucleation centers, leading to thinner fibrils and a softer network. Coarse-grained simulations show that the acceleration in the initial nucleation rate can be reproduced by the enhancement of electrostatic interactions. These results show that water acts as a mediator between collagen monomers, by modulating their interactions so as to optimize the assembly process and, thus, the final network properties. We believe that isotopically modulating the hydration of proteins can be a valuable method to investigate the role of water in protein structural dynamics and protein self-assembly.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Liru Feng
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Kevin Klein
- Institute of Science and Technology Austria, Division of Mathematical and Physical Sciences, Klosterneuburg3400, Austria
- University College London, Division of Physics and Astronomy, LondonWC1E 6BT, United Kingdom
| | - Guido Giannetti
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Luco Rutten
- Electron Microscopy Center, Radboud Technology Center Microscopy, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Yeji Choi
- Max Planck Institute for Polymer Research, Molecular Spectroscopy Department, Mainz55128, Germany
| | - Anouk van der Net
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft2628 HZ, The Netherlands
| | - Gerard Castro-Linares
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft2628 HZ, The Netherlands
| | - Federico Caporaletti
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1090 GL, The Netherlands
| | - Dimitra Micha
- Amsterdam University Medical Centers, Human Genetics Department, Vrije Universiteit, Amsterdam1007 MB, The Netherlands
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Molecular Spectroscopy Department, Mainz55128, Germany
| | - Antoine Deblais
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1090 GL, The Netherlands
| | - Daniel Bonn
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1090 GL, The Netherlands
| | - Nico Sommerdijk
- Electron Microscopy Center, Radboud Technology Center Microscopy, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Andela Šarić
- Institute of Science and Technology Austria, Division of Mathematical and Physical Sciences, Klosterneuburg3400, Austria
| | - Ioana M. Ilie
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
- Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft2628 HZ, The Netherlands
| | - Sander Woutersen
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| |
Collapse
|
6
|
Guevara L, Gouge M, Ohler A, Hill SG, Patel S, Offenbacher AR. Effect of solvent viscosity on the activation barrier of hydrogen tunneling in the lipoxygenase reaction. Arch Biochem Biophys 2023; 747:109740. [PMID: 37678425 DOI: 10.1016/j.abb.2023.109740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Hydrogen tunneling in enzyme reactions has played an important role in linking protein thermal motions to the chemical steps of catalysis. Lipoxygenases (LOXs) have served as model systems for such reactions, showcasing deep hydrogen tunneling mechanisms associated with enzymatic C-H bond cleavage from polyunsaturated fatty acids. Here, we examined the effect of solvent viscosity on the protein thermal motions associated with LOX catalysis using trehalose and glucose as viscogens. Kinetic analysis of the reaction of the paradigm plant orthologue, soybean lipoxygenase (SLO), with linoleic acid revealed no effect on the first-order rate constants, kcat, or activation energy, Ea. Further studies of SLO active site mutants displaying varying Eas, which have been used to probe catalytically relevant motions, likewise provided no evidence for viscogen-dependent motions. Kinetic analyses were extended to a representative fungal LOX from M. oryzae, MoLOX, and a human LOX, 15-LOX-2. While MoLOX behaved similarly to SLO, we show that viscogens inhibit 15-LOX-2 activity. The latter implicates viscogen sensitive, conformational motions in animal LOX reactions. The data provide insight into the role of water hydration layers in facilitating hydrogen (quantum) tunneling in LOX.
Collapse
Affiliation(s)
- Luis Guevara
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Melissa Gouge
- Department of Chemistry and Biochemistry, Ohio Northern University, Ada, OH, 45810, USA
| | - Amanda Ohler
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - S Gage Hill
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Soham Patel
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
7
|
Giubertoni G, Bonn M, Woutersen S. D 2O as an Imperfect Replacement for H 2O: Problem or Opportunity for Protein Research? J Phys Chem B 2023; 127:8086-8094. [PMID: 37722111 PMCID: PMC10544019 DOI: 10.1021/acs.jpcb.3c04385] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/28/2023] [Indexed: 09/20/2023]
Abstract
D2O is commonly used as a solvent instead of H2O in spectroscopic studies of proteins, in particular, in infrared and nuclear-magnetic-resonance spectroscopy. D2O is chemically equivalent to H2O, and the differences, particularly in hydrogen-bond strength, are often ignored. However, replacing solvent water with D2O can affect not only the kinetics but also the structure and stability of biomolecules. Recent experiments have shown that even the mesoscopic structures and the elastic properties of biomolecular assemblies, such as amyloids and protein networks, can be very different in D2O and H2O. We discuss these findings, which probably are just the tip of the iceberg, and which seem to call for obtaining a better understanding of the H2O/D2O-isotope effect on water-water and water-protein interactions. Such improved understanding may change the differences between H2O and D2O as biomolecular solvents from an elephant in the room to an opportunity for protein research.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sander Woutersen
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
8
|
Haidar Y, Konermann L. Effects of Hydrogen/Deuterium Exchange on Protein Stability in Solution and in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37314114 DOI: 10.1021/jasms.3c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry (MS)-based techniques are widely used for probing protein structure and dynamics in solution. H/D exchange (HDX)-MS is one of the most common approaches in this context. HDX is often considered to be a "benign" labeling method, in that it does not perturb protein behavior in solution. However, several studies have reported that D2O pushes unfolding equilibria toward the native state. The origin, and even the existence of this protein stabilization remain controversial. Here we conducted thermal unfolding assays in solution to confirm that deuterated proteins in D2O are more stable, with 2-4 K higher melting temperatures than unlabeled proteins in H2O. Previous studies tentatively attributed this phenomenon to strengthened H-bonds after deuteration, an effect that may arise from the lower zero-point vibrational energy of the deuterated species. Specifically, it was proposed that strengthened water-water bonds (W···W) in D2O lower the solubility of nonpolar side chains. The current work takes a broader view by noting that protein stability in solution also depends on water-protein (W···P) and protein-protein (P···P) H-bonds. To help unravel these contributions, we performed collision-induced unfolding (CIU) experiments on gaseous proteins generated by native electrospray ionization. CIU profiles of deuterated and unlabeled proteins were indistinguishable, implying that P···P contacts are insensitive to deuteration. Thus, protein stabilization in D2O is attributable to solvent effects, rather than alterations of intraprotein H-bonds. Strengthening of W···W contacts represents one possible explanation, but the stabilizing effect of D2O can also originate from weakened W···P bonds. Future work will be required to elucidate which of these two scenarios is correct, or if both contribute to protein stabilization in D2O. In any case, the often-repeated adage that "D-bonds are more stable than H-bonds" does not apply to intramolecular contacts in native proteins.
Collapse
Affiliation(s)
- Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Wilson S, Ruban AV. Deuterium isotope effect on the kinetics of nonphotochemical chlorophyll fluorescence quenching and the transthylakoid ΔpH. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148590. [PMID: 35803310 DOI: 10.1016/j.bbabio.2022.148590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Sam Wilson
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.
| | - Alexander V Ruban
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| |
Collapse
|
10
|
Yang C, Yu C, Zhang M, Yang X, Dong H, Dong Q, Zhang H, Li L, Guo X, Zang H. Investigation of protective effect of ethanol on the natural structure of protein with infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120935. [PMID: 35121476 DOI: 10.1016/j.saa.2022.120935] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The stability of biological drugs with protein as an active substance depends heavily on the retention of natural protein structure during freeze-drying. Stabilizers have become important substances in the process of protein freeze-drying. In order to further understand the mechanism of the interaction between protein and stabilizers, human serum albumin (HSA) and simple hydroxyl compound ethanol were used as models. Infrared (IR) spectroscopy combined with chemometrics was implemented to investigate the changes of secondary structure and hydration of HSA when different concentrations of ethanol were considered as interference. Through the analysis of the protein secondary structure and hydrated layer, we found that the addition of ethanol-d6 increased the α-helix of HSA and reduced the disordered structure. The hydrogen bond structure around HSA was enhanced and intermolecular aggregation was reduced through the action of the water molecules. The hypothesis was verified by circular dichroism (CD) and transmission electron microscopy (TEM) observation by adding different concentrations of ethanol-d6. It was found that a small amount of ethanol could protect the native conformation of HSA. In conclusion, this study revealed the mechanism of ethanol as a protein protector, provided a new idea for protein purification process and a theoretical basis for biomolecular interaction.
Collapse
Affiliation(s)
- Cui Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chen Yu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengqi Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangchun Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hailing Dong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qin Dong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hui Zhang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250012, China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China
| | - Xueping Guo
- Bloomage Biotechnology Corporation Limited, Tianchen Street 678, Jinan, Shandong 250012, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
11
|
Impact of lyoprotectors on protein-protein separation in the solid state: Neutron- and X-ray-scattering investigation. Biochim Biophys Acta Gen Subj 2022; 1866:130101. [PMID: 35151821 DOI: 10.1016/j.bbagen.2022.130101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Polyhydroxycompounds (PHC) are used as lyoprotectors to minimize aggregation of pharmaceutical proteins during freeze-drying and storage. METHODS Lysozyme/PHC mixtures with 1:1 and 1:3 (w/w) ratios are freeze-dried from either H2O or D2O solutions. Disaccharides (sucrose and trehalose), monosaccharide (glucose), and sugar alcohol (sorbitol) are used in the study. Small-angle neutron and X-ray scattering (SANS and SAXS) are applied to study protein-protein interaction in the freeze-dried samples. RESULTS Protein interaction peak in the freeze-dried mixtures has been detected by both SANS (D2O-based samples only) and SAXS (both D2O- and H2O-based). In the 1:1 mixtures, protein separation distances are similar (center-of-mass distance of approx. 31 Å) between all lyoprotectors studied. Mixtures with a higher content of the disaccharides (1:3 ratio) have a higher separation distance of approx 40 Å. The higher separation could reduce protein-protein contacts and therefore be associated with less favourable aggregation conditions. In the 1:3 mixtures with glucose and sorbitol, complex SANS and SAXS/WAXS patterns are observed. The pattern for the glucose sample indicate two populations of lysozyme molecules, while the origin of multiple SAXS peaks in the lysozyme/sorbitol 1:3 mixture is uncertain. CONCLUSIONS Protein-protein separation distance is determined predominantly by the lyoprotector/protein weight ratio. GENERAL SIGNIFICANCE Use of SANS and SAXS improves understanding of mechanisms of protein stabilization by sugars in freeze-dried formulations, and provide a tool to verify hypothesis on relationship between protein/protein separation and aggregation propensity in the dried state.
Collapse
|
12
|
Arumughan V, Nypelö T, Hasani M, Larsson A. Calcium Ion-Induced Structural Changes in Carboxymethylcellulose Solutions and Their Effects on Adsorption on Cellulose Surfaces. Biomacromolecules 2021; 23:47-56. [PMID: 34936336 PMCID: PMC8753602 DOI: 10.1021/acs.biomac.1c00895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The adsorption of
carboxymethylcellulose (CMC) on cellulose surfaces
is one of the most studied examples of the adsorption of an anionic
polyelectrolyte on a like-charged surface. It has been suggested that
divalent ions can act as a bridge between CMC chains and the surface
of cellulose and enhance the CMC adsorption: they can, however, also
alter the structure of CMCs in the solution. In previous investigations,
the influence of cations on solution properties has been largely overlooked.
This study investigates the effect of Ca2+ ions on the
properties of CMC solutions as well as the influence on cellulose
nanofibers (CNFs), which was studied by dynamic light scattering and
correlated with the adsorption of CMC on a cellulose surface probed
using QCM-D. The presence of Ca2+ facilitated the multichain
association of CMC chains and increased the hydrodynamic diameter.
This suggests that the adsorption of CMCs at high concentrations of
CaCl2 is governed mainly by changes in solution properties
rather than by changes in the cellulose surface. Furthermore, an entropy-driven
mechanism has been suggested for the adsorption of CMC on cellulose.
By comparing the adsorption of CMC from H2O and D2O, it was found that the release of water from the cellulose surface
is driving the adsorption of CMC.
Collapse
Affiliation(s)
- Vishnu Arumughan
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,AvanCell, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Tiina Nypelö
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Merima Hasani
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,AvanCell, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Anette Larsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,AvanCell, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,FibRe─Centre for Lignocellulose-based Thermoplastics, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
13
|
Perez-Salas U, Garg S, Gerelli Y, Porcar L. Deciphering lipid transfer between and within membranes with time-resolved small-angle neutron scattering. CURRENT TOPICS IN MEMBRANES 2021; 88:359-412. [PMID: 34862031 DOI: 10.1016/bs.ctm.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review focuses on time-resolved neutron scattering, particularly time-resolved small angle neutron scattering (TR-SANS), as a powerful in situ noninvasive technique to investigate intra- and intermembrane transport and distribution of lipids and sterols in lipid membranes. In contrast to using molecular analogues with potentially large chemical tags that can significantly alter transport properties, small angle neutron scattering relies on the relative amounts of the two most abundant isotope forms of hydrogen: protium and deuterium to detect complex membrane architectures and transport processes unambiguously. This review discusses advances in our understanding of the mechanisms that sustain lipid asymmetry in membranes-a key feature of the plasma membrane of cells-as well as the transport of lipids between membranes, which is an essential metabolic process.
Collapse
Affiliation(s)
- Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States.
| | - Sumit Garg
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Universita` Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
14
|
Ramos J, Laux V, Haertlein M, Forsyth VT, Mossou E, Larsen S, Langkilde AE. The impact of folding modes and deuteration on the atomic resolution structure of hen egg-white lysozyme. Acta Crystallogr D Struct Biol 2021; 77:1579-1590. [PMID: 34866613 PMCID: PMC8647175 DOI: 10.1107/s2059798321010950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
The biological function of a protein is intimately related to its structure and dynamics, which in turn are determined by the way in which it has been folded. In vitro refolding is commonly used for the recovery of recombinant proteins that are expressed in the form of inclusion bodies and is of central interest in terms of the folding pathways that occur in vivo. Here, biophysical data are reported for in vitro-refolded hydrogenated hen egg-white lysozyme, in combination with atomic resolution X-ray diffraction analyses, which allowed detailed comparisons with native hydrogenated and refolded perdeuterated lysozyme. Distinct folding modes are observed for the hydrogenated and perdeuterated refolded variants, which are determined by conformational changes to the backbone structure of the Lys97-Gly104 flexible loop. Surprisingly, the structure of the refolded perdeuterated protein is closer to that of native lysozyme than that of the refolded hydrogenated protein. These structural differences suggest that the observed decreases in thermal stability and enzymatic activity in the refolded perdeuterated and hydrogenated proteins are consequences of the macromolecular deuteration effect and of distinct folding dynamics, respectively. These results are discussed in the context of both in vitro and in vivo folding, as well as of lysozyme amyloidogenesis.
Collapse
Affiliation(s)
- Joao Ramos
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Valerie Laux
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michael Haertlein
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - V. Trevor Forsyth
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Faculty of Natural Sciences, Keele University, Newcastle ST5 5BG, United Kingdom
- Faculty of Medicine, Lund University, 221 00 Lund, Sweden
- LINXS Institute for Advanced Neutron and X-ray Science, Scheelvagen 19, 223 70 Lund, Sweden
| | - Estelle Mossou
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Sine Larsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
15
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
16
|
Ramos J, Laux V, Haertlein M, Boeri Erba E, McAuley KE, Forsyth VT, Mossou E, Larsen S, Langkilde AE. Structural insights into protein folding, stability and activity using in vivo perdeuteration of hen egg-white lysozyme. IUCRJ 2021; 8:372-386. [PMID: 33953924 PMCID: PMC8086161 DOI: 10.1107/s2052252521001299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
This structural and biophysical study exploited a method of perdeuterating hen egg-white lysozyme based on the expression of insoluble protein in Escherichia coli followed by in-column chemical refolding. This allowed detailed comparisons with perdeuterated lysozyme produced in the yeast Pichia pastoris, as well as with unlabelled lysozyme. Both perdeuterated variants exhibit reduced thermal stability and enzymatic activity in comparison with hydrogenated lysozyme. The thermal stability of refolded perdeuterated lysozyme is 4.9°C lower than that of the perdeuterated variant expressed and secreted in yeast and 6.8°C lower than that of the hydrogenated Gallus gallus protein. However, both perdeuterated variants exhibit a comparable activity. Atomic resolution X-ray crystallographic analyses show that the differences in thermal stability and enzymatic function are correlated with refolding and deuteration effects. The hydrogen/deuterium isotope effect causes a decrease in the stability and activity of the perdeuterated analogues; this is believed to occur through a combination of changes to hydrophobicity and protein dynamics. The lower level of thermal stability of the refolded perdeuterated lysozyme is caused by the unrestrained Asn103 peptide-plane flip during the unfolded state, leading to a significant increase in disorder of the Lys97-Gly104 region following subsequent refolding. An ancillary outcome of this study has been the development of an efficient and financially viable protocol that allows stable and active perdeuterated lysozyme to be more easily available for scientific applications.
Collapse
Affiliation(s)
- Joao Ramos
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Valerie Laux
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michael Haertlein
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Elisabetta Boeri Erba
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Institut de Biologie Structurale, Université de Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Katherine E. McAuley
- Diamond Light Source, Didcot OX11 0DE, United Kingdom
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - V. Trevor Forsyth
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, United Kingdom
| | - Estelle Mossou
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, United Kingdom
| | - Sine Larsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
17
|
Chamorro VC, Tempra C, Jungwirth P. Heavy Water Models for Classical Molecular Dynamics: Effective Inclusion of Nuclear Quantum Effects. J Phys Chem B 2021; 125:4514-4519. [PMID: 33904303 DOI: 10.1021/acs.jpcb.1c02235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Small differences in physical and chemical properties of H2O and D2O, such as melting and boiling points or pKa, can be traced back to a slightly stronger hydrogen bonding in heavy versus normal water. In particular, deuteration reduces zero-point vibrational energies as a demonstration of nuclear quantum effects. In principle, computationally demanding quantum molecular dynamics is required to model such effects. However, as already demonstrated by Feynmann and Hibbs, zero-point vibrations can be effectively accounted for by modifying the interaction potential within classical dynamics. In the spirit of the Feymann-Hibbs approach, we develop here two water models for classical molecular dynamics by fitting experimental differences between H2O and D2O. We show that a three-site SPCE-based model accurately reproduces differences between properties of the two water isotopes, with a four-site TIP4P-2005/based model in addition capturing also the absolute values of key properties of heavy water. The present models are computationally simple enough to allow for extensive simulations of biomolecules in heavy water relevant, for example, for experimental techniques such as NMR or neutron scattering.
Collapse
Affiliation(s)
- Victor Cruces Chamorro
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| |
Collapse
|
18
|
Roy P, House ML, Dutcher CS. A Microfluidic Device for Automated High Throughput Detection of Ice Nucleation of Snomax ®. MICROMACHINES 2021; 12:296. [PMID: 33799595 PMCID: PMC7998955 DOI: 10.3390/mi12030296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
Measurement of ice nucleation (IN) temperature of liquid solutions at sub-ambient temperatures has applications in atmospheric, water quality, food storage, protein crystallography and pharmaceutical sciences. Here we present details on the construction of a temperature-controlled microfluidic platform with multiple individually addressable temperature zones and on-chip temperature sensors for high-throughput IN studies in droplets. We developed, for the first time, automated droplet freezing detection methods in a microfluidic device, using a deep neural network (DNN) and a polarized optical method based on intensity thresholding to classify droplets without manual counting. This platform has potential applications in continuous monitoring of liquid samples consisting of aerosols to quantify their IN behavior, or in checking for contaminants in pure water. A case study of the two detection methods was performed using Snomax® (Snomax International, Englewood, CO, USA), an ideal ice nucleating particle (INP). Effects of aging and heat treatment of Snomax® were studied with Fourier transform infrared (FTIR) spectroscopy and a microfluidic platform to correlate secondary structure change of the IN protein in Snomax® to IN temperature. It was found that aging at room temperature had a mild impact on the ice nucleation ability but heat treatment at 95 °C had a more pronounced effect by reducing the ice nucleation onset temperature by more than 7 °C and flattening the overall frozen fraction curve. Results also demonstrated that our setup can generate droplets at a rate of about 1500/min and requires minimal human intervention for DNN classification.
Collapse
Affiliation(s)
- Priyatanu Roy
- Department of Mechanical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA;
| | - Margaret L. House
- Department of Chemical Engineering & Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA;
| | - Cari S. Dutcher
- Department of Mechanical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA;
- Department of Chemical Engineering & Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA;
| |
Collapse
|
19
|
Guckeisen T, Hosseinpour S, Peukert W. Effect of pH and urea on the proteins secondary structure at the water/air interface and in solution. J Colloid Interface Sci 2021; 590:38-49. [PMID: 33524719 DOI: 10.1016/j.jcis.2021.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS The secondary structure of proteins affects their functionality and performance in physiological environments or industrial applications. Change of the solution pH or the presence of protein denaturants are the main chemical means that can alter the secondary structure of proteins or lead to protein denaturation. Since proteins in the bulk solution and those residing at the solution/air interface experience different local environments, their response to chemical denaturation can be different. EXPERIMENTS We utilize circular dichroism and chiral/achiral sum frequency generation spectroscopy to study the secondary structure of selected proteins as a function of the solution pH or in the presence of 8 M urea in the bulk solution and at the solution/air interface, respectively. FINDINGS The liquid/air interface can enhance or decrease protein conformation stability. The change in the secondary structure of the surface adsorbed proteins in alkaline solutions occurs at pH values lower than those denaturing the studied proteins in the bulk solution. In contrast, while 8 M urea completely denatures the studied proteins in the bulk solution, the liquid/air interface prevents the urea-induced denaturation of the surface adsorbed proteins by limiting the access of urea to the hydrophobic side chains of proteins protruding to air.
Collapse
Affiliation(s)
- Tobias Guckeisen
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität-Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| | - Saman Hosseinpour
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität-Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität-Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| |
Collapse
|
20
|
Perez-Borrajero C, Heinkel F, Gsponer J, McIntosh LP. Conformational Plasticity and DNA-Binding Specificity of the Eukaryotic Transcription Factor Pax5. Biochemistry 2021; 60:104-117. [PMID: 33398994 DOI: 10.1021/acs.biochem.0c00737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The eukaryotic transcription factor Pax5 has a DNA-binding Paired domain composed of two independent helical bundle subdomains joined by a flexible linker. Previously, we showed distinct biophysical properties of the N-terminal (NTD) and C-terminal (CTD) subdomains, with implications for how these two regions cooperate to distinguish nonspecific and cognate DNA sites [Perez-Borrajero, C., et al. (2016) J. Mol. Biol. 428, 2372-2391]. In this study, we combined experimental methods and molecular dynamics (MD) simulations to dissect the mechanisms underlying the functional differences between the Pax5 subdomains. Both subdomains showed a similar dependence of DNA-binding affinity on ionic strength. However, due to a greater contribution of non-ionic interactions, the NTD bound its cognate DNA half-site with an affinity approximately 10-fold higher than that of the CTD with its half-site. These interactions involve base-mediated contacts as evidenced by nuclear magnetic resonance spectroscopy-monitored chemical shift perturbations. Isothermal titration calorimetry revealed that favorable enthalpic and compensating unfavorable entropic changes were substantially larger for DNA binding by the NTD than by the CTD. Complementary MD simulations indicated that the DNA recognition helix H3 of the NTD is particularly flexible in the absence of DNA and undergoes the largest changes in conformational dynamics upon binding. Overall, these data suggest that the differences observed for the subdomains of Pax5 are due to the coupling of DNA binding with dampening of motions in the NTD required for specific base contacts. Thus, the conformational plasticity of the Pax5 Paired domain underpins the differing roles of its subdomains in association with nonspecific versus cognate DNA sites.
Collapse
Affiliation(s)
- Cecilia Perez-Borrajero
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Florian Heinkel
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
21
|
Dorčák V, Černocká H, Paleček E. Bovine Serum Albumin Catalysed Hydrogen and Deuterium Evolution at Mercury Electrodes. Chempluschem 2020; 85:1596-1601. [PMID: 33210475 DOI: 10.1002/cplu.202000348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/04/2020] [Indexed: 11/09/2022]
Abstract
The hydrogen evolution reaction (HER), catalysed by proteins at mercury electrodes and reflected in chronopotentiometric stripping peak H, provides a label-free and reagentless analytical technique that is sensitive to protein structure. Here we show how the kinetic isotope effect affected the HER catalysed by the protein bovine serum albumin (BSA). We found that the deuteron bond, which is stronger than that of a proton, contributed to less effective transport of deuterons mediated by BSA at the Hg|D2 O interface, and enhanced structural stability of the surface-attached native BSA in D2 O solution. A structural transition was also observed in the surface-attached urea-denatured BSA, and is probably due to the destabilisation of some secondary structural remnants retained by the 17 SS-bonds. Because the catalytically active groups involved in proton or deuteron transfer in native proteins are often exposed towards solutions and their protons exchange almost instantly, no signs of H/D exchange were observed in native BSA using peak H under the given conditions.
Collapse
Affiliation(s)
- Vlastimil Dorčák
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Hana Černocká
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Emil Paleček
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Kralovopolska 135, 612 65, Brno, Czech Republic
| |
Collapse
|
22
|
Murphy RB, Staton J, Rawal A, Darwish TA. The effect of deuteration on the keto-enol equilibrium and photostability of the sunscreen agent avobenzone. Photochem Photobiol Sci 2020; 19:1410-1422. [PMID: 32966538 DOI: 10.1039/d0pp00265h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The remarkable properties of deuterium have led to many exciting and favourable results in enhancing material properties, for applications in the physical, medical, and biological sciences. Deuterated isotopologues of avobenzone, a sunscreen active ingredient, were synthesised to examine for any changes to the equilibrium between the diketone and enol isomers, as well as their UV photostability and photoprotective properties. Prior to UV irradiation, deuteration of the diketone methylene/enol moiety (i.e. avobenzone-d2) led to an increase in the % diketone compared to non-deuterated, determined by 1H NMR experiments in CDCl3 and C6D12. This can be rationalised from two angles; mechanistically by a deuterium kinetic isotope effect for the CH vs. CD abstraction step during tautomerisation from the diketone to the enol, and a weaker chelating hydrogen bond for the enol when deuterated allowing increased equilibration to the diketone. Avobenzone-d2 was further examined by solid state 13C NMR. The higher % diketone for avobenzone-d2 was postulated to favour increased photodegradation by a non-reversible pathway. This was investigated by UV irradiation of the avobenzone isotopologues in C6D12, both in real time in situ within the NMR by fibre optic cable as well as ex situ using sunlight. An increase in the relative amount of photoproducts for avobenzone-d2 compared to non-deuterated was observed by 1H NMR upon UV irradiation ex situ. Overall, the study demonstrates that deuteration can be applied to alter complex equilibria, and has potential to be manifested as changes to the properties and behaviour of materials.
Collapse
Affiliation(s)
- Rhys B Murphy
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
| | - John Staton
- Eurofins Dermatest, 20 King Street, Rockdale, New South Wales 2216, Australia
| | - Aditya Rawal
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Tamim A Darwish
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
| |
Collapse
|
23
|
Bhagat SD, Srivastava A. Amphiphilic phenylalanine derivatives that temporally generate reactive oxygen species from water in the presence of Au(iii) ions. Biomater Sci 2020; 8:4750-4756. [PMID: 32706345 DOI: 10.1039/d0bm00607f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Amphiphilic derivatives of phenylalanine (ADFs) have strong self-assembling propensities and yield low molecular weight hydrogels on multiple occassions. The interaction of ADFs with metal ions can result in the morphological changes in the self-assemblies. Herein, we report the interesting consequences of the interaction between four N-protected ADFs with Au(iii) ions. In the case of ADF 1, the original nanofibrillar morphology of the self-assemblies spontaneously transformed into uniform nanoglobules of ∼80 nm in diameter upon addition of Au(iii) ions. A subsequent reduction of the Au(iii) ions to Au(0) nanoparticles (AuNPs) and the surface decoration of the nanoglobules with AuNPs were observed in the course of the next six to eight hours. Simultaneously, multiple reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radicals (˙OH), singlet oxygen and superoxide ions were also found to be present in the reaction medium. These ROS originate from water used as the reaction medium. The ROS production and the reduction of Au(iii) were inhibited upon deaeration of the reaction medium and the use of heavy water (D2O) or organic solvents as the reaction medium, while an increase in the pH of the aqueous medium intensified both these processes. We exploited the temporal ROS generation using the mixture of 1 and Au(iii) ions towards anticancer therapy by enhancing the intracellular ROS levels. It is expected that this effort can be expanded into a viable anticancer therapy in the near future by modulating the amount and the rate of ROS-generation through judicious choice of the peptidic ligands and metal ions.
Collapse
Affiliation(s)
- Somnath Dharmaraj Bhagat
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road Bhauri, Bhopal, Madhya Pradesh 462066, India.
| | | |
Collapse
|
24
|
Peak Fitting Applied to Fourier Transform Infrared and Raman Spectroscopic Analysis of Proteins. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175918] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FTIR and Raman spectroscopy are often used to investigate the secondary structure of proteins. Focus is then often laid on the different features that can be distinguished in the Amide I band (1600–1700 cm−1) and, to a lesser extent, the Amide II band (1510–1580 cm−1), signature regions for C=O stretching/N-H bending, and N-H bending/C-N stretching vibrations, respectively. Proper investigation of all hidden and overlapping features/peaks is a necessary step to achieve reliable analysis of FTIR and FT-Raman spectra of proteins. This paper discusses a method to identify, separate, and quantify the hidden peaks in the amide I band region of infrared and Raman spectra of four globular proteins in aqueous solution as well as hydrated zein and gluten proteins. The globular proteins studied, which differ widely in terms of their secondary structures, include immunoglobulin G, concanavalin A, lysozyme, and trypsin. Peak finding was done by analysis of the second derivative of the original spectra. Peak separation and quantification was achieved by curve fitting using the Voigt function. Structural data derived from the FT-Raman and FTIR analyses were compared to literature reports on protein structure. This manuscript proposes an accurate method to analyze protein secondary structure based on the amide I band in vibrational spectra.
Collapse
|
25
|
Kampmeyer C, Johansen JV, Holmberg C, Karlson M, Gersing SK, Bordallo HN, Kragelund BB, Lerche MH, Jourdain I, Winther JR, Hartmann-Petersen R. Mutations in a Single Signaling Pathway Allow Cell Growth in Heavy Water. ACS Synth Biol 2020; 9:733-748. [PMID: 32142608 DOI: 10.1021/acssynbio.9b00376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Life is completely dependent on water. To analyze the role of water as a solvent in biology, we replaced water with heavy water (D2O) and investigated the biological effects by a wide range of techniques, using Schizosaccharomyces pombe as model organism. We show that high concentrations of D2O lead to altered glucose metabolism and growth retardation. After prolonged incubation in D2O, cells displayed gross morphological changes, thickened cell walls, and aberrant cytoskeletal organization. By transcriptomics and genetic screens, we show that the solvent replacement activates two signaling pathways: (1) the heat-shock response pathway and (2) the cell integrity pathway. Although the heat-shock response system upregulates various chaperones and other stress-relieving enzymes, we find that the activation of this pathway does not offer any fitness advantage to the cells under the solvent-replaced conditions. However, limiting the D2O-triggered activation of the cell integrity pathway allows cell growth when H2O is completely replaced with D2O. The isolated D2O-tolerant strains may aid biological production of deuterated biomolecules.
Collapse
Affiliation(s)
- Caroline Kampmeyer
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Jens V. Johansen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Christian Holmberg
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Magnus Karlson
- Technical University of Denmark, Department of Electrical Engineering, Ørsted Plads, Building 349, DK-2800 Kongens Lyngby, Denmark
| | - Sarah K. Gersing
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Heloisa N. Bordallo
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Birthe B. Kragelund
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
- The REPIN Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Mathilde H. Lerche
- Technical University of Denmark, Department of Electrical Engineering, Ørsted Plads, Building 349, DK-2800 Kongens Lyngby, Denmark
| | - Isabelle Jourdain
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Jakob R. Winther
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
- The REPIN Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| |
Collapse
|
26
|
Smith JW, Chen Q. Liquid-phase electron microscopy imaging of cellular and biomolecular systems. J Mater Chem B 2020; 8:8490-8506. [DOI: 10.1039/d0tb01300e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liquid-phase electron microscopy, a new method for real-time nanoscopic imaging in liquid, makes it possible to study cells or biomolecules with a singular combination of spatial and temporal resolution. We review the state of the art in biological research in this growing and promising field.
Collapse
Affiliation(s)
- John W. Smith
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign
- Urbana
- USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign
- Urbana
- USA
- Department of Chemistry
- University of Illinois at Urbana–Champaign
| |
Collapse
|
27
|
Tian B, Garcia Sakai V, Pappas C, van der Goot AJ, Bouwman WG. Fibre formation in calcium caseinate influenced by solvent isotope effect and drying method – A neutron spectroscopy study. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Sharma I, Pattanayek SK. Interrelation of Elasticity, Isotherm of Adsorbed Proteins, and its Subsequent Displacement by a Surfactant. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Indu Sharma
- Department of Chemical Engineering Indian Institute of Technology, New Delhi 110016, India
| | - Sudip K. Pattanayek
- Department of Chemical Engineering Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
29
|
|
30
|
Huijuan Y, Xiaohu D, Ze L, Wei C, Jian Z, Lei M, Shaohui S, Weidong L, Guoyang L. Role of phenol red in the stabilization of the Sabin type 2 inactivated polio vaccine at various pH values. J Med Virol 2018; 91:22-30. [DOI: 10.1002/jmv.25289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/12/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Huijuan
- Sixth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Dai Xiaohu
- Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Liu Ze
- Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Cai Wei
- Fourth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Zhou Jian
- Sixth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Ma Lei
- Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Song Shaohui
- Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Li Weidong
- Department of Production AdministrationInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Liao Guoyang
- Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| |
Collapse
|
31
|
Stadmiller SS, Pielak GJ. Enthalpic stabilization of an SH3 domain by D 2 O. Protein Sci 2018; 27:1710-1716. [PMID: 30052291 PMCID: PMC6194290 DOI: 10.1002/pro.3477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023]
Abstract
The stability of a protein is vital for its biological function, and proper folding is partially driven by intermolecular interactions between protein and water. In many studies, H2 O is replaced by D2 O because H2 O interferes with the protein signal. Even this small perturbation, however, affects protein stability. Studies in isotopic waters also might provide insight into the role of solvation and hydrogen bonding in protein folding. Here, we report a complete thermodynamic analysis of the reversible, two-state, thermal unfolding of the metastable, 7-kDa N-terminal src-homology 3 domain of the Drosophila signal transduction protein drk in H2 O and D2 O using one-dimensional 19 F NMR spectroscopy. The stabilizing effect of D2 O compared with H2 O is enthalpic and has a small to insignificant effect on the temperature of maximum stability, the entropy, and the heat capacity of unfolding. We also provide a concise summary of the literature about the effects of D2 O on protein stability and integrate our results into this body of data.
Collapse
Affiliation(s)
| | - Gary J. Pielak
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599
- Department of Biochemistry and BiophysicsUniversity of North CarolinaChapel HillNorth Carolina27599
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth Carolina27599
- Integrative Program for Biological and Genome SciencesUniversity of North CarolinaChapel HillNorth Carolina27599
| |
Collapse
|
32
|
Pica A, Graziano G. Effect of heavy water on the conformational stability of globular proteins. Biopolymers 2017; 109:e23076. [PMID: 29068056 DOI: 10.1002/bip.23076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023]
Abstract
It is well established from the experimental point of view that the native state of globular proteins is more stable in heavy water than in water. No robust explanation, however, has been provided up to now. The application of the theoretical approach, originally devised to rationalize the general occurrence of cold denaturation, indicates that the magnitude of the solvent-excluded volume effect is slightly smaller in heavy water than in water and cannot explain the observed protein stabilization. The latter has to be due to the strength of protein-water van der Waals attractions which are weaker in heavy water due to the smaller molecular polarizability of D2 O compared with that of H2 O molecules. Since protein-water van der Waals attractions occur more in the denatured than in the native state, this contribution leads to a stabilization of the latter through a destabilization of the former.
Collapse
Affiliation(s)
- Andrea Pica
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, Napoli, 80126, Italy
| | - Giuseppe Graziano
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via Port'Arsa 11, Benevento, 82100, Italy
| |
Collapse
|
33
|
Takahashi H, Jojiki K. Water isotope effect on the lipidic cubic phase: Heavy water-Induced interfacial area reduction of monoolein-Water system. Chem Phys Lipids 2017; 208:52-57. [PMID: 28888939 DOI: 10.1016/j.chemphyslip.2017.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/17/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Heavy water (D2O) affects various functions of cells and living things. In order to gain fundamental insight into the molecular mechanism on biological effects of heavy water, D2O-effects on fully hydrated monoolein (MO) systems were investigated from the structural viewpoints. At room temperature, the MO fully hydrated by pure light water (H2O) forms a bicontinuous cubic (Pn3m) phase, and then, the Pn3m cubic phase transforms into an inverted hexagonal (HII) phase at about 90°C. Temperature-scan X-ray diffraction measurements showed that substitution of D2O for H2O lowers the Pn3m-to-HII phase transition temperature and reduces the lattice constants of both phases. The structural analysis of the Pn3m phase using the diffraction intensity data indicated that D2O reduces the surface occupied area of MO at the interface by 12% in comparison with H2O. This change is probably due to the difference of the strength of hydrogen bond.
Collapse
Affiliation(s)
- Hiroshi Takahashi
- Biophysics Laboratory, Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan.
| | - Kotaro Jojiki
- Biophysics Laboratory, Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| |
Collapse
|
34
|
Aleksis R, Oleskovs F, Jaudzems K, Pahnke J, Biverstål H. Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity. Biochimie 2017; 140:176-192. [PMID: 28751216 DOI: 10.1016/j.biochi.2017.07.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases worldwide. Formation of amyloid plaques consisting of amyloid-β peptides (Aβ) is one of the hallmarks of AD. Several lines of evidence have shown a correlation between the Aβ aggregation and the disease development. Extensive research has been conducted with the aim to reveal the structures of the neurotoxic Aβ aggregates. However, the exact structure of pathological aggregates and mechanism of the disease still remains elusive due to complexity of the occurring processes and instability of various disease-relevant Aβ species. In this article we review up-to-date structural knowledge about amyloid-β peptides, focusing on data acquired using solution and solid state NMR techniques. Furthermore, we discuss implications from these structural studies on the mechanisms of aggregation and neurotoxicity.
Collapse
Affiliation(s)
- Rihards Aleksis
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia.
| | - Filips Oleskovs
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia
| | - Jens Pahnke
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) & Oslo University Hospital (OUS), Norway; LIED, University of Lübeck Uzl, Germany; Leibniz-Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Henrik Biverstål
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia; Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Chilton M, Clennell B, Edfeldt F, Geschwindner S. Hot-Spotting with Thermal Scanning: A Ligand- and Structure-Independent Assessment of Target Ligandability. J Med Chem 2017; 60:4923-4931. [PMID: 28537726 DOI: 10.1021/acs.jmedchem.7b00208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Evaluating the ligandability of a protein target is a key component when defining hit-finding strategies or when prioritize among drug targets. Computational as well as biophysical approaches based on nuclear magnetic resonance (NMR) fragment screening are powerful approaches but suffer from specific constraints that limit their usage. Here, we demonstrate the applicability of high-throughput thermal scanning (HTTS) as a simple and generic biophysical fragment screening method to reproduce assessments from NMR-based screening. By applying this method to a large set of proteins we can furthermore show that the assessment is predictive of the success of high-throughput screening (HTS). The few divergences for targets of low ligandability originate from the sensitivity differences of the orthogonal biophysical methods. We thus applied a new strategy making use of modulations in the solvent structure to improve assay sensitivity. This novel approach enables improved ligandability assessments in accordance with NMR-based assessments and more importantly positions the methodology as a valuable option for biophysical fragment screening.
Collapse
Affiliation(s)
- Molly Chilton
- Innovative Medicines and Early Development Biotech Unit, Discovery Sciences, AstraZeneca R&D Gothenburg , 43183 Mölndal, Sweden
| | - Ben Clennell
- Innovative Medicines and Early Development Biotech Unit, Discovery Sciences, AstraZeneca R&D Gothenburg , 43183 Mölndal, Sweden
| | - Fredrik Edfeldt
- Innovative Medicines and Early Development Biotech Unit, Discovery Sciences, AstraZeneca R&D Gothenburg , 43183 Mölndal, Sweden
| | - Stefan Geschwindner
- Innovative Medicines and Early Development Biotech Unit, Discovery Sciences, AstraZeneca R&D Gothenburg , 43183 Mölndal, Sweden
| |
Collapse
|
36
|
Braun MK, Wolf M, Matsarskaia O, Da Vela S, Roosen-Runge F, Sztucki M, Roth R, Zhang F, Schreiber F. Strong Isotope Effects on Effective Interactions and Phase Behavior in Protein Solutions in the Presence of Multivalent Ions. J Phys Chem B 2017; 121:1731-1739. [DOI: 10.1021/acs.jpcb.6b12814] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michal K. Braun
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Marcell Wolf
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Olga Matsarskaia
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Stefano Da Vela
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | | | - Michael Sztucki
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Roland Roth
- Institut
für Theoretische Physik, Universität Tübingen, Auf
der Morgenstelle 14, 72076 Tübingen, Germany
| | - Fajun Zhang
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Frank Schreiber
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
37
|
Yee AW, Moulin M, Breteau N, Haertlein M, Mitchell EP, Cooper JB, Boeri Erba E, Forsyth VT. Impact of Deuteration on the Assembly Kinetics of Transthyretin Monitored by Native Mass Spectrometry and Implications for Amyloidoses. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ai Woon Yee
- Life Sciences group, ILL 71 avenue des Martyrs 38042 Grenoble France
- Faculty of Natural SciencesKeele University Staffordshire ST5 5BG UK
| | - Martine Moulin
- Life Sciences group, ILL 71 avenue des Martyrs 38042 Grenoble France
- Faculty of Natural SciencesKeele University Staffordshire ST5 5BG UK
| | - Nina Breteau
- Life Sciences group, ILL 71 avenue des Martyrs 38042 Grenoble France
| | - Michael Haertlein
- Life Sciences group, ILL 71 avenue des Martyrs 38042 Grenoble France
| | - Edward P. Mitchell
- Faculty of Natural SciencesKeele University Staffordshire ST5 5BG UK
- ESRF 71 avenue des Martyrs 38042 Grenoble France
| | - Jonathan B. Cooper
- Laboratory of Protein Crystallography, Drug Discovery GroupWolfson Institute for Biomedical Research, UCL London WC1E 6BT UK
| | - Elisabetta Boeri Erba
- Univ. Grenoble Alpes, IBS 38044 Grenoble France
- CNRS, IBS 38044 Grenoble France
- CEA, IBS 38044 Grenoble France
| | - V. Trevor Forsyth
- Life Sciences group, ILL 71 avenue des Martyrs 38042 Grenoble France
- Faculty of Natural SciencesKeele University Staffordshire ST5 5BG UK
| |
Collapse
|
38
|
Yee AW, Moulin M, Breteau N, Haertlein M, Mitchell EP, Cooper JB, Boeri Erba E, Forsyth VT. Impact of Deuteration on the Assembly Kinetics of Transthyretin Monitored by Native Mass Spectrometry and Implications for Amyloidoses. Angew Chem Int Ed Engl 2016; 55:9292-6. [PMID: 27311939 PMCID: PMC5094506 DOI: 10.1002/anie.201602747] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 01/13/2023]
Abstract
It is well established that the formation of transthyretin (TTR) amyloid fibrils is linked to the destabilization and dissociation of its tetrameric structure into insoluble aggregates. Isotope labeling is used for the study of TTR by NMR, neutron diffraction, and mass spectrometry (MS). Here MS, thioflavin T fluorescence, and crystallographic data demonstrate that while the X-ray structures of unlabeled and deuterium-labeled TTR are essentially identical, subunit exchange kinetics and amyloid formation are accelerated for the deuterated protein. However, a slower subunit exchange is noted in deuterated solvent, reflecting the poorer solubility of non-polar protein side chains in such an environment. These observations are important for the interpretation of kinetic studies involving deuteration. The destabilizing effects of TTR deuteration are rather similar in character to those observed for aggressive mutations of TTR such as L55P (associated with familial amyloid polyneuropathy).
Collapse
Affiliation(s)
- Ai Woon Yee
- Life Sciences group, ILL, 71 avenue des Martyrs, 38042, Grenoble, France
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Martine Moulin
- Life Sciences group, ILL, 71 avenue des Martyrs, 38042, Grenoble, France
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Nina Breteau
- Life Sciences group, ILL, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Michael Haertlein
- Life Sciences group, ILL, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Edward P Mitchell
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
- ESRF, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Jonathan B Cooper
- Laboratory of Protein Crystallography, Drug Discovery Group, Wolfson Institute for Biomedical Research, UCL, London, WC1E 6BT, UK
| | - Elisabetta Boeri Erba
- Univ. Grenoble Alpes, IBS, 38044, Grenoble, France.
- CNRS, IBS, 38044, Grenoble, France.
- CEA, IBS, 38044, Grenoble, France.
| | - V Trevor Forsyth
- Life Sciences group, ILL, 71 avenue des Martyrs, 38042, Grenoble, France.
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
39
|
Balu R, Mata JP, Knott R, Elvin CM, Hill AJ, Choudhury NR, Dutta NK. Effects of Crowding and Environment on the Evolution of Conformational Ensembles of the Multi-Stimuli-Responsive Intrinsically Disordered Protein, Rec1-Resilin: A Small-Angle Scattering Investigation. J Phys Chem B 2016; 120:6490-503. [PMID: 27281267 DOI: 10.1021/acs.jpcb.6b02475] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we explore the overall structural ensembles and transitions of a biomimetic, multi-stimuli-responsive, intrinsically disordered protein (IDP), Rec1-resilin. The structural transition of Rec1-resilin with change in molecular crowding and environment is evaluated using small-angle neutron scattering and small-angle X-ray scattering. The quantitative analyses of the experimental scattering data using a combination of computational models allowed comprehensive description of the structural evolution, organization, and conformational ensembles of Rec1-resilin in response to the changes in concentration, pH, and temperature. Rec1-resilin in uncrowded solutions demonstrates the equilibrium intrinsic structure quality of an IDP with radius of gyration Rg ∼ 5 nm, and a scattering function for the triaxial ellipsoidal model best fit the experimental dataset. On crowding (increase in concentration >10 wt %), Rec1-resilin molecules exert intermolecular repulsive force of interaction, the Rg value reduces with a progressive increase in concentration, and molecular chains transform from a Gaussian coil to a fully swollen coil. It is also revealed that the structural organization of Rec1-resilin dynamically transforms from a rod (pH 2) to coil (pH 4.8) and to globular (pH 12) as a function of pH. The findings further support the temperature-triggered dual-phase-transition behavior of Rec1-resilin, exhibiting rod-shaped structural organization below the upper critical solution temperature (∼4 °C) and a large but compact structure above the lower critical solution temperature (∼75 °C). This work attempted to correlate unusual responsiveness of Rec1-resilin to the evolution of conformational ensembles.
Collapse
Affiliation(s)
- Rajkamal Balu
- Future Industries Institute, University of South Australia , Mawson Lakes, SA 5095, Australia
| | - Jitendra P Mata
- Bragg Institute, ANSTO , Private Mail Bag, Kirrawee, NSW 2232, Australia
| | - Robert Knott
- Bragg Institute, ANSTO , Private Mail Bag, Kirrawee, NSW 2232, Australia
| | - Christopher M Elvin
- CSIRO Agriculture, Level 6, Queensland Bioscience Precinct , St Lucia, QLD 4067, Australia
| | - Anita J Hill
- CSIRO Manufacturing , Bayview Avenue, Clayton, VIC 3168, Australia
| | - Namita R Choudhury
- School of Chemical Engineering, The University of Adelaide , Adelaide, SA 5005, Australia.,Future Industries Institute, University of South Australia , Mawson Lakes, SA 5095, Australia
| | - Naba K Dutta
- School of Chemical Engineering, The University of Adelaide , Adelaide, SA 5005, Australia.,Future Industries Institute, University of South Australia , Mawson Lakes, SA 5095, Australia
| |
Collapse
|
40
|
Banc A, Charbonneau C, Dahesh M, Appavou MS, Fu Z, Morel MH, Ramos L. Small angle neutron scattering contrast variation reveals heterogeneities of interactions in protein gels. SOFT MATTER 2016; 12:5340-5352. [PMID: 27198847 DOI: 10.1039/c6sm00710d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We propose a quantitative approach to probe the spatial heterogeneities of interactions in macromolecular gels, based on a combination of small angle X-ray (SAXS) and neutrons (SANS) scattering. We investigate the structure of model gluten protein gels and show that the gels display radically different SAXS and SANS profiles when the solvent is (at least partially) deuterated. The detailed analysis of the SANS signal as a function of the solvent deuteration demonstrates heterogeneities of sample deuteration at different length scales. The progressive exchange between the protons (H) of the proteins and the deuteriums (D) of the solvent is inhomogeneous and 60 nm large zones that are enriched in H are evidenced. In addition, at low protein concentration, in the sol state, solvent deuteration induces a liquid/liquid phase separation. Complementary biochemical and structure analyses show that the denser protein phase is more protonated and specifically enriched in glutenin, the polymeric fraction of gluten proteins. These findings suggest that the presence of H-rich zones in gluten gels would arise from the preferential interaction of glutenin polymers through a tight network of non-exchangeable intermolecular hydrogen bonds.
Collapse
Affiliation(s)
- A Banc
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
41
|
Bucciarelli S, Mahmoudi N, Casal-Dujat L, Jéhannin M, Jud C, Stradner A. Extended Law of Corresponding States Applied to Solvent Isotope Effect on a Globular Protein. J Phys Chem Lett 2016; 7:1610-1615. [PMID: 27077243 DOI: 10.1021/acs.jpclett.6b00593] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Investigating proteins with techniques such as NMR or neutron scattering frequently requires the partial or complete substitution of D2O for H2O as a solvent, often tacitly assuming that such a solvent substitution does not significantly alter the properties of the protein. Here, we report a systematic investigation of the solvent isotope effect on the phase diagram of the lens protein γB-crystallin in aqueous solution as a model system exhibiting liquid-liquid phase separation. We demonstrate that the observed strong variation of the critical temperature Tc can be described by the extended law of corresponding states for all H2O/D2O ratios, where scaling of the temperature by Tc or the reduced second virial coefficient accurately reproduces the binodal, spinodal, and osmotic compressibility. These findings highlight the impact of H2O/D2O substitution on γB-crystallin properties and warrant further investigations into the universality of this phenomenon and its underlying mechanisms.
Collapse
Affiliation(s)
- Saskia Bucciarelli
- Physical Chemistry, Department of Chemistry, Lund University , SE-22100 Lund, Sweden
| | - Najet Mahmoudi
- Physical Chemistry, Department of Chemistry, Lund University , SE-22100 Lund, Sweden
- Adolphe Merkle Institute (AMI), University of Fribourg , CH-1700 Fribourg, Switzerland
| | - Lucía Casal-Dujat
- Physical Chemistry, Department of Chemistry, Lund University , SE-22100 Lund, Sweden
| | - Marie Jéhannin
- Physical Chemistry, Department of Chemistry, Lund University , SE-22100 Lund, Sweden
| | - Corinne Jud
- Adolphe Merkle Institute (AMI), University of Fribourg , CH-1700 Fribourg, Switzerland
| | - Anna Stradner
- Physical Chemistry, Department of Chemistry, Lund University , SE-22100 Lund, Sweden
| |
Collapse
|
42
|
Gao Y, Yang J, Fan H, Ding Y, Ye X. Insight into the effect of methylated urea on the phase transition of aqueous solutions of poly(N
-isopropylacrylamide) by microcalorimetry: Hydrogen bonding and van der Waals interactions. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yating Gao
- Department of Chemical Physics; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China; Hefei Anhui 230026 China
| | - Jinxian Yang
- Department of Chemical Physics; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China; Hefei Anhui 230026 China
| | - Haiyan Fan
- Department of Chemical Physics; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China; Hefei Anhui 230026 China
| | - Yanwei Ding
- Department of Chemical Physics; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China; Hefei Anhui 230026 China
| | - Xiaodong Ye
- Department of Chemical Physics; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China; Hefei Anhui 230026 China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China; Hefei Anhui 230026 China
| |
Collapse
|
43
|
Roche J, Shen Y, Lee JH, Ying J, Bax A. Monomeric Aβ(1-40) and Aβ(1-42) Peptides in Solution Adopt Very Similar Ramachandran Map Distributions That Closely Resemble Random Coil. Biochemistry 2016; 55:762-75. [PMID: 26780756 PMCID: PMC4750080 DOI: 10.1021/acs.biochem.5b01259] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The
pathogenesis of Alzheimer’s disease is characterized
by the aggregation and fibrillation of amyloid peptides Aβ1–40 and Aβ1–42 into amyloid
plaques. Despite strong potential therapeutic interest, the structural
pathways associated with the conversion of monomeric Aβ peptides
into oligomeric species remain largely unknown. In particular, the
higher aggregation propensity and associated toxicity of Aβ1–42 compared to that of Aβ1–40 are poorly understood. To explore in detail the structural propensity
of the monomeric Aβ1–40 and Aβ1–42 peptides in solution, we recorded a large set of nuclear magnetic
resonance (NMR) parameters, including chemical shifts, nuclear Overhauser
effects (NOEs), and J couplings. Systematic comparisons
show that at neutral pH the Aβ1–40 and Aβ1–42 peptides populate almost indistinguishable coil-like
conformations. Nuclear Overhauser effect spectra collected at very
high resolution remove assignment ambiguities and show no long-range
NOE contacts. Six sets of backbone J couplings (3JHNHα, 3JC′C′, 3JC′Hα, 1JHαCα, 2JNCα, and 1JNCα) recorded
for Aβ1–40 were used as input for the recently
developed MERA Ramachandran map analysis, yielding residue-specific
backbone ϕ/ψ torsion angle distributions that closely
resemble random coil distributions, the absence of a significantly
elevated propensity for β-conformations in the C-terminal region
of the peptide, and a small but distinct propensity for αL at K28. Our results suggest that the self-association of
Aβ peptides into toxic oligomers is not driven by elevated propensities
of the monomeric species to adopt β-strand-like conformations.
Instead, the accelerated disappearance of Aβ NMR signals in
D2O over H2O, particularly pronounced for Aβ1–42, suggests that intermolecular interactions between
the hydrophobic regions of the peptide dominate the aggregation process.
Collapse
Affiliation(s)
- Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0510, United States
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0510, United States
| | - Jung Ho Lee
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0510, United States
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0510, United States
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0510, United States
| |
Collapse
|
44
|
Foglia F, Hazael R, Simeoni GG, Appavou MS, Moulin M, Haertlein M, Trevor Forsyth V, Seydel T, Daniel I, Meersman F, McMillan PF. Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering. Sci Rep 2016; 6:18862. [PMID: 26738409 PMCID: PMC4703977 DOI: 10.1038/srep18862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/27/2015] [Indexed: 01/22/2023] Open
Abstract
Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth's deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7-1.1 Å(-1) corresponding to real space dimensions of 6-9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures.
Collapse
Affiliation(s)
- Fabrizia Foglia
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, UK
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rachael Hazael
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Giovanna G. Simeoni
- Heinz Maier-Leibnitz Zentrum (MLZ) and Physics Department, Technisches Universität München, Lichtenbergstrasse 1, D-85748 Garching, Germany
| | - Marie-Sousai Appavou
- Jülich Center for Neutron Sciences at MLZ, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, D-85748 Garching, Germany
| | - Martine Moulin
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - Michael Haertlein
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - V. Trevor Forsyth
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble cedex 9, France
- Faculty of Natural Sciences/ISTM, Keele University, Staffordshire ST5 5BG, UK
| | - Tilo Seydel
- Science Division, Institut Laue-Langevin, CS 20156, 71 avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - Isabelle Daniel
- Laboratoire de Géologie de Lyon, UMR 5276, Université Lyon 1-ENS de Lyon-CNRS, 2 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Filip Meersman
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, UK
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Paul F. McMillan
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| |
Collapse
|
45
|
Moghaddam SZ, Thormann E. Hofmeister effect on thermo-responsive poly(propylene oxide) in H2O and D2O. RSC Adv 2016. [DOI: 10.1039/c6ra02703b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Hofmeister effect of NaSCN, NaCl and NaF on poly(propylene oxide) solutions in H2O and D2O.
Collapse
Affiliation(s)
| | - Esben Thormann
- Department of Chemistry
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| |
Collapse
|
46
|
White J, Heß D, Raynes J, Laux V, Haertlein M, Forsyth T, Jeyasingham A. The aggregation of “native” human serum albumin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:367-71. [DOI: 10.1007/s00249-015-1030-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/18/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
|
47
|
Bhakta SA, Evans E, Benavidez TE, Garcia CD. Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta 2015; 872:7-25. [PMID: 25892065 PMCID: PMC4405630 DOI: 10.1016/j.aca.2014.10.031] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
Abstract
An important consideration for the development of biosensors is the adsorption of the biorecognition element to the surface of a substrate. As the first step in the immobilization process, adsorption affects most immobilization routes and much attention is given into the research of this process to maximize the overall activity of the biosensor. The use of nanomaterials, specifically nanoparticles and nanostructured films, offers advantageous properties that can be fine-tuned to maximize interactions with specific proteins to maximize activity, minimize structural changes, and enhance the catalytic step. In the biosensor field, protein-nanomaterial interactions are an emerging trend that span across many disciplines. This review addresses recent publications about the proteins most frequently used, their most relevant characteristics, and the conditions required to adsorb them to nanomaterials. When relevant and available, subsequent analytical figures of merits are discussed for selected biosensors. The general trend amongst the research papers allows concluding that the use of nanomaterials has already provided significant improvements in the analytical performance of many biosensors and that this research field will continue to grow.
Collapse
Affiliation(s)
- Samir A Bhakta
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Elizabeth Evans
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Tomás E Benavidez
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Carlos D Garcia
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
48
|
Goldenberg DP, Argyle B. Minimal effects of macromolecular crowding on an intrinsically disordered protein: a small-angle neutron scattering study. Biophys J 2014; 106:905-14. [PMID: 24559993 DOI: 10.1016/j.bpj.2013.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 01/04/2023] Open
Abstract
Small-angle neutron scattering was used to study the effects of macromolecular crowding by two globular proteins, i.e., bovine pancreatic trypsin inhibitor and equine metmyoglobin, on the conformational ensemble of an intrinsically disordered protein, the N protein of bacteriophage λ. The λ N protein was uniformly labeled with (2)H, and the concentrations of D2O in the samples were adjusted to match the neutron scattering contrast of the unlabeled crowding proteins, thereby masking their contribution to the scattering profiles. Scattering from the deuterated λ N was recorded for samples containing up to 0.12 g/mL bovine pancreatic trypsin inhibitor or 0.2 g/mL metmyoglobin. The radius of gyration of the uncrowded protein was estimated to be 30 Å and was found to be remarkably insensitive to the presence of crowders, varying by <2 Å for the highest crowder concentrations. The scattering profiles were also used to estimate the fractal dimension of λ N, which was found to be ∼1.8 in the absence or presence of crowders, indicative of a well-solvated and expanded random coil under all of the conditions examined. These results are contrary to the predictions of theoretical treatments and previous experimental studies demonstrating compaction of unfolded proteins by crowding with polymers such as dextran and Ficoll. A computational simulation suggests that some previous treatments may have overestimated the effective volumes of disordered proteins and the variation of these volumes within an ensemble. The apparent insensitivity of λ N to crowding may also be due in part to weak attractive interactions with the crowding proteins, which may compensate for the effects of steric exclusion.
Collapse
Affiliation(s)
| | - Brian Argyle
- Department of Biology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
49
|
Miura Y. Solvent isotope effect on sol–gel transition of methylcellulose studied by DSC. Polym Bull (Berl) 2014. [DOI: 10.1007/s00289-014-1134-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Trelle MB, Dupont DM, Madsen JB, Andreasen PA, Jørgensen TJD. Dissecting the effect of RNA aptamer binding on the dynamics of plasminogen activator inhibitor 1 using hydrogen/deuterium exchange mass spectrometry. ACS Chem Biol 2014; 9:174-82. [PMID: 24138169 DOI: 10.1021/cb400619v] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA aptamers, selected from large synthetic libraries, are attracting increasing interest as protein ligands, with potential uses as prototype pharmaceuticals, conformational probes, and reagents for specific quantification of protein levels in biological samples. Very little is known, however, about their effects on protein conformation and dynamics. We have employed hydrogen/deuterium exchange (HDX) mass spectrometry to study the effect of RNA aptamers on the structural flexibility of the serpin plasminogen activator inhibitor-1 (PAI-1). The aptamers have characteristic effects on the biochemical properties of PAI-1. In particular, they are potent inhibitors of the structural transition of PAI-1 from the active state to the inactive, so-called latent state. This transition is one of the largest conformational changes of a folded protein domain without covalent modification. Binding of the aptamers to PAI-1 is associated with substantial and widespread protection against deuterium uptake in PAI-1. The aptamers induce protection against exchange with the solvent both in the protein-aptamer interface as well as in other specific areas. Interestingly, the aptamers induce substantial protection against exchange in α-helices B, C and I. This observation substantiates the relevance of structural instability in this region for transition to the latent state and argues for involvement of flexibility in regions not commonly associated with regulation of latency transition in serpins.
Collapse
Affiliation(s)
- Morten B. Trelle
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Daniel M. Dupont
- Department
of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10DK-8000 Århus C, Denmark
| | - Jeppe B. Madsen
- Department
of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10DK-8000 Århus C, Denmark
| | - Peter A. Andreasen
- Department
of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10DK-8000 Århus C, Denmark
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|