1
|
Monti A, Vitagliano L, Caporale A, Ruvo M, Doti N. Targeting Protein-Protein Interfaces with Peptides: The Contribution of Chemical Combinatorial Peptide Library Approaches. Int J Mol Sci 2023; 24:7842. [PMID: 37175549 PMCID: PMC10178479 DOI: 10.3390/ijms24097842] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Protein-protein interfaces play fundamental roles in the molecular mechanisms underlying pathophysiological pathways and are important targets for the design of compounds of therapeutic interest. However, the identification of binding sites on protein surfaces and the development of modulators of protein-protein interactions still represent a major challenge due to their highly dynamic and extensive interfacial areas. Over the years, multiple strategies including structural, computational, and combinatorial approaches have been developed to characterize PPI and to date, several successful examples of small molecules, antibodies, peptides, and aptamers able to modulate these interfaces have been determined. Notably, peptides are a particularly useful tool for inhibiting PPIs due to their exquisite potency, specificity, and selectivity. Here, after an overview of PPIs and of the commonly used approaches to identify and characterize them, we describe and evaluate the impact of chemical peptide libraries in medicinal chemistry with a special focus on the results achieved through recent applications of this methodology. Finally, we also discuss the role that this methodology can have in the framework of the opportunities, and challenges that the application of new predictive approaches based on artificial intelligence is generating in structural biology.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), Strada Statale 14 km 163.5, Basovizza, 34149 Triese, Italy;
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| |
Collapse
|
2
|
Truchado-García M, Perry KJ, Cavodeassi F, Kenny NJ, Henry JQ, Grande C. A Small Change With a Twist Ending: A Single Residue in EGF-CFC Drives Bilaterian Asymmetry. Mol Biol Evol 2022; 40:6947033. [PMID: 36537201 PMCID: PMC9907556 DOI: 10.1093/molbev/msac270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Asymmetries are essential for proper organization and function of organ systems. Genetic studies in bilaterians have shown signaling through the Nodal/Smad2 pathway plays a key, conserved role in the establishment of body asymmetries. Although the main molecular players in the network for the establishment of left-right asymmetry (LRA) have been deeply described in deuterostomes, little is known about the regulation of Nodal signaling in spiralians. Here, we identified orthologs of the egf-cfc gene, a master regulator of the Nodal pathway in vertebrates, in several invertebrate species, which includes the first evidence of its presence in non-deuterostomes. Our functional experiments indicate that despite being present, egf-cfc does not play a role in the establishment of LRA in gastropods. However, experiments in zebrafish suggest that a single amino acid mutation in the egf-cfc gene in at least the common ancestor of chordates was the necessary step to induce a gain of function in LRA regulation. This study shows that the egf-cfc gene likely appeared in the ancestors of deuterostomes and "protostomes", before being adopted as a mechanism to regulate the Nodal pathway and the establishment of LRA in some lineages of deuterostomes.
Collapse
Affiliation(s)
| | - Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801
| | - Florencia Cavodeassi
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain,Institute of Medical and Biomedical Education, St George's University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | - Nathan J Kenny
- Natural History Museum, Cromwell Road, London, United Kingdom,Department of Biochemistry (Te Tari Matū Koiora), University of Otago, Dunedin, (Aotearoa) New Zealand
| | - Jonathan Q Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801,The Marine Biological Laboratory, Woods Hole, MA 02543
| | | |
Collapse
|
3
|
Structure-based design of small bicyclic peptide inhibitors of Cripto-1 activity. Biochem J 2020; 477:1391-1407. [PMID: 32215602 DOI: 10.1042/bcj20190953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Bicyclic peptides assembled around small organic scaffolds are gaining an increasing interest as new potent, stable and highly selective therapeutics because of their uncommon ability to specifically recognize protein targets, of their small size that favor tissue penetration and of the versatility and easiness of the synthesis. We have here rationally designed bicyclic peptides assembled around a common tri-bromo-methylbenzene moiety in order to mimic the structure of the CFC domain of the oncogene Cripto-1 and, more specifically, to orient in the most fruitful way the hot spot residues H120 and W123. Through the CFC domain, Cripto-1 binds the ALK4 receptor and other protein partners supporting uncontrolled cell growth and proliferation. Soluble variants of CFC have the potential to inhibit these interactions suppressing the protein activity. A CFC analog named B3 binds ALK4 in vitro with an affinity in the nanomolar range. Structural analyses in solution via NMR and CD show that B3 has rather flexible conformations, like the parent CFC domain. The functional effects of B3 on the Cripto-1-positive NTERA cancer cell line have been evaluated showing that both CFC and B3 are cytotoxic for the cells and block the Cripto-1 intracellular signaling. Altogether, the data suggest that the administration of the soluble CFC and of the structurally related analog has the potential to inhibit tumor growth.
Collapse
|
4
|
Investigating the oxidative refolding mechanism of Cripto-1 CFC domain. Int J Biol Macromol 2019; 137:1179-1189. [DOI: 10.1016/j.ijbiomac.2019.07.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/19/2023]
|
5
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
6
|
Gudbergsson JM, Duroux M. An evaluation of different Cripto-1 antibodies and their variable results. J Cell Biochem 2019; 121:545-556. [PMID: 31310365 DOI: 10.1002/jcb.29293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Cripto-1 is a protein expressed during embryonal development and has been linked to several malignant processes in cancer. Since the discovery of cripto-1 in the late 1980s, it has become a subject of biomarker investigation in several types of cancer which in many cases relies on immunolocalization of cripto-1 using antibodies. Investigating cripto-1 expression and localization in primary glioblastoma cells, we discovered nonspecific binding of cripto-1 antibody to the extracellular matrix Geltrex. A panel of four cripto-1 antibodies was investigated with respect to their binding to the Geltrex matrix and to the cripto-1 positive control cells NTERA2. The cripto-1 expression was varied for the different antibodies with respect to cellular localization and fixation methods. To further elaborate on these findings, we present a systematic review of cripto-1 antibodies found in the literature and highlight some possible cross reactants with data on sequence alignments and structural comparison of EGF domains.
Collapse
Affiliation(s)
- Johann Mar Gudbergsson
- Laboratory of Immunology and Cancer Biology, Institute of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Meg Duroux
- Laboratory of Immunology and Cancer Biology, Institute of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
7
|
Focà G, Iaccarino E, Focà A, Sanguigno L, Untiveros G, Cuevas-Nunez M, Strizzi L, Leonardi A, Ruvo M, Sandomenico A. Development of conformational antibodies targeting Cripto-1 with neutralizing effects in vitro. Biochimie 2019; 158:246-256. [PMID: 30703478 DOI: 10.1016/j.biochi.2019.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/22/2019] [Indexed: 01/14/2023]
Abstract
Human Cripto-1 (Cripto-1), the founding member of the EGF-CFC superfamily, is a key regulator of many processes during embryonic development and oncogenesis. Cripto-1 is barely present or even absent in normal adult tissues while it is aberrantly re-expressed in various tumors. Blockade of the CFC domain-mediated Cripto-1 functions is acknowledged as a promising therapeutic intervention point to inhibit the tumorigenic activity of the protein. In this work, we report the generation and characterization of murine monoclonal antibodies raised against the synthetic folded CFC [112-150] domain of the human protein. Through subtractive ELISA assays clones were screened for the ability to specifically recognize "hot spot" residues on the CFC domain, which are crucial for the interaction with Activin Type I receptor (ALK4) and GRP78. On selected antibodies, SPR and epitope mapping studies have confirmed their specificity and have revealed that recognition occurs only on a conformational epitope. Furthermore, FACS analyses have confirmed the ability of 1B4 antibody to recognize the membrane-anchored and soluble native Cripto-1 protein in a panel of human cancer cells. Finally, we have evaluated its functional effects through in vitro cellular signaling assays and cell cycle analysis. These findings suggest that the selected anti-CFC mAbs have the potential to neutralize the protein oncogenic activity and may be used as theranostic molecules suitable as tumor homing agents for Cripto-1-overexpressing cancer cells and tissues and to overcome drug-resistance in routine cancer therapies.
Collapse
Affiliation(s)
- Giuseppina Focà
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Emanuela Iaccarino
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Annalia Focà
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Luca Sanguigno
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Gustavo Untiveros
- Midwestern University, Colleges of Graduate Studies, Dwners Grove, Chicago, IL, USA
| | - Maria Cuevas-Nunez
- Midwestern University, Colleges of Graduate Studies, Dwners Grove, Chicago, IL, USA; College of Dental Medicine, Dwners Grove, Chicago, IL, USA
| | - Luigi Strizzi
- Midwestern University, Colleges of Graduate Studies, Dwners Grove, Chicago, IL, USA
| | - Antonio Leonardi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy.
| | - Annamaria Sandomenico
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy.
| |
Collapse
|
8
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
9
|
Abstract
Experiments by three independent groups on zebrafish have clarified the role of two signaling factors, Nodal and Gdf3, during the early stages of development
Collapse
Affiliation(s)
- Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| |
Collapse
|
10
|
Calvanese L, Focà A, Sandomenico A, Focà G, Caporale A, Doti N, Iaccarino E, Leonardi A, D'Auria G, Ruvo M, Falcigno L. Structural insights into the interaction of a monoclonal antibody and Nodal peptides by STD-NMR spectroscopy. Bioorg Med Chem 2017; 25:6589-6596. [PMID: 29113739 DOI: 10.1016/j.bmc.2017.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/05/2017] [Accepted: 10/26/2017] [Indexed: 12/31/2022]
Abstract
Nodal is a growth factor expressed during early embryonic development, but reactivated in several advanced-stage cancers. Targeting of Nodal signaling, which occurs via the binding to Cripto-1 co-receptor, results in inhibition of cell aggressiveness and reduced tumor growth. The Nodal binding region to Cripto-1 was identified and targeted with a high affinity monoclonal antibody (3D1). By STD-NMR technique, we investigated the interaction of Nodal fragments with 3D1 with the aim to elucidate at atomic level the interaction surface. Data indicate with high accuracy the antibody-antigen contact atoms and confirm the information previously obtained by immune-enzymatic methods. Main residues contacted by 3D1 are P46, V47, E49 and E50, which belong to the Nodal loop involved in the interaction with the co-receptor.
Collapse
Affiliation(s)
- Luisa Calvanese
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Annalia Focà
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Annamaria Sandomenico
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy; Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Giuseppina Focà
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Andrea Caporale
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Emanuela Iaccarino
- DISTABIF, Università degli Studi della Campania "Lugi Vanvitelli", via Vivaldi, 43, 80100 Caserta, Italy
| | - Antonio Leonardi
- Dept. Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, Naples, Italy
| | - Gabriella D'Auria
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy; Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy; Dept. of Pharmacy, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy; Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy.
| | - Lucia Falcigno
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy; Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy; Dept. of Pharmacy, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy.
| |
Collapse
|
11
|
Aykul S, Parenti A, Chu KY, Reske J, Floer M, Ralston A, Martinez-Hackert E. Biochemical and Cellular Analysis Reveals Ligand Binding Specificities, a Molecular Basis for Ligand Recognition, and Membrane Association-dependent Activities of Cripto-1 and Cryptic. J Biol Chem 2017; 292:4138-4151. [PMID: 28126904 PMCID: PMC5354514 DOI: 10.1074/jbc.m116.747501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor β (TGF-β) pathways are key determinants of cell fate in animals. Their basic mechanism of action is simple. However, to produce cell-specific responses, TGF-β pathways are heavily regulated by secondary factors, such as membrane-associated EGF-CFC family proteins. Cellular activities of EGF-CFC proteins have been described, but their molecular functions, including how the mammalian homologs Cripto-1 and Cryptic recognize and regulate TGF-β family ligands, are less clear. Here we use purified human Cripto-1 and mouse Cryptic produced in mammalian cells to show that these two EGF-CFC homologs have distinct, highly specific ligand binding activities. Cripto-1 interacts with BMP-4 in addition to its known partner Nodal, whereas Cryptic interacts only with Activin B. These interactions depend on the integrity of the protein, as truncated or deglycosylated Cripto-1 lacked BMP-4 binding activity. Significantly, Cripto-1 and Cryptic blocked binding of their cognate ligands to type I and type II TGF-β receptors, indicating that Cripto-1 and Cryptic contact ligands at their receptor interaction surfaces and, thus, that they could inhibit their ligands. Indeed, soluble Cripto-1 and Cryptic inhibited ligand signaling in various cell-based assays, including SMAD-mediated luciferase reporter gene expression, and differentiation of a multipotent stem cell line. But in agreement with previous work, the membrane bound form of Cripto-1 potentiated signaling, revealing a critical role of membrane association for its established cellular activity. Thus, our studies provide new insights into the mechanism of ligand recognition by this enigmatic family of membrane-anchored TGF-β family signaling regulators and link membrane association with their signal potentiating activities.
Collapse
Affiliation(s)
- Senem Aykul
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Anthony Parenti
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Kit Yee Chu
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Jake Reske
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Monique Floer
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Amy Ralston
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Erik Martinez-Hackert
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| |
Collapse
|
12
|
Strizzi L, Sandomenico A, Margaryan NV, Focà A, Sanguigno L, Bodenstine TM, Chandler GS, Reed DW, Gilgur A, Seftor EA, Seftor RE, Khalkhali-Ellis Z, Leonardi A, Ruvo M, Hendrix MJ. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget 2015; 6:34071-86. [PMID: 26460952 PMCID: PMC4741437 DOI: 10.18632/oncotarget.6049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022] Open
Abstract
Nodal is highly expressed in various human malignancies, thus supporting the rationale for exploring Nodal as a therapeutic target. Here, we describe the effects of a novel monoclonal antibody (mAb), 3D1, raised against human Nodal. In vitro treatment of C8161 human melanoma cells with 3D1 mAb shows reductions in anchorage-independent growth and vasculogenic network formation. 3D1 treated cells also show decreases of Nodal and downstream signaling molecules, P-Smad2 and P-ERK and of P-H3 and CyclinB1, with an increase in p27. Similar effects were previously reported in human breast cancer cells where Nodal expression was generally down-regulated; following 3D1 mAb treatment, both Nodal and P-H3 levels are reduced. Noteworthy is the reduced growth of human melanoma xenografts in Nude mice treated with 3D1 mAb, where immunostaining of representative tumor sections show diminished P-Smad2 expression. Similar effects both in vitro and in vivo were observed in 3D1 treated A375SM melanoma cells harboring the active BRAF(V600E) mutation compared to treatments with IgG control or a BRAF inhibitor, dabrafenib. Finally, we describe a 3D1-based ELISA for the detection of Nodal in serum samples from cancer patients. These data suggest the potential of 3D1 mAb for selecting and targeting Nodal expressing cancers.
Collapse
Affiliation(s)
- Luigi Strizzi
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini del CNR and CIRPeB, Università Federico II di Napoli, Naples, Italy
| | - Naira V. Margaryan
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Annalia Focà
- Istituto di Biostrutture e Bioimmagini del CNR and CIRPeB, Università Federico II di Napoli, Naples, Italy
| | - Luca Sanguigno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, Naples, Italy
| | - Thomas M. Bodenstine
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Grace S. Chandler
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - David W. Reed
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Alina Gilgur
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Elisabeth A. Seftor
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Richard E.B. Seftor
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhila Khalkhali-Ellis
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, Naples, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini del CNR and CIRPeB, Università Federico II di Napoli, Naples, Italy
| | - Mary J.C. Hendrix
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
13
|
New Anti-Nodal Monoclonal Antibodies Targeting the Nodal Pre-Helix Loop Involved in Cripto-1 Binding. Int J Mol Sci 2015; 16:21342-62. [PMID: 26370966 PMCID: PMC4613256 DOI: 10.3390/ijms160921342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/21/2015] [Accepted: 08/27/2015] [Indexed: 12/25/2022] Open
Abstract
Nodal is a potent embryonic morphogen belonging to the TGF-β superfamily. Typically, it also binds to the ALK4/ActRIIB receptor complex in the presence of the co-receptor Cripto-1. Nodal expression is physiologically restricted to embryonic tissues and human embryonic stem cells, is absent in normal cells but re-emerges in several human cancers, including melanoma, breast, and colon cancer. Our aim was to obtain mAbs able to recognize Nodal on a major CBR (Cripto-Binding-Region) site and to block the Cripto-1-mediated signalling. To achieve this, antibodies were raised against hNodal(44-67) and mAbs generated by the hybridoma technology. We have selected one mAb, named 3D1, which strongly associates with full-length rhNodal (KD 1.4 nM) and recognizes the endogenous protein in a panel of human melanoma cell lines by western blot and FACS analyses. 3D1 inhibits the Nodal-Cripto-1 binding and blocks Smad2/3 phosphorylation. Data suggest that inhibition of the Nodal-Cripto-1 axis is a valid therapeutic approach against melanoma and 3D1 is a promising and interesting agent for blocking Nodal-Cripto mediated tumor development. These findings increase the interest for Nodal as both a diagnostic and prognostic marker and as a potential new target for therapeutic intervention.
Collapse
|
14
|
Abstract
Bone morphogenetic proteins (BMPs), together with the eponymous transforming growth factor (TGF) β and the Activins form the TGFβ superfamily of ligands. This protein family comprises more than 30 structurally highly related proteins, which determine formation, maintenance, and regeneration of tissues and organs. Their importance for the development of multicellular organisms is evident from their existence in all vertebrates as well as nonvertebrate animals. From their highly specific functions in vivo either a strict relation between a particular ligand and its cognate cellular receptor and/or a stringent regulation to define a distinct temperospatial expression pattern for the various ligands and receptor is expected. However, only a limited number of receptors are found to serve a large number of ligands thus implicating highly promiscuous ligand-receptor interactions instead. Since in tissues a multitude of ligands are often found, which signal via a highly overlapping set of receptors, this raises the question how such promiscuous interactions between different ligands and their receptors can generate concerted and highly specific cellular signals required during embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Thomas D Mueller
- Department Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
15
|
Calvanese L, Sandomenico A, Caporale A, Focà A, Focà G, D'Auria G, Falcigno L, Ruvo M. Conformational features and binding affinities to Cripto, ALK7 and ALK4 of Nodal synthetic fragments. J Pept Sci 2015; 21:283-93. [PMID: 25588905 DOI: 10.1002/psc.2733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 12/31/2022]
Abstract
Nodal, a member of the TGF-β superfamily, is a potent embryonic morphogen also implicated in tumor progression. As for other TGF-βs, it triggers the signaling functions through the interaction with the extracellular domains of type I and type II serine/threonine kinase receptors and with the co-receptor Cripto. Recently, we reported the molecular models of Nodal in complex with its type I receptors (ALK4 and ALK7) as well as with Cripto, as obtained by homology modeling and docking simulations. From such models, potential binding epitopes have been identified. To validate such hypotheses, a series of mutated Nodal fragments have been synthesized. These peptide analogs encompass residues 44-67 of the Nodal protein, corresponding to the pre-helix loop and the H3 helix, and reproduce the wild-type sequence or bear some modifications to evaluate the hot-spot role of modified residues in the receptor binding. Here, we show the structural characterization in solution by CD and NMR of the Nodal peptides and the measurement of binding affinity toward Cripto by surface plasmon resonance. Data collected by both conformational analyses and binding measurements suggest a role for Y58 of Nodal in the recognition with Cripto and confirm that previously reported for E49 and E50. Surface plasmon resonance binding assays with recombinant proteins show that Nodal interacts in vitro also with ALK7 and ALK4 and preliminary data, generated using the Nodal synthetic fragments, suggest that Y58 of Nodal may also be involved in the recognition with these protein partners.
Collapse
Affiliation(s)
- Luisa Calvanese
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Esquivies L, Blackler A, Peran M, Rodriguez-Esteban C, Izpisua Belmonte JC, Booker E, Gray PC, Ahn C, Kwiatkowski W, Choe S. Designer nodal/BMP2 chimeras mimic nodal signaling, promote chondrogenesis, and reveal a BMP2-like structure. J Biol Chem 2013; 289:1788-97. [PMID: 24311780 DOI: 10.1074/jbc.m113.529180] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nodal, a member of the TGF-β superfamily, plays an important role in vertebrate and invertebrate early development. The biochemical study of Nodal and its signaling pathway has been a challenge, mainly because of difficulties in producing the protein in sufficient quantities. We have developed a library of stable, chemically refoldable Nodal/BMP2 chimeric ligands (NB2 library). Three chimeras, named NB250, NB260, and NB264, show Nodal-like signaling properties including dependence on the co-receptor Cripto and activation of the Smad2 pathway. NB250, like Nodal, alters heart looping during the establishment of embryonic left-right asymmetry, and both NB250 and NB260, as well as Nodal, induce chondrogenic differentiation of human adipose-derived stem cells. This Nodal-induced differentiation is shown to be more efficient than BPM2-induced differentiation. Interestingly, the crystal structure of NB250 shows a backbone scaffold similar to that of BMP2. Our results show that these chimeric ligands may have therapeutic implications in cartilage injuries.
Collapse
|
17
|
Romano V, Raimondo D, Calvanese L, D’Auria G, Tramontano A, Falcigno L. Toward a better understanding of the interaction between TGF-β family members and their ALK receptors. J Mol Model 2012; 18:3617-25. [DOI: 10.1007/s00894-012-1370-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/25/2012] [Indexed: 12/27/2022]
|
18
|
Nagaoka T, Karasawa H, Castro NP, Rangel MC, Salomon DS, Bianco C. An evolving web of signaling networks regulated by Cripto-1. Growth Factors 2012; 30:13-21. [PMID: 22149969 DOI: 10.3109/08977194.2011.641962] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Over the past few decades, our understanding of the embryonic gene Cripto-1 has considerably advanced through biochemical, cell biology, and animal studies. Cripto-1 performs key functions during embryonic development, while it dramatically disappears in adult tissues, except possibly in adult tissue stem cells. Cripto-1 is re-expressed in human tumors promoting cell proliferation, migration, invasion, epithelial to mesenchymal transition, and tumor angiogenesis. This diversity of biological effects is dependent upon interaction of Cripto-1 with an extensive array of signaling molecules. In fact, Cripto-1 modulates signaling of transforming growth factor-β family members, including Nodal, GDF-1/-3, Activin, and TGF-β1, activates c-src/MAPK/Protein Kinase B (AKT) pathway in a Glypican-1 and GRP78-dependent manner, and cross-talks with erbB4, Wnt/β-catenin, Notch, Caveolin-1, and Apelin/putative receptor protein related to Angiotensin-type I receptor (APJ) pathways. This article provides an updated survey of the various signaling pathways modulated by Cripto-1 with a focus on mechanistic insights in our understanding of the biological function of Cripto-1 in eukaryotic cells.
Collapse
Affiliation(s)
- Tadahiro Nagaoka
- Tumor Growth Factor Section, Laboratory of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
19
|
Vitagliano L, Fiume G, Scognamiglio PL, Doti N, Cannavò R, Puca A, Pedone C, Scala G, Quinto I, Marasco D. Structural and functional insights into IκB-α/HIV-1 Tat interaction. Biochimie 2011; 93:1592-600. [PMID: 21664225 DOI: 10.1016/j.biochi.2011.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 05/24/2011] [Indexed: 01/13/2023]
Abstract
Protein-protein interactions play fundamental roles in physiological and pathological biological processes. The characterization of the structural determinants of protein-protein recognition represents an important step for the development of molecular entities able to modulate these interactions. We have recently found that IκB-α (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) blocks the HIV-1 expression and replication in a NF-κB-independent manner by directly binding to the virus-encoded Tat transactivator. Here, we report the evaluation of the entity of binding of IκB-α to Tat through in vitro Surface Plasmon Resonance assay. Moreover, by designing and characterizing a set of peptides of the C-terminus region of IκB-α, we show that the peptide corresponding to the IκB-α sequence 262-287 was able to bind to Tat with high affinity (300 nM). The characterization of a number of IκB-α-based peptides also provided insights into their intrinsic folding properties. These findings have been corroborated by mutagenesis studies on the full-length IκB-α, which unveil that different IκB-α residues are involved in NF-κB or Tat recognition.
Collapse
Affiliation(s)
- Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|