1
|
Lu W, Shi R, Li X, Ma S, Yang D, Shang D, Xia Q. A review on complete silk gene sequencing and de novo assembly of artificial silk. Int J Biol Macromol 2024; 264:130444. [PMID: 38417762 DOI: 10.1016/j.ijbiomac.2024.130444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Silk, especially spider and insect silk, is a highly versatile biomaterial with potential applications in biomedicine, materials science, and biomimetic engineering. The primary structure of silk proteins is the basis for the mechanical properties of silk fibers. Biotechnologies such as single-molecule sequencing have facilitated an increasing number of reports on new silk genes and assembled silk proteins. Therefore, this review aims to provide a comprehensive overview of the recent advances in representative spider and insect silk proteins, focusing on identification methods, sequence characteristics, and de novo design and assembly. The review discusses three identification methods for silk genes: polymerase chain reaction (PCR)-based sequencing, PCR-free cloning and sequencing, and whole-genome sequencing. Moreover, it reveals the main spider and insect silk proteins and their sequences. Subsequent de novo assembly of artificial silk is covered and future research directions in the field of silk proteins, including new silk genes, customizable artificial silk, and the expansion of silk production and applications are discussed. This review provides a basis for the genetic aspects of silk production and the potential applications of artificial silk in material science and biomedical engineering.
Collapse
Affiliation(s)
- Wei Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Run Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xue Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Daiying Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Deli Shang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
2
|
Morlo K, Olchowski R, Dobrowolski R. Optimization of Pt(II) and Pt(IV) Adsorption from a Water Solution on Biochar Originating from Honeycomb Biomass. Molecules 2024; 29:547. [PMID: 38276625 PMCID: PMC10820625 DOI: 10.3390/molecules29020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Novel CO2- and H3PO4-modified biochars were successfully synthesized from raw honeycomb biomass. They were characterized via several instrumental techniques. The optimal Pt(II) and Pt(IV) adsorption onto the studied biochars was reached for the initial pH of 1.5 and a contact time of 5 min (Pt(II)) and 24-48 h (Pt(IV)). The highest static adsorption capacities for Pt(II) and Pt(IV) were obtained for the H3PO4-modified biochar: 47 mg g-1 and 35 mg g-1, respectively. The Freundlich model described the Pt(II) adsorption isotherms onto both materials and the Pt(IV) adsorption isotherm onto the CO2-activated material, and the Langmuir model was the best fitted to the Pt(IV) adsorption isotherm onto the H3PO4-activated biochar. The best medium for the quantitative desorption of the Pt form from the H3PO4-modified biochar was 1 mol L-1 thiourea in 1 mol L-1 HCl. The adsorption mechanism of both the studied ions onto the synthesized H3PO4-modified biochar was complex and should be further investigated. The H3PO4-modified biochar was successfully applied for the first time for Pt(IV) removal from a spent automotive catalyst leaching solution.
Collapse
Affiliation(s)
- Kinga Morlo
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. C. Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | - Rafał Olchowski
- Department of Pharmacology, Toxicology and Environmental Protection, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka Sq. 12, 20-950 Lublin, Poland;
| | - Ryszard Dobrowolski
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. C. Sklodowska Sq. 3, 20-031 Lublin, Poland;
| |
Collapse
|
3
|
Sun H, Maji S, Chandrakasan AP, Marelli B. Integrating biopolymer design with physical unclonable functions for anticounterfeiting and product traceability in agriculture. SCIENCE ADVANCES 2023; 9:eadf1978. [PMID: 36947609 PMCID: PMC10032598 DOI: 10.1126/sciadv.adf1978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Smallholder farmers and manufacturers in the Agri-Food sector face substantial challenges because of increasing circulation of counterfeit products (e.g., seeds), for which current countermeasures are implemented mainly at the secondary packaging level, and are generally vulnerable because of limited security guarantees. Here, by integrating biopolymer design with physical unclonable functions (PUFs), we propose a cryptographic protocol for seed authentication using biodegradable and miniaturized PUF tags made of silk microparticles. By simply drop casting a mixture of variant silk microparticles on a seed surface, tamper-evident PUF tags can be seamlessly fabricated on a variety of seeds, where the unclonability comes from the stochastic assembly of spectrally and visually distinct silk microparticles in the tag. Unique, reproducible, and unpredictable PUF codes are generated from both Raman mapping and microscopy imaging of the silk tags. Together, the proposed technology offers a highly secure solution for anticounterfeiting and product traceability in agriculture.
Collapse
Affiliation(s)
- Hui Sun
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Saurav Maji
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anantha P. Chandrakasan
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
5
|
Proteomic characterization of the fibroin-based silk fibers produced by weaver ant Camponotus textor. J Proteomics 2022; 261:104579. [DOI: 10.1016/j.jprot.2022.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
|
6
|
Sonnleitner D, Sommer C, Scheibel T, Lang G. Approaches to inhibit biofilm formation applying natural and artificial silk-based materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112458. [PMID: 34857315 DOI: 10.1016/j.msec.2021.112458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
The discovery of penicillin started a new era of health care since it allowed the effective treatment of formerly deadly infections. As a drawback, its overuse led to a growing number of multi-drug resistant pathogens. Challenging this arising threat, material research focuses on the development of microbe-killing or microbe repellent agents implementing such functions directly into materials. Due to their biocompatibility, non-immunogenicity and mechanical strength, silk-based materials are attractive candidates for applications in the biomedical field. Furthermore, it has been observed that silks display high persistency in their natural environment giving reason to suspect that they might be attractive candidates to prevent microbial infestation. The current review describes the process of biofilm formation on medical devices and the most common strategies to prevent it, divided into effects of surface topography, material modification and integrated additives. In this context, recent state of the art developments in the field of natural and artificial silk-based materials with microbe-repellant or antimicrobial properties are addressed. These silk properties are controversially discussed and conclusions are drawn as to which parameters will be decisive for the successful design of new bio-functional materials based on the blueprint of silk proteins.
Collapse
Affiliation(s)
- David Sonnleitner
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Christoph Sommer
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Gregor Lang
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Germany.
| |
Collapse
|
7
|
Diverse silk and silk-like proteins derived from terrestrial and marine organisms and their applications. Acta Biomater 2021; 136:56-71. [PMID: 34551332 DOI: 10.1016/j.actbio.2021.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023]
Abstract
Organisms develop unique systems in a given environment. In the process of adaptation, they employ materials in a clever way, which has inspired mankind extensively. Understanding the behavior and material properties of living organisms provides a way to emulate these natural systems and engineer various materials. Silk is a material that has been with human for over 5000 years, and the success of mass production of silkworm silk has realized its applications to medical, pharmaceutical, optical, and even electronic fields. Spider silk, which was characterized later, has expanded the application sectors to textile and military materials based on its tough mechanical properties. Because silk proteins are main components of these materials and there are abundant creatures producing silks that have not been studied, the introduction of new silk proteins would be a breakthrough of engineering materials to open innovative industry fields. Therefore, in this review, we present diverse silk and silk-like proteins and how they are utilized with respect to organism's survival. Here, the range of organisms are not constrained to silkworms and spiders but expanded to other insects, and even marine creatures which produce silk-like proteins that are not observed in terrestrial silks. This viewpoint broadening of silk and silk-like proteins would suggest diverse targets of engineering to design promising silk-based materials. STATEMENT OF SIGNIFICANCE: Silk has been developed as a biomedical material due to unique mechanical and chemical properties. For decades, silks from various silkworm and spider species have been intensively studied. More recently, other silk and silk-like proteins with different sequences and structures have been reported, not only limited to terrestrial organisms (honeybee, green lacewing, caddisfly, and ant), but also from marine creatures (mussel, squid, sea anemone, and pearl oyster). Nevertheless, there has hardly been well-organized literature on silks from such organisms. Regarding the relationship among sequence-structure-properties, this review addresses how silks have been utilized with respect to organism's survival. Finally, this information aims to improve the understanding of diverse silk and silk-like proteins which can offer a significant interest to engineering fields.
Collapse
|
8
|
Chawla S, Seit S, Murab S, Ghosh S. Silk from Indian paper wasp: Structure prediction and secondary conformational analysis. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Sun H, Marelli B. Polypeptide templating for designer hierarchical materials. Nat Commun 2020; 11:351. [PMID: 31953407 PMCID: PMC6969164 DOI: 10.1038/s41467-019-14257-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/16/2019] [Indexed: 01/27/2023] Open
Abstract
Despite advances in directing the assembly of biomacromolecules into well-defined nanostructures, leveraging pathway complexity of molecular disorder to order transition while bridging materials fabrication from nano- to macroscale remains a challenge. Here, we present templated crystallization of structural proteins to nanofabricate hierarchically structured materials up to centimeter scale, using silk fibroin as an example. The process involves the use of ordered peptide supramolecular assemblies as templates to direct the folding and assembly of silk fibroin into nanofibrillar structures. Silk polymorphs can be engineered by varying the peptide seeds used. Modulation of the relative concentration between silk fibroin and peptide seeds, silk fibroin molecular weight and pH allows control over nanofibrils morphologies and mechanical properties. Finally, facile integration of the bottom-up templated crystallization with emerging top-down techniques enables the generation of macroscopic nanostructured materials with potential applications in information storage/encryption, surface functionalization, and printable three-dimensional constructs of customized architecture and controlled anisotropy.
Collapse
Affiliation(s)
- Hui Sun
- Laboratory for Advanced Biopolymers, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Benedetto Marelli
- Laboratory for Advanced Biopolymers, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Rapson TD, Christley-Balcomb AM, Jackson CJ, Sutherland TD. Enhancement of metallomacrocycle-based oxygen reduction catalysis through immobilization in a tunable silk-protein scaffold. J Inorg Biochem 2019; 204:110960. [PMID: 31865257 DOI: 10.1016/j.jinorgbio.2019.110960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Fuel cells convert chemical energy into electrical current with the use of an oxidant such as oxygen and have the potential to reduce our reliance on fossil fuels. To overcome the slow kinetics of the oxygen reduction reaction (ORR), platinum is often used as the catalyst. However, the scarcity and expense of platinum limits the wide-spread use of fuel cells. In the search for non-platinum oxygen reduction catalysts, metallomacrocycles have attracted significant attention. While progress has been made in understanding how metallomacrocycle-based molecules can catalyze the ORR, their low stability, remains an on-going challenge. Here we report an immobilization strategy whereby hemin (iron protoporphyrin IX, heme b) is converted into an oxygen reduction catalyst which could be operated for over 96 h, with turnover numbers >107. This represents a 3 orders of magnitude improvement over the best reported iron porphyrin ORR catalyst to date. The basis for this improvement in turnover is specific binding of the heme within a recombinant silk protein, which allows for separation of the porphyrin active sites. Use of the silk protein provides a scaffold that can be engineered to improve selectivity and efficiency. Through rational design of the heme binding site, a > 95% selectivity for a four-electron reduction of oxygen to water was obtained, equal to the selectivity obtained using platinum-based catalysts. This work represents an important advance in the field, demonstrating that metallomacrocycle-based ORR catalysts are viable for use in fuel cells.
Collapse
Affiliation(s)
| | - Alden M Christley-Balcomb
- CSIRO, Black Mountain, Acton, ACT 2601, Australia; Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | | |
Collapse
|
11
|
dos Santos-Pinto JRA, Esteves FG, Sialana FJ, Ferro M, Smidak R, Rares LC, Nussbaumer T, Rattei T, Bilban M, Bacci Júnior M, Palma MS, Lübec G. A proteotranscriptomic study of silk-producing glands from the orb-weaving spiders. Mol Omics 2019; 15:256-270. [DOI: 10.1039/c9mo00087a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A proteotranscriptomic approach provides a biochemical basis for understanding the intricate spinning process and complex structural features of spider silk proteins.
Collapse
Affiliation(s)
| | - Franciele Grego Esteves
- Center of the Study of Social Insects
- Department of Biology
- Institute of Biosciences of Rio Claro
- São Paulo State University
- Rio Claro
| | | | - Milene Ferro
- Center of the Study of Social Insects
- Department of Biology
- Institute of Biosciences of Rio Claro
- São Paulo State University
- Rio Claro
| | - Roman Smidak
- Department of Pharmaceutical Chemistry
- University of Vienna
- Austria
| | - Lucaciu Calin Rares
- Division of Computational System Biology
- Department of Microbiology and Ecosystem Science
- University of Vienna
- 1090 Vienna
- Austria
| | - Thomas Nussbaumer
- Division of Computational System Biology
- Department of Microbiology and Ecosystem Science
- University of Vienna
- 1090 Vienna
- Austria
| | - Thomas Rattei
- Division of Computational System Biology
- Department of Microbiology and Ecosystem Science
- University of Vienna
- 1090 Vienna
- Austria
| | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics
- Medical University of Vienna
- Vienna
- Austria
| | - Maurício Bacci Júnior
- Center of the Study of Social Insects
- Department of Biology
- Institute of Biosciences of Rio Claro
- São Paulo State University
- Rio Claro
| | - Mario Sergio Palma
- Center of the Study of Social Insects
- Department of Biology
- Institute of Biosciences of Rio Claro
- São Paulo State University
- Rio Claro
| | - Gert Lübec
- Paracelsus Medical University
- A 5020 Salzburg
- Austria
| |
Collapse
|
12
|
Addison B, Onofrei D, Stengel D, Blass B, Brenneman B, Ayon J, Holland GP. Spider prey-wrapping silk is an α-helical coiled-coil/β-sheet hybrid nanofiber. Chem Commun (Camb) 2018; 54:10746-10749. [PMID: 30191228 DOI: 10.1039/c8cc05246h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solid-State NMR results on 13C-Ala/Ser and 13C-Val enriched Argiope argentata prey-wrapping silk show that native, freshly spun aciniform silk nanofibers are dominated by α-helical (∼50% total) and random-coil (∼35% total) secondary structures, with minor β-sheet nanocrystalline domains (∼15% total). This is the most in-depth study to date characterizing the protein structural conformation of the toughest natural biopolymer: aciniform prey-wrapping silks.
Collapse
Affiliation(s)
- B Addison
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Sparkes J, Holland C. Analysis of the pressure requirements for silk spinning reveals a pultrusion dominated process. Nat Commun 2017; 8:594. [PMID: 28928362 PMCID: PMC5605702 DOI: 10.1038/s41467-017-00409-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/27/2017] [Indexed: 11/12/2022] Open
Abstract
Silks are remarkable materials with desirable mechanical properties, yet the fine details of natural production remain elusive and subsequently inaccessible to biomimetic strategies. Improved knowledge of the natural processes could therefore unlock development of a host of bio inspired fibre spinning systems. Here, we use the Chinese silkworm Bombyx mori to review the pressure requirements for natural spinning and discuss the limits of a biological extrusion domain. This provides a target for finite element analysis of the flow of silk proteins, with the aim of bringing the simulated and natural domains into closer alignment. Supported by two parallel routes of experimental validation, our results indicate that natural spinning is achieved, not by extruding the feedstock, but by the pulling of nascent silk fibres. This helps unravel the oft-debated question of whether silk is pushed or pulled from the animal, and provides impetus to the development of pultrusion-based biomimetic spinning devices.The natural production of silks remains elusive and subsequently inaccessible to biomimetic strategies. Here the authors show that silks cannot be spun by pushing alone, and that natural spinning is dominated by pultrusion, which provides design guidelines for future biomimetic spinning systems.
Collapse
Affiliation(s)
- James Sparkes
- The Natural Materials Group, Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, South Yorkshire, UK
| | - Chris Holland
- The Natural Materials Group, Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, South Yorkshire, UK.
| |
Collapse
|
14
|
Fu J, Guerette PA, Pavesi A, Horbelt N, Lim CT, Harrington MJ, Miserez A. Artificial hagfish protein fibers with ultra-high and tunable stiffness. NANOSCALE 2017; 9:12908-12915. [PMID: 28832693 DOI: 10.1039/c7nr02527k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stiff fibers are used as reinforcing phases in a wide range of high-performance composite materials. Silk is one of the most widely studied bio-fibers, but alternative materials with specific advantages are also being explored. Among these, native hagfish (Eptatretus stoutii) slime thread is an attractive protein-based polymer. These threads consist of coiled-coil intermediate filaments (IFs) as nano-scale building blocks, which can be transformed into extended β-sheet-containing chains upon draw-processing, resulting in fibers with impressive mechanical performance. Here, we report artificial hagfish threads produced by recombinant protein expression, which were subsequently self-assembled into coiled-coil nanofilaments, concentrated, and processed into β-sheet-rich fibers by a "picking-up" method. These artificial fibers experienced mechanical performance enhancement during draw-processing. We exploited the lysine content to covalently cross-link the draw-processed fibers and obtained moduli values (E) in tension as high as ∼20 GPa, which is stiffer than most reported artificial proteinaceous materials.
Collapse
Affiliation(s)
- Jing Fu
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798
| | | | | | | | | | | | | |
Collapse
|
15
|
Trueman H, Sriskantha A, Qu Y, Rapson TD, Sutherland TD. Modification of Honeybee Silk by the Addition of Antimicrobial Agents. ACS OMEGA 2017; 2:4456-4463. [PMID: 30023723 PMCID: PMC6044942 DOI: 10.1021/acsomega.7b00694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/28/2017] [Indexed: 06/08/2023]
Abstract
Honeybee silk proteins can be produced at high levels in recombinant systems, fabricated into materials, and are tolerant of amino acid modifications: properties that make them exciting templates for designing new functional materials. Here, we explore the properties of materials either made from silk-antimicrobial peptide (AMP) fusion proteins or silk containing entrapped AMPs or silver nanoparticles. Inclusion of AMP within the silk protein sequence did not affect our ability to express the proteins or process them into films. When AMP-silk proteins and Escherichia coli cells were coincubated in solution, a reduction in cell numbers was observed after degradation of the chimeric protein to release a truncated version of the AMP. In films, the AMP was retained in the silk with leaching rates of <1% per day. Films containing silver nanoparticles were antimicrobial, with the silk preventing aggregation of nanoparticles and slowing the rate of dissolution of the particles.
Collapse
Affiliation(s)
| | | | - Yue Qu
- Department
of Infectious Diseases, The Alfred Hospital, 4/55 Commercial Rd., Melbourne 3004 Victoria, Australia
| | | | | |
Collapse
|
16
|
Herold HM, Scheibel T. Applicability of biotechnologically produced insect silks. ACTA ACUST UNITED AC 2017; 72:365-385. [DOI: 10.1515/znc-2017-0050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/30/2017] [Indexed: 11/15/2022]
Abstract
Abstract
Silks are structural proteins produced by arthropods. Besides the well-known cocoon silk, which is produced by larvae of the silk moth Bombyx mori to undergo metamorphosis inside their silken shelter (and which is also used for textile production by men since millennia), numerous further less known silk-producing animals exist. The ability to produce silk evolved multiple independent times during evolution, and the fact that silk was subject to convergent evolution gave rise to an abundant natural diversity of silk proteins. Silks are used in air, under water, or like honey bee silk in the hydrophobic, waxen environment of the bee hive. The good mechanical properties of insect silk fibres together with their non-toxic, biocompatible, and biodegradable nature renders these materials appealing for both technical and biomedical applications. Although nature provides a great diversity of material properties, the variation in quality inherent in materials from natural sources together with low availability (except from silkworm silk) impeded the development of applications of silks. To overcome these two drawbacks, in recent years, recombinant silks gained more and more interest, as the biotechnological production of silk proteins allows for a scalable production at constant quality. This review summarises recent developments in recombinant silk production as well as technical procedures to process recombinant silk proteins into fibres, films, and hydrogels.
Collapse
Affiliation(s)
- Heike M. Herold
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
- Institut für Bio-Makromoleküle (bio-mac), Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
- Bayreuther Materialzentrum (BayMAT), Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
| |
Collapse
|
17
|
Khamhaengpol A, Siri S. Composite Electrospun Scaffold Derived from Recombinant Fibroin of Weaver Ant (Oecophylla smaragdina) as Cell-Substratum. Appl Biochem Biotechnol 2017; 183:110-125. [PMID: 28205050 DOI: 10.1007/s12010-017-2433-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022]
Abstract
Unlike silkworm (Bombyx mori) fibroin (SF), weaver ant (Oecophylla smaragdina) fibroin (WAF) is much less studied. Due to differences in amino acid composition and protein structure, this work aimed to produce the recombinant WAF protein, designated as WAF1, and investigated on its potential application as a biomaterial for producing a cell-substratum. The composite electrospun scaffolds derived from poly(vinyl alcohol) (PVA), WAF1, and extracted SF were produced by electrospinning. SEM images revealed non-woven and smooth fibers of PVA, PVA-WAF1, and PVA-SF scaffolds with the average diameters of 204.1 ± 59.9, 206.5 ± 71.5, and 238.4 ± 77.9 nm, respectively. ATR-FTIR spectra indicated characteristic absorption peaks related to the chemical structure of PVA and protein. The PVA-WAF1 scaffold demonstrated a higher water uptake, a slightly higher rate of degradation, and a similar low cytotoxicity as compared with the PVA-SF scaffold. Although the adhesion and proliferation of cells on the PVA-WAF1 scaffold were lower than those on the PVA-SF scaffold, it showed significantly greater values of adhering and proliferating cells than the PVA scaffold. The results of this work suggested that WAF1 could be used as a biomaterial for producing a cell-substratum that supports cell adhesion and growth.
Collapse
Affiliation(s)
- Arunrat Khamhaengpol
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sineenat Siri
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
18
|
Abstract
Silk is a protein-based material which is predominantly produced by insects and spiders. Hundreds of millions of years of evolution have enabled these animals to utilize different, highly adapted silk types in a broad variety of applications. Silk occurs in several morphologies, such as sticky glue or in the shape of fibers and can, depending on the application by the respective animal, dissipate a high mechanical energy, resist heat and radiation, maintain functionality when submerged in water and withstand microbial settling. Hence, it's unsurprising that silk piqued human interest a long time ago, which catalyzed the domestication of silkworms for the production of silk to be used in textiles. Recently, scientific progress has enabled the development of analytic tools to gain profound insights into the characteristics of silk proteins. Based on these investigations, the biotechnological production of artificial and engineered silk has been accomplished, which allows the production of a sufficient amount of silk materials for several industrial applications. This chapter provides a review on the biotechnological production of various silk proteins from different species, as well as on the processing techniques to fabricate application-oriented material morphologies.
Collapse
Affiliation(s)
- Gregor Lang
- Research Group Biopolymer Processing, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Heike Herold
- Department of Biomaterials, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany.
| |
Collapse
|
19
|
Mello MLS, dos Anjos EHM, Vidal BDC, Rozen JG. Topochemistry, optical anisotropy and FT-IR microspectroscopy of the cocoon of Lithurgus chrysurus (Hymenoptera, Megachilidae). Micron 2016; 90:87-96. [DOI: 10.1016/j.micron.2016.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/16/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
|
20
|
Structural Analysis of Hand Drawn Bumblebee Bombus terrestris Silk. Int J Mol Sci 2016; 17:ijms17071170. [PMID: 27447623 PMCID: PMC4964541 DOI: 10.3390/ijms17071170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 06/30/2016] [Accepted: 07/14/2016] [Indexed: 11/16/2022] Open
Abstract
Bombus terrestris, commonly known as the buff-tailed bumblebee, is native to Europe, parts of Africa and Asia. It is commercially bred for use as a pollinator of greenhouse crops. Larvae pupate within a silken cocoon that they construct from proteins produced in modified salivary glands. The amino acid composition and protein structure of hand drawn B. terrestris, silk fibres was investigated through the use of micro-Raman spectroscopy. Spectra were obtained from single fibres drawn from the larvae salivary gland at a rate of 0.14 cm/s. Raman spectroscopy enabled the identification of poly(alanine), poly(alanine-glycine), phenylalanine, tryptophan, and methionine, which is consistent with the results of amino acid analysis. The dominant protein conformation was found to be coiled coil (73%) while the β-sheet content of 10% is, as expected, lower than those reported for hornets and ants. Polarized Raman spectra revealed that the coiled coils were highly aligned along the fibre axis while the β-sheet and random coil components had their peptide carbonyl groups roughly perpendicular to the fibre axis. The protein orientation distribution is compared to those of other natural and recombinant silks. A structural model for the B. terrestris silk fibre is proposed based on these results.
Collapse
|
21
|
Rapson TD. Solid-State Metalloproteins-An Alternative to Immobilisation. Molecules 2016; 21:E919. [PMID: 27428936 PMCID: PMC6273434 DOI: 10.3390/molecules21070919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/05/2022] Open
Abstract
This commentary outlines a protein engineering approach as an alternative to immobilisation developed in our laboratory. We use a recombinant silk protein into which metal active sites can be incorporated to produce solid-state metalloprotein materials. The silk protein directly coordinates to the metal centres providing control over their reactivity akin to that seen in naturally occurring metalloproteins. These solid-state materials are remarkably stable at a range of temperatures and different solvent conditions. I discuss the genesis of this approach and highlight areas where such solid-state materials could find application.
Collapse
Affiliation(s)
- Trevor D Rapson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, Canberra, ACT 2601, Australia.
| |
Collapse
|
22
|
Kumar M, Jain D, Bhardwaj N, Gupta P, Nandi SK, Mandal BB. Native honeybee silk membrane: a potential matrix for tissue engineering and regenerative medicine. RSC Adv 2016. [DOI: 10.1039/c6ra10738a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biomimetic natural origin biomaterials are noteworthy targets for further innovation in biomedical and tissue engineering.
Collapse
Affiliation(s)
- Manishekhar Kumar
- Biomaterial and Tissue Engineering Laboratory
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Deepak Jain
- Biomaterial and Tissue Engineering Laboratory
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Nandana Bhardwaj
- Life Science Division
- Institute of Advanced Study in Science and Technology (IASST)
- Guwahati-781035
- India
| | - Prerak Gupta
- Biomaterial and Tissue Engineering Laboratory
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Samit K. Nandi
- Department of Veterinary Surgery and Radiology
- West Bengal University of Animal and Fishery Sciences
- Kolkata-700037
- India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| |
Collapse
|
23
|
The molecular structure of the silk fibers from Hymenoptera aculeata (bees, wasps, ants). J Struct Biol 2015; 192:528-538. [DOI: 10.1016/j.jsb.2015.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/09/2015] [Accepted: 10/24/2015] [Indexed: 11/22/2022]
|
24
|
|
25
|
Maitip J, Trueman HE, Kaehler BD, Huttley GA, Chantawannakul P, Sutherland TD. Folding behavior of four silks of giant honey bee reflects the evolutionary conservation of aculeate silk proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 59:72-79. [PMID: 25712559 DOI: 10.1016/j.ibmb.2015.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Multiple gene duplication events in the precursor of the Aculeata (bees, ants, hornets) gave rise to four silk genes. Whilst these homologs encode proteins with similar amino acid composition and coiled coil structure, the retention of all four homologs implies they each are important. In this study we identified, produced and characterized the four silk proteins from Apis dorsata, the giant Asian honeybee. The proteins were readily purified, allowing us to investigate the folding behavior of solutions of individual proteins in comparison to mixtures of all four proteins at concentrations where they assemble into their native coiled coil structure. In contrast to solutions of any one protein type, solutions of a mixture of the four proteins formed coiled coils that were stable against dilution and detergent denaturation. The results are consistent with the formation of a heteromeric coiled coil protein complex. The mechanism of silk protein coiled coil formation and evolution is discussed in light of these results.
Collapse
Affiliation(s)
- Jakkrawut Maitip
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Holly E Trueman
- CSIRO, (The Commonwealth Scientific and Industrial Research Organization), Food and Nutrition Flagship, Canberra, Australian Capital Territory, Australia
| | - Benjamin D Kaehler
- John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia
| | - Gavin A Huttley
- John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Tara D Sutherland
- CSIRO, (The Commonwealth Scientific and Industrial Research Organization), Food and Nutrition Flagship, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
26
|
Quinlan RA, Bromley EH, Pohl E. A silk purse from a sow's ear-bioinspired materials based on α-helical coiled coils. Curr Opin Cell Biol 2015; 32:131-7. [PMID: 25638492 DOI: 10.1016/j.ceb.2014.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 11/28/2022]
Abstract
This past few years have heralded remarkable times for intermediate filaments with new revelations of their structural properties that has included the first crystallographic-based model of vimentin to build on the experimental data of intra-filament interactions determined by chemical cross-linking. Now with these and other advances on their assembly, their biomechanical and their cell biological properties outlined in this review, the exploitation of the biomechanical and structural properties of intermediate filaments, their nanocomposites and biomimetic derivatives in the biomedical and private sectors has started.
Collapse
Affiliation(s)
- Roy A Quinlan
- School of Biological and Biomedical Sciences, The University of Durham, Stockton Road, Durham DH1 3LE, UK; Biophysical Sciences Institute, The University of Durham, Stockton Road, Durham DH1 3LE, UK.
| | - Elizabeth H Bromley
- Biophysical Sciences Institute, The University of Durham, Stockton Road, Durham DH1 3LE, UK; Department of Physics, The University of Durham, Stockton Road, Durham DH1 3LE, UK
| | - Ehmke Pohl
- School of Biological and Biomedical Sciences, The University of Durham, Stockton Road, Durham DH1 3LE, UK; Biophysical Sciences Institute, The University of Durham, Stockton Road, Durham DH1 3LE, UK; Department of Chemistry, The University of Durham, Stockton Road, Durham DH1 3LE, UK
| |
Collapse
|
27
|
Fu T, Guerette PA, Tan RYT, Zhao H, Schefer L, Mezzenga R, Miserez A. Biomimetic self-assembly of recombinant marine snail egg capsule proteins into structural coiled-coil units. J Mater Chem B 2015; 3:2671-2684. [DOI: 10.1039/c4tb01434k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report on the biomimetic production of shock-absorbing proteins from marine snail egg capsules and their self-assembly into coiled-coil filaments.
Collapse
Affiliation(s)
- Tianpei Fu
- School of Material Science and Engineering
- Nanyang Technological University (NTU)
- Singapore
- Center for Biomimetic Sensor Science
- NTU
| | - Paul A. Guerette
- School of Material Science and Engineering
- Nanyang Technological University (NTU)
- Singapore
- Center for Biomimetic Sensor Science
- NTU
| | - Raymond Y. T. Tan
- School of Material Science and Engineering
- Nanyang Technological University (NTU)
- Singapore
| | - Hua Zhao
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science, Technology, and Research (A*Star)
- Singapore
| | - Larissa Schefer
- Department of Health Sciences and Technology
- Swiss Federal Institute of Technology in Zurich (ETHZ)
- 8092 Zürich
- Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology
- Swiss Federal Institute of Technology in Zurich (ETHZ)
- 8092 Zürich
- Switzerland
| | - Ali Miserez
- School of Material Science and Engineering
- Nanyang Technological University (NTU)
- Singapore
- Center for Biomimetic Sensor Science
- NTU
| |
Collapse
|
28
|
Rapson TD, Church JS, Trueman HE, Dacres H, Sutherland TD, Trowell SC. Micromolar biosensing of nitric oxide using myoglobin immobilized in a synthetic silk film. Biosens Bioelectron 2014; 62:214-20. [DOI: 10.1016/j.bios.2014.06.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 11/27/2022]
|
29
|
Desai MS, Lee SW. Protein-based functional nanomaterial design for bioengineering applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:69-97. [DOI: 10.1002/wnan.1303] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/12/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Malav S. Desai
- Department of Bioengineering; University of California, Berkeley; Berkeley CA USA
- Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley CA USA
| | - Seung-Wuk Lee
- Department of Bioengineering; University of California, Berkeley; Berkeley CA USA
| |
Collapse
|
30
|
Sutherland TD, Sriskantha A, Church JS, Strive T, Trueman HE, Kameda T. Stabilization of viruses by encapsulation in silk proteins. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18189-18196. [PMID: 25229876 DOI: 10.1021/am5051873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Viruses are important for a range of modern day applications. However, their utility is limited by their susceptibility to temperature degradation. In this study, we report a simple system to compare the ability of different dried protein films to stabilize viruses against exposure to elevated temperatures. Films from each of three different silks, silkworm, honeybee silk and hornet silk, stabilized entrapped viruses at 37 °C better than films of albumin from bovine serum (BSA) and all four proteins provided substantially more stabilization than no protein controls. A comparison of the molecular structure of the silks and BSA films showed no correlation between the ability of the proteins to stabilize the virus and the secondary structure of the protein in the films. The mechanism of stabilization is discussed and a hypothesis is suggested to explain the superior performance of the silk proteins.
Collapse
Affiliation(s)
- Tara D Sutherland
- Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Clunies Ross Street, Acton, Australian Capital Territory 2601, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Kambe Y, Sutherland TD, Kameda T. Recombinant production and film properties of full-length hornet silk proteins. Acta Biomater 2014; 10:3590-8. [PMID: 24862540 DOI: 10.1016/j.actbio.2014.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/01/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022]
Abstract
Full-length versions of the four main components of silk cocoons of Vespa simillima hornets, Vssilk1-4, were produced as recombinant proteins in Escherichia coli. In shake flasks, the recombinant Vssilk proteins yielded 160-330mg recombinant proteinl(-1). Films generated from solutions of single Vssilk proteins had a secondary structure similar to that of films generated from native hornet silk. The films made from individual recombinant hornet silk proteins had similar or enhanced mechanical performance compared with films generated from native hornet silk, possibly reflecting the homogeneity of the recombinant proteins. The pH-dependent changes in zeta (ζ) potential of each Vssilk film were measured, and isoelectric points (pI) of Vssilk1-4 were determined as 8.9, 9.1, 5.0 and 4.2, respectively. The pI of native hornet silk, a combination of the four Vssilk proteins, was 4.7, a value similar to that of Bombyx mori silkworm silk. Films generated from Vssilk1 and 2 had net positive charge under physiological conditions and showed significantly higher cell adhesion activity. It is proposed that recombinant hornet silk is a valuable new material with potential for cell culture applications.
Collapse
|
32
|
Convergently-evolved structural anomalies in the coiled coil domains of insect silk proteins. J Struct Biol 2014; 186:402-11. [DOI: 10.1016/j.jsb.2014.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 01/16/2023]
|
33
|
Recent advances in developing insect natural products as potential modern day medicines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:904958. [PMID: 24883072 PMCID: PMC4026837 DOI: 10.1155/2014/904958] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/28/2014] [Indexed: 01/01/2023]
Abstract
Except for honey as food, and silk for clothing and pollination of plants, people give little thought to the benefits of insects in their lives. This overview briefly describes significant recent advances in developing insect natural products as potential new medicinal drugs. This is an exciting and rapidly expanding new field since insects are hugely variable and have utilised an enormous range of natural products to survive environmental perturbations for 100s of millions of years. There is thus a treasure chest of untapped resources waiting to be discovered. Insects products, such as silk and honey, have already been utilised for thousands of years, and extracts of insects have been produced for use in Folk Medicine around the world, but only with the development of modern molecular and biochemical techniques has it become feasible to manipulate and bioengineer insect natural products into modern medicines. Utilising knowledge gleaned from Insect Folk Medicines, this review describes modern research into bioengineering honey and venom from bees, silk, cantharidin, antimicrobial peptides, and maggot secretions and anticoagulants from blood-sucking insects into medicines. Problems and solutions encountered in these endeavours are described and indicate that the future is bright for new insect derived pharmaceuticals treatments and medicines.
Collapse
|
34
|
Campbell PM, Trueman HE, Zhang Q, Kojima K, Kameda T, Sutherland TD. Cross-linking in the silks of bees, ants and hornets. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 48:40-50. [PMID: 24607851 DOI: 10.1016/j.ibmb.2014.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 05/06/2023]
Abstract
Silk production is integral to the construction of nests or cocoons for many Aculeata, stinging Hymenopterans such as ants, bees and wasps. Here we report the sequences of new aculeate silk proteins and compare cross-linking among nine native silks from three bee species (Apis mellifera, Bombus terrestris and Megachile rotundata), three ant species (Myrmecia forficata, Oecophylla smaragdina and Harpegnathos saltator) and three hornets (Vespa analis, Vespa simillima and Vespa mandarinia). The well studied silks of spiders and silkworms are comprised of large proteins that are cross-linked and stabilized predominantly by intra and intermolecular beta sheet structure. In contrast, the aculeate silks are comprised of relatively small proteins that contain central coiled coil domains and comparatively reduced amounts of beta sheet structure. The hornet silks, which have the most beta sheet structure and the greatest amount of amino acid sequence outside the coiled-coil domains, dissolve in concentrated LiBr solution and appear to be stabilized predominantly by beta sheet structure like the classic silks. In contrast, the ant and bee silks, which have less beta sheet and less sequence outside the coiled-coil domains, could not be dissolved in LiBr and appear to be predominantly stabilized by covalent cross-linking. The iso-peptide cross-linker, ε-(γ-glutamyl)-lysine that is produced by transglutaminase enzymes, was demonstrated to be present in all silks by mass spectrometry, but at greater levels in silks of ants and bees. The bee silks and ant cocoons, but not the Oecophylla nest silks, appeared to be further stabilized by tanning reactions.
Collapse
Affiliation(s)
- Peter M Campbell
- Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia.
| | - Holly E Trueman
- Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Qiang Zhang
- National Institute of Agrobiological Sciences, Tsukuba, 305-8634, Japan
| | - Katsura Kojima
- National Institute of Agrobiological Sciences, Tsukuba, 305-8634, Japan
| | - Tsunenori Kameda
- National Institute of Agrobiological Sciences, Tsukuba, 305-8634, Japan.
| | - Tara D Sutherland
- Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| |
Collapse
|
35
|
Kameda T, Nemoto T, Ogawa T, Tosaka M, Kurata H, Schaper AK. Evidence of α-helical coiled coils and β-sheets in hornet silk. J Struct Biol 2014; 185:303-8. [DOI: 10.1016/j.jsb.2013.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/25/2022]
|
36
|
|
37
|
Poole J, Church JS, Woodhead AL, Huson MG, Sriskantha A, Kyratzis IL, Sutherland TD. Continuous Production of Flexible Fibers from Transgenically Produced Honeybee Silk Proteins. Macromol Biosci 2013; 13:1321-6. [DOI: 10.1002/mabi.201300231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/12/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Jacinta Poole
- CSIRO Materials Science and Engineering; Bayview Avenue Clayton VIC 3169 Australia
| | - Jeffrey S. Church
- CSIRO Materials Science and Engineering; Waurn Ponds VIC 3216 Australia
| | | | - Mickey G. Huson
- CSIRO Materials Science and Engineering; Waurn Ponds VIC 3216 Australia
| | | | - Ilias L. Kyratzis
- CSIRO Materials Science and Engineering; Bayview Avenue Clayton VIC 3169 Australia
| | | |
Collapse
|
38
|
Walker AA, Church JS, Woodhead AL, Sutherland TD. Silverfish silk is formed by entanglement of randomly coiled protein chains. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:572-579. [PMID: 23578395 DOI: 10.1016/j.ibmb.2013.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
Silks are semi-crystalline solids in which protein chains are associated by intermolecular hydrogen bonding within ordered crystallites, and by entanglement within unordered regions. By varying the type of protein secondary structure within crystallites and the overall degree of molecular order within fibers, arthropods produce fibers with a variety of physical properties suited to many purposes. We characterized silk produced as a tactile stimulus during mating by the grey silverfish (Ctenolepisma longicaudata) using Fourier transform infrared spectroscopy, polarized Raman spectroscopy, gel electrophoresis and amino acid analysis. Fibers were proteinaceous-the main component being a 220 kDa protein-and were rich in Gln/Glu, Leu, and Lys. The protein structure present was predominantly random coil, with a lesser amount of beta-structure. Silk fibers could readily be solubilized in aqueous solutions of a mild chaotrope, sodium dodecyl sulfate, indicating protein chains were not cross-linked by disulfide or other covalent bonds. We conclude that entanglement is the major mechanism by which these silk proteins cohere into a solid material. We propose silks used as short-term tactile cues are subject to less stringent requirements for molecular order relative to other silks, allowing the random coil structure to be favored as an adaptation promoting maximal entanglement and adhesion.
Collapse
Affiliation(s)
- Andrew A Walker
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
39
|
Walker AA, Warden AC, Trueman HE, Weisman S, Sutherland TD. Micellar refolding of coiled-coil honeybee silk proteins. J Mater Chem B 2013; 1:3644-3651. [DOI: 10.1039/c3tb20611d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
40
|
Wong JY, McDonald J, Taylor-Pinney M, Spivak DI, Kaplan DL, Buehler MJ. Materials by Design: Merging Proteins and Music. NANO TODAY 2012; 7:488-495. [PMID: 23997808 PMCID: PMC3752788 DOI: 10.1016/j.nantod.2012.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Tailored materials with tunable properties are crucial for applications as biomaterials, for drug delivery, as functional coatings, or as lightweight composites. An emerging paradigm in designing such materials is the construction of hierarchical assemblies of simple building blocks into complex architectures with superior properties. We review this approach in a case study of silk, a genetically programmable and processable biomaterial, which, in its natural role serves as a versatile protein fiber with hierarchical organization to provide structural support, prey procurement or protection of eggs. Through an abstraction of knowledge from the physical system, silk, to a mathematical model using category theory, we describe how the mechanism of spinning fibers from proteins can be translated into music through a process that assigns a set of rules that governs the construction of the system. This technique allows one to express the structure, mechanisms and properties of the 'material' in a very different domain, 'music'. The integration of science and art through categorization of structure-property relationships presents a novel paradigm to create new bioinspired materials, through the translation of structures and mechanisms from distinct hierarchical systems and in the context of the limited number of building blocks that universally governs these systems.
Collapse
Affiliation(s)
- Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - John McDonald
- Department of Music, Tufts University, Medford, MA 02155, USA
| | | | - David I. Spivak
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - David L. Kaplan
- Departments of Chemistry & Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Walker AA, Weisman S, Kameda T, Sutherland TD. Natural Templates for Coiled-Coil Biomaterials from Praying Mantis Egg Cases. Biomacromolecules 2012; 13:4264-72. [DOI: 10.1021/bm301570v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Andrew A. Walker
- Research School of Biology, Australian National University, Canberra, Australia,
0200
- Ecosystem Sciences,
Commonwealth
Scientific and Industrial Research Organisation, Black Mountain Laboratories, Acton, Canberra, Australia, 2601
| | - Sarah Weisman
- Ecosystem Sciences,
Commonwealth
Scientific and Industrial Research Organisation, Black Mountain Laboratories, Acton, Canberra, Australia, 2601
| | - Tsunenori Kameda
- National Institute of Agrobiological Sciences, Tsukaba, Ibaraki, Japan,
305-8602
| | - Tara D. Sutherland
- Ecosystem Sciences,
Commonwealth
Scientific and Industrial Research Organisation, Black Mountain Laboratories, Acton, Canberra, Australia, 2601
| |
Collapse
|