1
|
Prajapati KP, Ansari M, Mittal S, Mishra N, Bhatia A, Mahato OP, Anand BG, Kar K. Rapid Coaggregation of Proteins Without Sequence Similarity: Possible Role of Conformational Complementarity. Biochemistry 2024. [PMID: 39392802 DOI: 10.1021/acs.biochem.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Despite extensive research on the sequence-determined self-assembly of both pathogenic and nonpathogenic proteins, the question of how the sequence identity would influence the coassembly or cross-seeding of diverse proteins without distinct sequence similarity remains largely unanswered. Here, we demonstrate that the rapid coaggregation of proteins with negligible sequence similarity is fundamentally governed by preferred heteromeric interactions between their partially unfolded states via the gain of additional charge complementarity and hydrophobic interactions. The partial loss of intramolecular interactions and concurrent gain of non-native intrinsically disordered regions with sticky groups become crucial for both aggressive heteromeric primary nucleation and secondary nucleation events. The results signify the direct relevance of sequence-independent conformational cross-talk between diverse proteins to the foundational events required for the growth of biological multiprotein amyloid deposits.
Collapse
Affiliation(s)
- Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anubhuti Bhatia
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Om Prakash Mahato
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Mittal S, Prajapati KP, Ansari M, Joshi K, Mishra N, Mahato OP, Anand BG, Kar K. Cu(II) Specifically Disassembles Insulin Amyloid Nanostructures via Direct Interaction with Cross-β Fibrils. NANO LETTERS 2024; 24:9784-9792. [PMID: 38990555 DOI: 10.1021/acs.nanolett.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In this work, we demonstrate direct evidence of the antiamyloid potential of Cu(II) ions against amyloid formation of insulin. The Cu(II) ions were found to efficiently disassemble the preformed amyloid nanostructures into soluble species and suppress monomer fibrillation under aggregation-prone conditions. The direct interaction of Cu(II) ions with the cross-β structure of amyloid fibrils causes substantial disruption of both the interchain and intrachain interactions, predominantly the H-bonds and hydrophobic contacts. Further, the Cu(II) ions show a strong affinity for the aggregation-prone conformers of the protein and inhibit their spontaneous self-assembly. These results reveal the possible molecular mechanism for the antiamyloidogenic potential of Cu(II) which could be important for the development of metal-ion specific therapeutic strategies against amyloid linked complications.
Collapse
Affiliation(s)
- Shikha Mittal
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kajal Joshi
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Om Prakash Mahato
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Chaki S, Santra S, Dasgupta S. Fibrillation of Human Serum Albumin Differentially Affected by Asp-, Arg-, and Tyr-Capped Gold Nanoparticles. J Phys Chem B 2024; 128:3538-3553. [PMID: 38507578 DOI: 10.1021/acs.jpcb.3c06932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Fibrillation of proteins is associated with a number of debilitating diseases, including various neurodegenerative disorders. Prevention of the protein fibrillation process is therefore of immense importance. We investigated the effect of amino acid-capped AuNPs on the prevention of the fibrillation process of human serum albumin (HSA), a model protein. Amino acid-capped AuNPs of varying sizes and agglomeration extents were synthesized under physiological conditions. The AuNPs were characterized by their characteristic surface plasmon resonance (SPR), and their interactions with HSA were investigated through emission spectroscopy in addition to circular dichroism (CD) spectral analyses. Fluorescence lifetime imaging (FLIM) as well as transmission electron microscopy (TEM) were used to observe the fibrillar network. Thermodynamic and kinetic analyses from CD and fluorescence emission spectra provided insights into the fibrillation pathway adopted by HSA in the presence of capped AuNPs. Kinetics of the fibrillation pathway followed by ThT fluorescence emission confirmed the sigmoidal nature of the process. The highest cooperativity was observed in the case of Asp-AuNPs with HSA. This was in accordance with the ΔG value obtained from the CD spectral analyses, where Arg-AuNPs with HSA showed the highest positive ΔG value and Asp-AuNPs with HSA showed the most negative ΔG value. The study provides information about the potential use of conjugate AuNPs to monitor the fibrillation process in proteins.
Collapse
Affiliation(s)
- Sreshtha Chaki
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sujan Santra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
4
|
Maheshwari A, Kishore N. pH-dependent interactions of biologically important metal ions with hen egg white lysozyme based on its hydration properties: Thermodynamic and mechanistic insights. Int J Biol Macromol 2024; 259:129297. [PMID: 38211927 DOI: 10.1016/j.ijbiomac.2024.129297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Importance of metal ion selectivity in biomolecules and their key role in proteins are widely explored. However, understanding the thermodynamics of how hydrated metal ions alter the protein hydration and their conformation is also important. In this study, the interaction of some biologically important Ca2+, Mn2+, Co2+, Cu2+, and Zn2+ ions with hen egg white lysozyme at pH 2.1, 3.0, 4.5 and 7.4 has been investigated. Intrinsic fluorescence studies have been employed for metal ion-induced protein conformational changes analysis. Thermostability based on protein hydration has been investigated using differential scanning calorimetry (DSC). Thermodynamic parameters emphasizing on metal ion-protein binding mechanistic insights have been well discussed using isothermal titration calorimetry (ITC). Overall, these experiments have reported that their interactions are pH-dependent and entropically driven. This research also reports the strongly hydrated metal ions as water structure breaker unlike osmolytes based on DSC studies. These experimental results have highlighted higher concentrations of different metal ions effect on the protein hydration and thermostability which might be helpful in understanding their interactions in aqueous solutions.
Collapse
Affiliation(s)
- Anjali Maheshwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
5
|
Javanshad R, Panth R, Venter AR. Effects of Amino Acid Additives on Protein Stability during Electrothermal Supercharging in ESI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:151-157. [PMID: 38078777 DOI: 10.1021/jasms.3c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The surprising formation of highly charged protein ions from aqueous ammonium bicarbonate solution is a fascinating phenomenon referred to as electrothermal supercharging (ETS). Although the precise mechanism involved is not clearly understood, previous studies predominantly suggest that ETS is due to native protein destabilization in the presence of bicarbonate anion inside the electrospray ionization droplets under high temperatures and spray voltages. To evaluate existing hypotheses surrounding the underlying mechanism of ETS, the effects of several additives on protein charging under ETS conditions were investigated. The changes in the protein charge state distributions were compared by measuring the ratios between the intensities of highest intensity charge states of native and unfolded protein envelopes and shifts in the lowest and highest observed charge states. This study demonstrated that source temperature plays a more important role in ETS compared to spray voltage, especially when using a nebulized microelectrospray ionization source. Moreover, the effect of amino acids on ETS were generally in good agreement with the extensive literature available on the stabilization or destabilization of proteins by these additives in bulk solution. Among the natural amino acids, protein supercharging was significantly reduced by proline and glycine; however, imidazole provided the highest degree of noncovalent complex stabilization against ETS, outperforming the amino acids. Overall, our study shows that the simple addition of stabilizing reagents such as proline and imidazole can reduce the extent of apparent protein unfolding and supercharging in ammonium bicarbonate solution and provide evidence against the roles of charge depletion and thermal unfolding during ETS.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States
| | - Rajendra Panth
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States
| |
Collapse
|
6
|
Sharma H, Dar TA, Wijayasinghe YS, Sahoo D, Poddar NK. Nano-Osmolyte Conjugation: Tailoring the Osmolyte-Protein Interactions at the Nanoscale. ACS OMEGA 2023; 8:47367-47379. [PMID: 38144115 PMCID: PMC10733987 DOI: 10.1021/acsomega.3c07248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/26/2023]
Abstract
Osmolytes are small organic compounds accumulated at higher concentrations in the cell under various stress conditions like high temperature, high salt, high pressure, etc. Osmolytes mainly include four major classes of compounds including sugars, polyols, methylamines, and amino acids and their derivatives. In addition to their ability to maintain protein stability and folding, these osmolytes, also termed as chemical chaperones, can prevent protein misfolding and aggregation. Although being efficient protein folders and stabilizers, these osmolytes exhibit certain unavoidable limitations such as nearly molar concentrations of osmolytes being required for their effect, which is quite difficult to achieve inside a cell or in the extracellular matrix due to nonspecificity and limited permeability of the blood-brain barrier system and reduced bioavailability. These limitations can be overcome to a certain extent by using smart delivery platforms for the targeted delivery of osmolytes to the site of action. In this context, osmolyte-functionalized nanoparticles, termed nano-osmolytes, enhance the protein stabilization and chaperone efficiency of osmolytes up to 105 times in certain cases. For example, sugars, polyols, and amino acid functionalized based nano-osmolytes have shown tremendous potential in preventing protein aggregation. The enhanced potential of nano-osmolytes can be attributed to their high specificity at low concentrations, high tunability, amphiphilicity, multivalent complex formation, and efficient drug delivery system. Keeping in view the promising potential of nano-osmolytes conjugation in tailoring the osmolyte-protein interactions, as compared to their molecular forms, the present review summarizes the recent advancements of the nano-osmolytes that enhance the protein stability/folding efficiency and ability to act as artificial chaperones with increased potential to prevent protein misfolding disorders. Some of the potential nano-osmolyte aggregation inhibitors have been highlighted for large-scale screening with future applications in aggregation disorders. The synthesis of nano-osmolytes by numerous approaches and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Hemlata Sharma
- Department
of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi
Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan 303007, India
| | - Tanveer Ali Dar
- Department
of Clinical Biochemistry, University of
Kashmir, Srinagar 190006, Jammu and Kashmir India
| | | | - Dibakar Sahoo
- School
of Physics, Sambalpur University, Jyoti Vihar, Burla 768019, Odisha, India
| | - Nitesh Kumar Poddar
- Department
of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi
Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan 303007, India
| |
Collapse
|
7
|
Autooxidation of curcumin in physiological buffer causes an enhanced synergistic anti-amyloid effect. Int J Biol Macromol 2023; 235:123629. [PMID: 36773869 DOI: 10.1016/j.ijbiomac.2023.123629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Curcumin is an important food additive that shows multiple medical-benefits including anticarcinogenic, anti-inflammatory, antibiotic and antiamyloid properties. However, understanding the mechanism of curcumin-mediated effects becomes rather complicated since it has low bio-viability and it undergoes autooxidation, influenced by temperature, pH and buffer. We find that curcumin's antiamyloid-potential is not primarily due to curcumin alone, rather due to a synergistic action of curcumin and its autooxidized-products generated during inhibition reactions. In physiological buffer curcumin undergoes thermally induced autooxidation and yields stable compounds which can synergistically work for both inhibition of amyloid aggregation and promotion of amyloid-disaggregation into soluble protein species. Curcumin also showed substantial inhibition effect against coaggregation of different food proteins. Curcumin's strong affinity for the hydrophobic moieties of the aggregation-prone partially-folded insulin structures seems crucial for the inhibition mechanism. Further, autooxidized curcumin products were found to protect UV-induced protein damage. The results provide conceptual foundations highlighting the link between chemistry and antiamyloid-activity of curcumin and may inspire curcumin-based therapeutics against amyloidogenesis.
Collapse
|
8
|
Meena P, Kishore N. Synergistic effects of osmolytes on solvent exclusion and resulting protein stabilization: Studies with sucrose, taurine and sorbitol individually and in combination. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Jain A, Kishore N. Micellar properties of pluronics in combination with cationic surfactant and interaction with lysozyme: Thermodynamic evaluation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Bhagavatula H, Sarkar A, Santra B, Das A. Scan-Find-Scan-Model: Discrete Site-Targeted Suppressor Design Strategy for Amyloid-β. ACS Chem Neurosci 2022; 13:2191-2208. [PMID: 35767676 DOI: 10.1021/acschemneuro.2c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease is undoubtedly the most well-studied neurodegenerative disease. Consequently, the amyloid-β (Aβ) protein ranks at the top in terms of getting attention from the scientific community for structural property-based characterization. Even after decades of extensive research, there is existing volatility in terms of understanding and hence the effective tackling procedures against the disease that arises due to the lack of knowledge of both specific target- and site-specific drugs. Here, we develop a multidimensional approach based on the characterization of the common static-dynamic-thermodynamic trait of the monomeric protein, which efficiently identifies a small target sequence that contains an inherent tendency to misfold and consequently aggregate. The robustness of the identification of the target sequence comes with an abundance of a priori knowledge about the length and sequence of the target and hence guides toward effective designing of the target-specific drug with a very low probability of bottleneck and failure. Based on the target sequence information, we further identified a specific mutant that showed the maximum potential to act as a destabilizer of the monomeric protein as well as enormous success as an aggregation suppressor. We eventually tested the drug efficacy by estimating the extent of modulation of binding affinity existing within the fibrillar form of the Aβ protein due to a single-point mutation and hence provided a proof of concept of the entire protocol.
Collapse
Affiliation(s)
- Hasathi Bhagavatula
- Department of Biotechnology, Progressive Education Society's Modern College of Arts Science and Commerce, Shivajinagar, Pune 411005, India
| | - Archishman Sarkar
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra Mallick Road, Kolkata, West Bengal 700032, India
| | - Binit Santra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Prajapati KP, Anand BG, Ansari M, Temgire M, Tiku AB, Kar K. Amyloid-mimicking toxic nanofibers generated via self-assembly of dopamine. NANOSCALE 2022; 14:8649-8662. [PMID: 35667124 DOI: 10.1039/d1nr07741d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular self-assembly of biologically relevant aromatic metabolites is known to generate cytotoxic nanostructures and this unique property has opened up new concepts in the molecular mechanisms of metabolite-linked disorders. Because aromaticity is intrinsic to the chemical structure of some important neuromodulators, the question of whether this property can promote their self-assembly into toxic higher order structures is highly relevant to the advancement of both fundamental and applied research. We show here that dopamine, an aromatic neuromodulator of high significance, undergoes self-assembly, under physiological buffer conditions, yielding cytotoxic supramolecular nanostructures. The oxidation of dopamine seems crucial in driving the self-assembly, and substantial inhibition effect was observed in the presence of antioxidants and acidic buffers. Strong H-bonds and π-π interactions between optimally-oriented dopamine molecules were found to stabilize the dopamine nanostructure which displayed characteristic β-structure-patterns with hydrophobic exterior and hydrophilic interior moieties. Furthermore, dopamine nanostructures were found to be highly toxic to human neuroblastoma cells, revealing apoptosis and necrosis-mediated cytotoxicity. Abnormal fluctuation in the dopamine concentration is known to predispose a multitude of neuronal complications, hence, the new findings of this study on oxidation-driven buildup of amyloid-mimicking neurotoxic dopamine assemblies may have direct relevance to the molecular origin of several dopamine related disorders.
Collapse
Affiliation(s)
| | | | - Masihuzzaman Ansari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Mayur Temgire
- Department of Chemical Engineering, Indian Institution of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ashu Bhan Tiku
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Karunakar Kar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
12
|
Zaidi N, Ajmal MR, Zaidi SA, Khan RH. Mechanistic In Vitro Dissection of the Inhibition of Amyloid Fibrillation by n-Acetylneuraminic Acid: Plausible Implication in Therapeutics for Neurodegenerative Disorders. ACS Chem Neurosci 2022; 13:69-80. [PMID: 34878262 DOI: 10.1021/acschemneuro.1c00556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A variety of neurodegenerative disorders including Parkinson's disease are due to fibrillation in amyloidogenic proteins. The development of therapeutics for these disorders is a topic of extensive research as effective treatments are still unavailable. The present study establishes that n-acetylneuraminic acid (Neu5ac) inhibits the amyloid fibrillation of hen egg-white lysozyme (HEWL) and α-synuclein (SYN), as observed using various biophysical techniques and cellular assays. Neu5ac inhibits the amyloid formation in both proteins, as suggested from the reduction in the ThT fluorescence and remnant structures in transmission electron microscopy micrographs observed in its presence. In HEWL fibrillation, Neu5ac decreases the hydrophobicity and resists the transition of the α-helix to a β-sheet, as observed by an ANS binding assay, circular dichroism (CD) spectra, and Fourier transform infrared measurements, respectively. Neu5ac stabilizes the states that facilitate the amyloid formation in HEWL and SYN, as demonstrated by an enhanced intrinsic fluorescence in its presence, which is further confirmed by an increase in Tm obtained from differential scanning calorimetry thermograms and an increase in the near-UV CD signal for HEWL with Neu5ac. However, the increase in stability is not a manifestation of Neu5ac binding to amyloid facilitating (partially folded or native) states of both proteins, as verified by isothermal titration calorimetry and fluorescence binding measurements. Besides, Neu5ac also attenuates the cytotoxicity of amyloid fibrils, as evaluated by a cell toxicity assay. These findings provide mechanistic insights into the Neu5ac action against amyloid fibrillation and may establish it as a plausible inhibitor molecule against neurodegenerative disorders.
Collapse
Affiliation(s)
- Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Rehan Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Syed Adeel Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
13
|
Anand BG, Prajapati KP, Ansari M, Yadav DK, Temgire M, Kar K. Genesis of Neurotoxic Hybrid Nanofibers from the Coassembly of Aromatic Amino Acids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36722-36736. [PMID: 34327979 DOI: 10.1021/acsami.1c04161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considering the relevance of accumulation and self-assembly of metabolites and aftermath of biological consequences, it is important to know whether they undergo coassembly and what properties the resultant hybrid higher-order structures would exhibit. This work reveals the inherent tendency of aromatic amino acids to undergo a spontaneous coassembly process under physiologically mimicked conditions, which yields neurotoxic hybrid nanofibers. Resultant hybrid nanostructures resembled the β-structured conformers stabilized by H-bonds and π-π stacking interactions, which were highly toxic to human neuroblastoma cells. The hybrid nanofibers also showed strong cross-seeding potential that triggered in vitro aggregation of diverse globular proteins and brain extract components, converting the native structures into cross-β-rich amyloid aggregates. The heterogenic nature of the hybrid nanofibers seems crucial for their higher toxicity and faster cross-seeding potential as compared to the homogeneous amino acid nanofibers. Our findings reveal the importance of aromaticity-driven optimized intermolecular arrangements for the coassembly of aromatic amino acids, and the results may provide important clues to the fundamental understanding of metabolite accumulation-related complications.
Collapse
Affiliation(s)
- Bibin Gnanadhason Anand
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepak Kumar Yadav
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mayur Temgire
- Department of Chemical Engineering, Indian Institution of Technology Bombay, Powai, Mumbai 400076, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
14
|
Anand BG, Prajapati KP, Purohit S, Ansari M, Panigrahi A, Kaushik B, Behera RK, Kar K. Evidence of Anti-amyloid Characteristics of Plumbagin via Inhibition of Protein Aggregation and Disassembly of Protein Fibrils. Biomacromolecules 2021; 22:3692-3703. [PMID: 34375099 DOI: 10.1021/acs.biomac.1c00344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biological consequences associated with the conversion of soluble proteins into insoluble toxic amyloids are not only limited to the onset of neurodegenerative diseases but also to the potential health risks associated with supplements of protein therapeutic agents as well. Hence, finding inhibitors against amyloid formation is important, and natural product-based anti-amyloid compounds have gained much interest because of their higher efficacy and biocompatibility. Plumbagin has been identified as a potential natural product with multiple medical benefits; however, it remains largely unclear whether plumbagin can act against amyloid formation of proteins. Here, we show that plumbagin can effectively inhibit the temperature-induced amyloid aggregation of important proteins (insulin and serum albumin). Both experimental and computational data revealed that the presence of plumbagin in protein solutions, under aggregating conditions, promotes a direct protein-plumbagin interaction, which is predominantly stabilized by stronger H-bonds and hydrophobic interactions. Plumbagin-mediated retention of the native structures of proteins appears to play a crucial role in preventing their conversion into insoluble β-sheet-rich amyloid aggregates. More importantly, the addition of plumbagin into a suspension of protein fibrils triggered their spontaneous disassembly, promoting the release of soluble proteins. The results highlight that a possible synergistic effect via both the stabilization of protein structures and the restriction of the monomer recruitment at the fibril growth sites could be important for the mechanism of plumbagin's anti-aggregation effect. These findings may inspire the development of plumbagin-based formulations to benefit both the prevention and treatment of amyloid-related health complications.
Collapse
Affiliation(s)
- Bibin G Anand
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kailash P Prajapati
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sampreeta Purohit
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ayoushna Panigrahi
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bharti Kaushik
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajendra Kumar Behera
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
15
|
Garfagnini T, Levi-Kalisman Y, Harries D, Friedler A. Osmolytes and crowders regulate aggregation of the cancer-related L106R mutant of the Axin protein. Biophys J 2021; 120:3455-3469. [PMID: 34087214 DOI: 10.1016/j.bpj.2021.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Protein aggregation is involved in a variety of diseases, including neurodegenerative diseases and cancer. The cellular environment is crowded by a plethora of cosolutes comprising small molecules and biomacromolecules at high concentrations, which may influence the aggregation of proteins in vivo. To account for the effect of cosolutes on cancer-related protein aggregation, we studied their effect on the aggregation of the cancer-related L106R mutant of the Axin protein. Axin is a key player in the Wnt signaling pathway, and the L106R mutation in its RGS domain results in a native molten globule that tends to form native-like aggregates. This results in uncontrolled activation of the Wnt signaling pathway, leading to cancer. We monitored the aggregation process of Axin RGS L106R in vitro in the presence of a wide ensemble of cosolutes including polyols, amino acids, betaine, and polyethylene glycol crowders. Except myo-inositol, all polyols decreased RGS L106R aggregation, with carbohydrates exerting the strongest inhibition. Conversely, betaine and polyethylene glycols enhanced aggregation. These results are consistent with the reported effects of osmolytes and crowders on the stability of molten globular proteins and with both amorphous and amyloid aggregation mechanisms. We suggest a model of Axin L106R aggregation in vivo, whereby molecularly small osmolytes keep the protein as a free soluble molecule but the increased crowding of the bound state by macromolecules induces its aggregation at the nanoscale. To our knowledge, this is the first systematic study on the effect of osmolytes and crowders on a process of native-like aggregation involved in pathology, as it sheds light on the contribution of cosolutes to the onset of cancer as a protein misfolding disease and on the relevance of aggregation in the molecular etiology of cancer.
Collapse
Affiliation(s)
- Tommaso Garfagnini
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Levi-Kalisman
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology and The Alexander Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Harries
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel; The Fritz Haber Center, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
16
|
Prajapati KP, Panigrahi A, Purohit S, Ansari M, Dubey K, Behera RK, Anand BG, Kar K. Osmoprotectant Coated Thermostable Gold Nanoparticles Efficiently Restrict Temperature-Induced Amyloid Aggregation of Insulin. J Phys Chem Lett 2021; 12:1803-1813. [PMID: 33577334 DOI: 10.1021/acs.jpclett.0c03492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Naturally occurring osmoprotectants are known to prevent aggregation of proteins under various stress factors including extreme pH and elevated temperature conditions. Here, we synthesized gold nanoparticles coated with selected osmolytes (proline, hydroxyproline, and glycine) and examined their effect on temperature-induced amyloid-formation of insulin hormone. These uniform, thermostable, and hemocompatible gold nanoparticles were capable of inhibiting both spontaneous and seed-induced amyloid aggregation of insulin. Both quenching and docking experiments suggest a direct interaction between the osmoprotectant-coated nanoparticles and aggregation-prone hydrophobic stretches of insulin. Circular-dichroism results confirmed the retention of insulin's native structure in the presence of these nanoparticles. Unlike the indirect solvent-mediated effect of free osmolytes, the inhibition effect of osmolyte-coated gold nanoparticles was observed to be mediated through their direct interaction with insulin. The results signify the protection of the exposed aggregation-prone domains of insulin from temperature-induced self-assembly through osmoprotectant-coated nanoparticles, and such effect may inspire the development of osmolyte-based antiamyloid nanoformulations.
Collapse
Affiliation(s)
- Kailash P Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ayoushna Panigrahi
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sampreeta Purohit
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kriti Dubey
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajendra Kumar Behera
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bibin G Anand
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
17
|
Shinde RA, Ghosh R, Prasanthan P, Kishore N. Unraveling thermodynamic and conformational correlations in action of osmolytes on hen egg white lysozyme. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Prajapati KP, Singh AP, Dubey K, Ansari M, Temgire M, Anand BG, Kar K. Myricetin inhibits amyloid fibril formation of globular proteins by stabilizing the native structures. Colloids Surf B Biointerfaces 2020; 186:110640. [DOI: 10.1016/j.colsurfb.2019.110640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/19/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023]
|
19
|
Katyal N, Deep S. A computational approach to get insights into multiple faces of additives in modulation of protein aggregation pathways. Phys Chem Chem Phys 2019; 21:24269-24285. [PMID: 31670327 DOI: 10.1039/c9cp03763b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enormous population worldwide is presently confronted with debilitating neurodegenerative diseases. The etiology of the disease is connected to protein aggregation and the events involved therein. Thus, a complete understanding of an inhibitor at different stages in the process is imperative for the formulation of a drug molecule. This review presents a detailed summary of the current status of different cosolvents. It further develops how the complex aggregation pathway can be simplified into three steps common to all proteins and the way computer simulations can be exploited to gain insights into the ways by which known inhibitors can affect all these stages. Computation of theoretical parameters in this regard and their correlation with experimental techniques is accentuated. In addition to providing an outline of the scope of different additives, this review showcases the way by which the problem of analyzing an effect of an additive can be addressed effectively via MD simulations.
Collapse
Affiliation(s)
- Nidhi Katyal
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, Delhi, India.
| | | |
Collapse
|
20
|
Anand BG, Prajapati KP, Dubey K, Ahamad N, Shekhawat DS, Rath PC, Joseph GK, Kar K. Self-Assembly of Artificial Sweetener Aspartame Yields Amyloid-like Cytotoxic Nanostructures. ACS NANO 2019; 13:6033-6049. [PMID: 31021591 DOI: 10.1021/acsnano.9b02284] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent reports have revealed the intrinsic propensity of single aromatic metabolites to undergo self-assembly and form nanostructures of amyloid nature. Hence, identifying whether aspartame, a universally consumed artificial sweetener, is inherently aggregation prone becomes an important area of investigation. Although the reports on aspartame-linked side effects describe a multitude of metabolic disorders, the mechanistic understanding of such destructive effects is largely mysterious. Since aromaticity, an aggregation-promoting factor, is intrinsic to aspartame's chemistry, it is important to know whether aspartame can undergo self-association and if such a property can predispose any cytotoxicity to biological systems. Our study finds that aspartame molecules, under mimicked physiological conditions, undergo a spontaneous self-assembly process yielding regular β-sheet-like cytotoxic nanofibrils of amyloid nature. The resultant aspartame fibrils were found to trigger amyloid cross-seeding and become a toxic aggregation trap for globular proteins, Aβ peptides, and aromatic metabolites that convert native structures to β-sheet-like fibrils. Aspartame fibrils were also found to induce hemolysis, causing DNA damage resulting in both apoptosis and necrosis-mediated cell death. Specific spatial arrangement between aspartame molecules is predicted to form a regular amyloid-like architecture with a sticky exterior that is capable of promoting viable H-bonds, electrostatic interactions, and hydrophobic contacts with biomolecules, leading to the onset of protein aggregation and cell death. Results reveal that the aspartame molecule is inherently amyloidogenic, and the self-assembly of aspartame becomes a toxic trap for proteins and cells, exposing the bitter side of such a ubiquitously used artificial sweetener.
Collapse
Affiliation(s)
- Bibin Gnanadhason Anand
- Department of Bioscience and Bioengineering , Indian Institute of Technology Jodhpur , Jodhpur 342037 , India
| | | | - Kriti Dubey
- School of Life Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Naseem Ahamad
- School of Life Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Dolat Singh Shekhawat
- Department of Bioscience and Bioengineering , Indian Institute of Technology Jodhpur , Jodhpur 342037 , India
| | - Pramod Chandra Rath
- School of Life Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - George Kodimattam Joseph
- Department of Bioscience and Bioengineering , Indian Institute of Technology Jodhpur , Jodhpur 342037 , India
| | - Karunakar Kar
- School of Life Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| |
Collapse
|
21
|
Prasanthan P, Kishore N. Combined effect of equimolal osmolytes trehalose and glycine on stability of hen egg-white lysozyme: Quantitative mechanistic aspects. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Anand BG, Prajapati KP, Shekhawat DS, Kar K. Tyrosine-Generated Nanostructures Initiate Amyloid Cross-Seeding in Proteins Leading to a Lethal Aggregation Trap. Biochemistry 2018; 57:5202-5209. [DOI: 10.1021/acs.biochem.8b00472] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bibin G. Anand
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kailash P. Prajapati
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dolat S. Shekhawat
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
23
|
Khan MV, Zakariya SM, Khan RH. Protein folding, misfolding and aggregation: A tale of constructive to destructive assembly. Int J Biol Macromol 2018; 112:217-229. [DOI: 10.1016/j.ijbiomac.2018.01.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/04/2018] [Accepted: 01/14/2018] [Indexed: 12/20/2022]
|
24
|
Roles of osmolytes in protein folding and aggregation in cells and their biotechnological applications. Int J Biol Macromol 2018; 109:483-491. [DOI: 10.1016/j.ijbiomac.2017.12.100] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022]
|
25
|
Kachooei E, Mozaffarian F, Khodagholi F, Sadeghi P, Karami L, Ghasemi A, Vahdat E, Saboury AA, Sheibani N, Moosavi-Movahedi AA. Paclitaxel inhibited lysozyme fibrillation by increasing colloidal stability through formation of "off-pathway" oligomers. Int J Biol Macromol 2018; 111:870-879. [PMID: 29352977 DOI: 10.1016/j.ijbiomac.2018.01.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Protein fibrillation is a challenging issue in medicine, causing many diseases, and an impediment to pharmaceutics and protein industry. Many chemicals, especially polyphenol compounds and aromatic small molecules, have been widely used as an effective strategy to combat protein fibril formation. Hence, understanding mechanisms of fibrillation inhibition and contributing forces in this process are significant. In this study, the inhibitory effect of paclitaxel on lysozyme fibrillation was investigated with respect to thermal and colloidal stability. Fibrillation was monitored with ThT fluorescence, circular dichroism, and AFM; paclitaxel-lysozyme interaction with isothermal titration calorimetry and docking; thermal and colloidal stability with differential scanning calorimetry and zeta-pulse, respectively. Paclitaxel inhibited lysozyme fibrillation, and interacted with lysozyme through hydrogen bonds and van der Waals' interactions. The viability of PC12 cells retrieved as a result of fibrillation inhibition by paclitaxel. Hydrophobic forces dominantly shielded the aggregation-prone region of lysozyme and suppressed the effective interactions between lysozyme monomers. Although paclitaxel did not affect lysozyme's thermal stability, it increased lysozyme's colloidal stability by either increasing the surface charge density or charge distribution on lysozyme. In conclusion, our results suggest a model for paclitaxel's inhibitory role through two complementary steps driving to "off-pathway" oligomer formation and attenuation of fibril formation.
Collapse
Affiliation(s)
- Ehsan Kachooei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Faroogh Mozaffarian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Sadeghi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Karami
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Elham Vahdat
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| | - Nader Sheibani
- Departments of Ophthalmology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran.
| |
Collapse
|
26
|
Anand BG, Dubey K, Shekhawat DS, Prajapati KP, Kar K. Strategically Designed Antifibrotic Gold Nanoparticles to Prevent Collagen Fibril Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13252-13261. [PMID: 29072918 DOI: 10.1021/acs.langmuir.7b01504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Because uncontrolled accumulation of collagen fibrils has been implicated in a series of pathologies, inhibition of collagen fibril formation has become one of the necessary strategies to target such collagen-linked complications. The presence of hydroxyproline (Hyp) at the Y position in (Gly-X-Y)n sequence pattern of collagen is known to facilitate crucial hydrophobic and hydration-linked interactions that promote collagen fibril formation. Here, to target such Hyp-mediated interactions, we have synthesized uniform, thermostable, and hemocompatible Hyp coated gold nanoparticles (AuNPsHYP) and have examined their inhibition effect on the fibril formation of type I collagen. We found that collagen fibril formation is strongly suppressed in the presence of AuNPsHYP and no such suppression effect was observed in the presence of free Hyp and control Gly-coated nanoparticles at similar concentrations. Both isothermal titration calorimetric studies and bioinformatics analysis reveal possible interaction between Hyp and (Gly-Pro-Hyp) stretches of collagen triple-helical model peptides. Further, gold nanoparticles coated with proline (AuNPsPRO) and tryptophan (AuNPsTRP) also suppressed collagen fibril formation, suggesting their ability to interfere with aromatic-proline as well as hydrophobic interactions between collagen molecules. The Hyp molecules, when surface functionalized, are predicted to interfere with the Hyp-mediated forces that drive collagen self-assembly, and such inhibition effect may help in targeting collagen linked pathologies.
Collapse
Affiliation(s)
- Bibin Ganadhason Anand
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur , Jodhpur, Rajasthan-342011, India
| | - Kriti Dubey
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur , Jodhpur, Rajasthan-342011, India
| | - Dolat Singh Shekhawat
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur , Jodhpur, Rajasthan-342011, India
| | | | - Karunakar Kar
- School of Life Sciences, Jawaharlal Nehru University , New Delhi-110067, India
| |
Collapse
|
27
|
Rabbani G. WITHDRAWN: Role of osmolytes in protein folding and aggregation in cells and its applications in biotechnology. Int J Biol Macromol 2017:S0141-8130(17)32827-1. [PMID: 29137994 DOI: 10.1016/j.ijbiomac.2017.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 11/26/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Gulam Rabbani
- Department of Medical Biotechnology, YeungNam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
28
|
Anand BG, Shekhawat DS, Dubey K, Kar K. Uniform, Polycrystalline, and Thermostable Piperine-Coated Gold Nanoparticles to Target Insulin Fibril Assembly. ACS Biomater Sci Eng 2017; 3:1136-1145. [DOI: 10.1021/acsbiomaterials.7b00030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bibin G. Anand
- Department
of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Dolat S. Shekhawat
- Department
of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Kriti Dubey
- Department
of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Karunakar Kar
- School
of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
29
|
Dasgupta M, Kishore N. Selective inhibition of aggregation/fibrillation of bovine serum albumin by osmolytes: Mechanistic and energetics insights. PLoS One 2017; 12:e0172208. [PMID: 28207877 PMCID: PMC5312929 DOI: 10.1371/journal.pone.0172208] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022] Open
Abstract
Bovine serum albumin (BSA) is an important transport protein of the blood and its aggregation/fibrillation would adversely affect its transport ability leading to metabolic disorder. Therefore, understanding the mechanism of fibrillation/aggregation of BSA and design of suitable inhibitor molecules for stabilizing its native conformation, are of utmost importance. The qualitative and quantitative aspects of the effect of osmolytes (proline, hydroxyproline, glycine betaine, sarcosine and sorbitol) on heat induced aggregation/fibrillation of BSA at physiological pH (pH 7.4) have been studied employing a combination of fluorescence spectroscopy, Rayleigh scattering, isothermal titration calorimetry (ITC), dynamic light scattering (DLS) and transmission electron microscopy (TEM). Formation of fibrils by BSA under the given conditions was confirmed from increase in fluorescence emission intensities of Thioflavin T over a time period of 600 minutes and TEM images. Absence of change in fluorescence emission intensities of 8-Anilinonaphthalene-1-sulfonic acid (ANS) in presence of native and aggregated BSA signify the absence of any amorphous aggregates. ITC results have provided important insights on the energetics of interaction of these osmolytes with different stages of the fibrillar aggregates of BSA, thereby suggesting the possible modes/mechanism of inhibition of BSA fibrillation by these osmolytes. The heats of interaction of the osmolytes with different stages of fibrillation of BSA do not follow a trend, suggesting that the interactions of stages of BSA aggregates are osmolyte specific. Among the osmolytes used here, we found glycine betaine to be supporting and promoting the aggregation process while hydroxyproline to be maximally efficient in suppressing the fibrillation process of BSA, followed by sorbitol, sarcosine and proline in the following order of their decreasing potency: Hydroxyproline> Sorbitol> Sarcosine> Proline> Glycine betaine.
Collapse
Affiliation(s)
- Moumita Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
30
|
Dubey K, Anand BG, Shekhawat DS, Kar K. Eugenol prevents amyloid formation of proteins and inhibits amyloid-induced hemolysis. Sci Rep 2017; 7:40744. [PMID: 28145454 PMCID: PMC5286398 DOI: 10.1038/srep40744] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023] Open
Abstract
Eugenol has attracted considerable attention because of its potential for many pharmaceutical applications including anti-inflammatory, anti-tumorigenic and anti-oxidant properties. Here, we have investigated the effect of eugenol on amyloid formation of selected globular proteins. We find that both spontaneous and seed-induced aggregation processes of insulin and serum albumin (BSA) are significantly suppressed in the presence of eugenol. Isothermal titration calorimetric data predict a single binding site for eugenol-insulin complex confirming the affinity of eugenol for native soluble insulin species. We also find that eugenol suppresses amyloid-induced hemolysis. Our findings reveal the inherent ability of eugenol to stabilize native proteins and to delay the conversion of protein species of native conformation into β-sheet assembled mature fibrils, which seems to be crucial for its inhibitory effect.
Collapse
Affiliation(s)
- Kriti Dubey
- Department of Biology, Indian Institute of Technology Jodhpur, Rajasthan, 342011 India
| | - Bibin G Anand
- Department of Biology, Indian Institute of Technology Jodhpur, Rajasthan, 342011 India
| | - Dolat Singh Shekhawat
- Department of Biology, Indian Institute of Technology Jodhpur, Rajasthan, 342011 India
| | - Karunakar Kar
- Department of Biology, Indian Institute of Technology Jodhpur, Rajasthan, 342011 India.,School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
31
|
Dmitrieva OA, Fedotova MV, Buchner R. Evidence for cooperative Na+ and Cl− binding by strongly hydrated l-proline. Phys Chem Chem Phys 2017; 19:20474-20483. [DOI: 10.1039/c7cp04335j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Strongly hydrated l-proline cooperatively binds Na+ and Cl− ions in aqueous solution.
Collapse
Affiliation(s)
- Olga A. Dmitrieva
- G.A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences
- 153045 Ivanovo
- Russian Federation
| | - Marina V. Fedotova
- G.A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences
- 153045 Ivanovo
- Russian Federation
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie
- Universität Regensburg
- 93040 Regensburg
- Germany
| |
Collapse
|
32
|
Production of lysozyme nanofibers using deep eutectic solvent aqueous solutions. Colloids Surf B Biointerfaces 2016; 147:36-44. [PMID: 27478961 DOI: 10.1016/j.colsurfb.2016.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/23/2016] [Accepted: 07/03/2016] [Indexed: 12/30/2022]
Abstract
Amyloid fibrils have recently gained a lot of attention due to their morphology, functionality and mechanical strength, allowing for their application in nanofiber-based materials, biosensors, bioactive membranes and tissue engineering scaffolds. The in vitro production of amyloid fibrils is still a slow process, thus hampering the massive production of nanofibers and its consequent use. This work presents a new and faster (2-3h) fibrillation method for hen egg white lysozyme (HEWL) using a deep eutectic solvent based on cholinium chloride and acetic acid. Nanofibers with dimensions of 0.5-1μm in length and 0.02-0.1μm in thickness were obtained. Experimental variables such as temperature and pH were also studied, unveiling their influence in fibrillation time and nanofibers morphology. These results open a new scope for protein fibrillation into nanofibers with applications ranging from medicine to soft matter and nanotechnology.
Collapse
|
33
|
Anand BG, Dubey K, Shekhawat DS, Kar K. Capsaicin-Coated Silver Nanoparticles Inhibit Amyloid Fibril Formation of Serum Albumin. Biochemistry 2016; 55:3345-8. [DOI: 10.1021/acs.biochem.6b00418] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bibin G. Anand
- Center for Biologically Inspired
Systems Science, Department of Biology, Indian Institute of Technology Jodhpur, Old Residency Road, Jodhpur, Rajasthan, India 342011
| | - Kriti Dubey
- Center for Biologically Inspired
Systems Science, Department of Biology, Indian Institute of Technology Jodhpur, Old Residency Road, Jodhpur, Rajasthan, India 342011
| | - Dolat Singh Shekhawat
- Center for Biologically Inspired
Systems Science, Department of Biology, Indian Institute of Technology Jodhpur, Old Residency Road, Jodhpur, Rajasthan, India 342011
| | - Karunakar Kar
- Center for Biologically Inspired
Systems Science, Department of Biology, Indian Institute of Technology Jodhpur, Old Residency Road, Jodhpur, Rajasthan, India 342011
| |
Collapse
|
34
|
Proline hydration at low temperatures: its role in the protection of cell from freeze-induced stress. Amino Acids 2016; 48:1685-94. [DOI: 10.1007/s00726-016-2232-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/05/2016] [Indexed: 11/26/2022]
|
35
|
Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin. Amino Acids 2015; 47:2551-60. [DOI: 10.1007/s00726-015-2046-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/07/2015] [Indexed: 01/22/2023]
|
36
|
Kunda S, Yuan Y, Balsara RD, Zajicek J, Castellino FJ. Hydroxyproline-induced Helical Disruption in Conantokin Rl-B Affects Subunit-selective Antagonistic Activities toward Ion Channels of N-Methyl-d-aspartate Receptors. J Biol Chem 2015; 290:18156-18172. [PMID: 26048991 DOI: 10.1074/jbc.m115.650341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 01/10/2023] Open
Abstract
Conantokins are ~20-amino acid peptides present in predatory marine snail venoms that function as allosteric antagonists of ion channels of the N-methyl-d-aspartate receptor (NMDAR). These peptides possess a high percentage of post-/co-translationally modified amino acids, particularly γ-carboxyglutamate (Gla). Appropriately spaced Gla residues allow binding of functional divalent cations, which induces end-to-end α-helices in many conantokins. A smaller number of these peptides additionally contain 4-hydroxyproline (Hyp). Hyp should prevent adoption of the metal ion-induced full α-helix, with unknown functional consequences. To address this disparity, as well as the role of Hyp in conantokins, we have solved the high resolution three-dimensional solution structure of a Gla/Hyp-containing 18-residue conantokin, conRl-B, by high field NMR spectroscopy. We show that Hyp(10) disrupts only a small region of the α-helix of the Mn(2+)·peptide complex, which displays cation-induced α-helices on each terminus of the peptide. The function of conRl-B was examined by measuring its inhibition of NMDA/Gly-mediated current through NMDAR ion channels in mouse cortical neurons. The conRl-B displays high inhibitory selectivity for subclasses of NMDARs that contain the functionally important GluN2B subunit. Replacement of Hyp(10) with N(8)Q results in a Mg(2+)-complexed end-to-end α-helix, accompanied by attenuation of NMDAR inhibitory activity. However, replacement of Hyp(10) with Pro(10) allowed the resulting peptide to retain its inhibitory property but diminished its GluN2B specificity. Thus, these modified amino acids, in specific peptide backbones, play critical roles in their subunit-selective inhibition of NMDAR ion channels, a finding that can be employed to design NMDAR antagonists that function at ion channels of distinct NMDAR subclasses.
Collapse
Affiliation(s)
- Shailaja Kunda
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Yue Yuan
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Rashna D Balsara
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Jaroslav Zajicek
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556.
| |
Collapse
|
37
|
How Can a Free Amino Acid Stabilize a Protein? Insights from Molecular Dynamics Simulation. J SOLUTION CHEM 2015. [DOI: 10.1007/s10953-015-0291-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Choudhary S, Kishore N. Addressing mechanism of fibrillization/aggregation and its prevention in presence of osmolytes: spectroscopic and calorimetric approach. PLoS One 2014; 9:e104600. [PMID: 25133607 PMCID: PMC4136778 DOI: 10.1371/journal.pone.0104600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 07/15/2014] [Indexed: 11/19/2022] Open
Abstract
Understanding the mechanism of protein fibrillization/aggregation and its prevention is the basis of development of therapeutic strategies for amyloidosis. An attempt has been made to understand the nature of interactions of osmolytes L-proline, 4-hydroxy-L-proline, sarcosine and trimethylamine N-oxide with the different stages of fibrillization of hen egg-white lysozyme by using a combination of isothermal titration calorimetry, differential scanning calorimetry, fluorescence spectroscopy, and transmission electron microscopy. Based on thioflavin T fluorescence emission intensities and microscopic images, the nucleation, elongation, and saturation phases of fibrillization have been identified. Isothermal titration calorimetry and differential scanning calorimetry have enabled a quantitative analysis of the nature of interactions of these osmolytes with various conformational states of lysozyme at different stages of fibrillization/aggregation. It is concluded that interaction of the osmolytes with lysozyme fibrils at both the nucleation and elongation stages are important steps in the prevention of fibrillization/aggregation. Identification of the nature of interactions is a key step towards the discovery and synthesis of target oriented potential inhibitors of these associations. This study is a first report in which calorimetry has been used to address interaction of potential inihibitiors with the protein at different stages of fibrillization.
Collapse
Affiliation(s)
- Sinjan Choudhary
- University of Mumbai & Department of Atomic Energy, Centre for Excellence in Basic Sciences, Santacruz (E), Mumbai, India
- * E-mail: (SC); (NK)
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
- * E-mail: (SC); (NK)
| |
Collapse
|
39
|
Dubey K, Kar K. Type I collagen prevents amyloid aggregation of hen egg white lysozyme. Biochem Biophys Res Commun 2014; 448:480-4. [DOI: 10.1016/j.bbrc.2014.04.135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
|
40
|
Venkataramani S, Truntzer J, Coleman DR. Thermal stability of high concentration lysozyme across varying pH: A Fourier Transform Infrared study. J Pharm Bioallied Sci 2013; 5:148-53. [PMID: 23833521 PMCID: PMC3697194 DOI: 10.4103/0975-7406.111821] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/10/2012] [Accepted: 11/14/2012] [Indexed: 12/03/2022] Open
Abstract
AIM: The current work is aimed at understanding the effect of pH on the thermal stability of hen egg white lysozyme (HEWL) at high concentration (200 mg/mL). MATERIALS AND METHODS: Fourier Transform Infrared (FTIR) Spectroscopy with modified hardware and software to overcome some of the traditional challenges like water subtraction, sample evaporation, proper purging etc., are used in this study. RESULTS: HEWL was subjected to thermal stress at pH 3.0-7.0 between 25°C and 95°C and monitored by FTIR spectroscopy. Calculated Tm values showed that the enzyme exhibited maximum thermal stability at pH 5.0. Second derivative plots constructed in the amide I region suggested that at pH 5.0 the enzyme possessed higher amount of α-helix and lower amount of aggregates, when compared to other pHs. CONCLUSIONS: Considering the fact that HEWL has attractive applications in various industries and being processed under different experimental conditions including high temperatures, our work is able to reveal the reason behind the pH dependent thermal stability of HEWL at high concentration, when subjected to heat denaturation. In future, studies should aim at using various excipients that may help to increase the stability and activity of the enzyme at this high concentration.
Collapse
Affiliation(s)
- Sathyadevi Venkataramani
- Coleman Softlabs, Inc., 296 Bay Road, Atherton, CA 94027, USA ; Department of Biotherapeutics, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA
| | | | | |
Collapse
|
41
|
Weaver KD, Vrikkis RM, Van Vorst MP, Trullinger J, Vijayaraghavan R, Foureau DM, McKillop IH, MacFarlane DR, Krueger JK, Elliott GD. Structure and function of proteins in hydrated choline dihydrogen phosphate ionic liquid. Phys Chem Chem Phys 2011; 14:790-801. [PMID: 22089924 DOI: 10.1039/c1cp22965f] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ionic liquids are being intensely studied as promising media for the stabilization of proteins and other biomolecules. Choline dihydrogen phosphate (CDHP) has been identified as one of the most promising candidates for this application. In this work we have probed in more detail the effects that CDHP may have on the thermodynamics, structure, and stability of proteins, including one of therapeutic interest. Microcalorimetry and circular dichroism spectropolarimetry (CD) were used to assess the thermal stability of protein solutions in CDHP/water mixtures at various concentrations. Increasing thermal stability of lysozyme and interleukin-2 in proportion to CDHP concentration was observed. Isothermal titration calorimetry (ITC) was used to quantify binding interactions, and indicate that the mechanism for stability does not appear to be dependent upon CDHP binding to protein. CD and small angle X-ray scattering (SAXS) analyses were used to probe for structural changes due to the presence of CDHP. SAXS indicates charge effects on the surface of the protein play a role in protein stability in ionic liquids, and no significant alteration of the overall tertiary conformation of lysozyme was observed at 25 °C. However, after incubation at 37 °C or at higher concentrations of CDHP, small changes in protein structure were seen. Effects on protein activity were monitored using turbidity assays, and CDHP decreases protein activity but does not eliminate it. Protein solubility was also monitored using a turbidity assay and was found to be inversely proportional to the concentration of CDHP in solution.
Collapse
Affiliation(s)
- Katherine D Weaver
- Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shukla D, Schneider CP, Trout BL. Molecular level insight into intra-solvent interaction effects on protein stability and aggregation. Adv Drug Deliv Rev 2011; 63:1074-85. [PMID: 21762737 DOI: 10.1016/j.addr.2011.06.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/14/2011] [Accepted: 06/29/2011] [Indexed: 11/16/2022]
Abstract
Protein based therapeutics hold great promise in the treatment of human diseases and disorders and subsequently, they have become the fastest growing sector of new drugs being developed. Proteins are, however, inherently unstable and the degraded form can be quite harmful if administered to a patient. Of the various degradation pathways, aggregation is one of the most common and a cause for great concern. Aggregation suppressing additives have long been used to stabilize proteins, and they still remain the most viable option for combating this problem. Much work has been devoted toward investigating the behavior of commonly used additives and the resulting models give valuable insight toward explaining aggregation suppression. In a few cases, an explanation for unique behavior is lacking or new insight provides an alternate explanation. Additive selection and the development of better performing additives may benefit from a more refined understanding of how commonly used additives inhibit or enhance aggregation. In this review, we focus on recent molecular-level studies into how a select group of commonly used additives interact with proteins and subsequently influence aggregation. The intent of the review is not meant to be comprehensive for each additive but rather to provide new insights into additive-additive interactions, which may be contributing to protein-additive interactions. This is something that is often overlooked but yet essential to understanding the effect of additives on aggregation. The importance of understanding such interactions is clear when one considers that most formulations contain a mixture of cosolutes and that ideal stability might be better achieved through tuning intra-solvent interactions. We give an example of this when we describe how novel aggregation suppressing additives were developed from the knowledge gained from the reviewed studies.
Collapse
Affiliation(s)
- Diwakar Shukla
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
43
|
Top A, Roberts CJ, Kiick KL. Conformational and aggregation properties of a PEGylated alanine-rich polypeptide. Biomacromolecules 2011; 12:2184-92. [PMID: 21553871 DOI: 10.1021/bm200272w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The conformational and aggregation behavior of PEG conjugates of an alanine-rich polypeptide (PEG-c17H6) were investigated and compared to that of the polypeptide equipped with a deca-histidine tag (17H6). These polypeptides serve as simple and stimuli-responsive models for the aggregation behavior of helix-rich proteins, as our previous studies have shown that the helical 17H6 self-associates at acidic pH and converts to β-sheet structures at elevated temperature under acidic conditions. In the work here, we show that PEG-c17H6 also adopts a helical structure at ambient/subambient temperatures, at both neutral and acidic pH. The thermal denaturation behavior of 17H6 and PEG-c17H6 is similar at neutral pH, where the alanine-rich domain has no self-association tendency. At acidic pH and elevated temperature, however, PEGylation slows β-sheet formation of c17H6, and reduces the apparent cooperativity of thermally induced unfolding. Transmission electron microscopy of PEG-c17H6 conjugates incubated at elevated temperatures showed fibrils with widths of ∼20-30 nm, wider than those observed for fibrils of 17H6. These results suggest that PEGylation reduces β-sheet aggregation in these polypeptides by interfering, only after unfolding of the native helical structure, with interprotein conformational changes needed to form β-sheet aggregates.
Collapse
Affiliation(s)
- Ayben Top
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|