1
|
Czarnowski M, Wnorowska U, Łuckiewicz M, Dargiewicz E, Spałek J, Okła S, Sawczuk B, Savage PB, Bucki R, Piktel E. Natural Antimicrobial Peptides and Their Synthetic Analogues for Effective Oral Microflora Control and Oral Infection Treatment-The Role of Ceragenins in the Development of New Therapeutic Methods. Pharmaceuticals (Basel) 2024; 17:1725. [PMID: 39770567 PMCID: PMC11678171 DOI: 10.3390/ph17121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/03/2025] Open
Abstract
Oral diseases, both acute and chronic, of infectious or non-infectious etiology, represent some of the most serious medical problems in dentistry. Data from the literature increasingly indicate that changes in the oral microbiome, and therefore, the overgrowing of pathological microflora, lead to a variety of oral-localized medical conditions such as caries, gingivitis, and periodontitis. In recent years, compelling research has been devoted to the use of natural antimicrobial peptides as therapeutic agents in the possible treatment of oral diseases. This review focuses on the potential of ceragenins (CSAs), which are lipid analogs of natural antimicrobial peptides, as molecules for the development of new methods for the prevention and treatment of oral diseases. Studies to date indicate that ceragenins, with their spectrum of multidirectional biological activities, including antimicrobial, tissue regeneration-stimulating, anti-inflammatory, and immunomodulatory properties, are strong candidates for further development of oral formulations. However, many of the beneficial properties of ceragenins require confirmation in experimental conditions reproducing the oral environment to fully determine their application potential. Their transition to practical use also requires more advanced testing of these molecules in clinical trials, which have only been conducted in limited numbers to date.
Collapse
Affiliation(s)
- Michał Czarnowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland; (M.C.); (U.W.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland; (M.C.); (U.W.)
| | - Milena Łuckiewicz
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Ewelina Dargiewicz
- Department of Orthodontics, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Jakub Spałek
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, 25-369 Kielce, Poland; (J.S.); (S.O.)
| | - Sławomir Okła
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, 25-369 Kielce, Poland; (J.S.); (S.O.)
| | - Beata Sawczuk
- Department of Prosthodontics, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Paul B. Savage
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland; (M.C.); (U.W.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland;
| |
Collapse
|
2
|
Jeyarajan S, Peter AS, Ranjith S, Sathyan A, Duraisamy S, Kandasamy I, Chidambaram P, Kumarasamy A. Glycine-replaced epinecidin-1 variant bestows better stability and stronger antimicrobial activity against a range of nosocomial pathogenic bacteria. Biotechnol Appl Biochem 2024; 71:1384-1404. [PMID: 39034467 DOI: 10.1002/bab.2637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/29/2024] [Indexed: 07/23/2024]
Abstract
Epinecidin-1 (epi-1), an antimicrobial peptide first identified in marine grouper fish, has multifunctional bioactivities. The present study aims to improve its therapeutic potential via structural modifications that could enhance its antimicrobial activity and stability. To achieve it, we replaced glycine and the first histidine in the parent epi-1 with lysine, which resulted in a peptide with a repeating KXXK motif and improved physiochemical properties related to antimicrobial activity. This modified peptide, referred to as glycine-to-lysine replaced-epi-1, also gained stability and a twofold increase in helical propensity. To produce the active peptide, overlap extension PCR was employed to generate the gene of GK-epi-1 via site-directed mutagenesis, which was then cloned into the pET-32a vector and expressed as a recombinant fusion protein in Escherichia coli C43 (DE3) strain. The recombinant protein was purified and digested with enterokinase to release the active peptide fragment, which was then evaluated for antimicrobial activity and stability. The lysine substitution led to an enhancement in broad-spectrum antimicrobial activity against a wide range of nosocomial pathogenic bacteria.
Collapse
Affiliation(s)
- Sivakumar Jeyarajan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Transgeinc Animal Model Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, Michigan, USA
| | - Ansu Susan Peter
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sukumar Ranjith
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Aswathy Sathyan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Senbagam Duraisamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Indira Kandasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Anbarasu Kumarasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
3
|
Zhu Q, Guan J, Tian B, Wang P. Rational design of antibiotic-free antimicrobial contact lenses: Trade-offs between antimicrobial performance and biocompatibility. BIOMATERIALS ADVANCES 2024; 164:213990. [PMID: 39154560 DOI: 10.1016/j.bioadv.2024.213990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Microbial keratitis associated with contact lenses (CLs) wear remains a significant clinical concern. Antibiotic therapy is the current standard of care. However, the emergence of multidrug-resistant pathogens necessitates the investigation of alternative strategies. Antibiotic-free antimicrobial contact lenses (AFAMCLs) represent a promising approach in this regard. The effectiveness of CLs constructed with a variety of antibiotic-free antimicrobial strategies against microorganisms has been demonstrated. However, the impact of these antimicrobial strategies on CLs biocompatibility remains unclear. In the design and development of AFAMCLs, striking a balance between robust antimicrobial performance and optimal biocompatibility, including safety and wearing comfort, is a key issue. This review provides a comprehensive overview of recent advancements in AFAMCLs technology. The focus is on the antimicrobial efficacy and safety of various strategies employed in AFAMCLs construction. Furthermore, this review investigates the potential impact of these strategies on CLs parameters related to wearer comfort. This review aims to contribute to the continuous improvement of AFAMCLs and provide a reference for the trade-off between resistance to microorganisms and wearing comfort. In addition, it is hoped that this review can also provide a reference for the antimicrobial design of other medical devices.
Collapse
Affiliation(s)
- Qiang Zhu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, China.
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Tian
- Department of Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Puxiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
4
|
Milijasevic M, Veskovic-Moracanin S, Babic Milijasevic J, Petrovic J, Nastasijevic I. Antimicrobial Resistance in Aquaculture: Risk Mitigation within the One Health Context. Foods 2024; 13:2448. [PMID: 39123639 PMCID: PMC11311770 DOI: 10.3390/foods13152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The application of antimicrobials in aquaculture primarily aims to prevent and treat bacterial infections in fish, but their inappropriate use may result in the emergence of zoonotic antibiotic-resistant bacteria and the subsequent transmission of resistant strains to humans via food consumption. The aquatic environment serves as a potential reservoir for resistant bacteria, providing an ideal breeding ground for development of antimicrobial resistance (AMR). The mutual inter-connection of intensive fish-farming systems with terrestrial environments, the food processing industry and human population creates pathways for the transmission of resistant bacteria, exacerbating the problem further. The aim of this study was to provide an overview of the most effective and available risk mitigation strategies to tackle AMR in aquaculture, based on the One Health (OH) concept. The stringent antimicrobial use guidelines, promoting disease control methods like enhanced farm biosecurity measures and vaccinations, alternatives to antibiotics (ABs) (prebiotics, probiotics, immunostimulants, essential oils (EOs), peptides and phage therapy), feeding practices, genetics, monitoring water quality, and improving wastewater treatment, rather than applying excessive use of antimicrobials, can effectively prevent the development of AMR and release of resistant bacteria into the environment and food. The contribution of the environment to AMR development traditionally receives less attention, and, therefore, environmental aspects should be included more prominently in OH efforts to predict, detect and prevent the risks to health. This is of particular importance for low and middle-income countries with a lack of integration of the national AMR action plans (NAPs) with the aquaculture-producing environment. Integrated control of AMR in fisheries based on the OH approach can contribute to substantial decrease in resistance, and such is the case in Asia, where in aquaculture, the percentage of antimicrobial compounds with resistance exceeding 50% (P50) decreased from 52% to 22% within the period of the previous two decades.
Collapse
Affiliation(s)
- Milan Milijasevic
- Institute of Meat Hygiene and Technology, 11000 Belgrade, Serbia; (M.M.); (S.V.-M.); (J.B.M.)
| | | | | | - Jelena Petrovic
- Scientific Veterinary Institute ‘Novi Sad’, 21113 Novi Sad, Serbia;
| | - Ivan Nastasijevic
- Institute of Meat Hygiene and Technology, 11000 Belgrade, Serbia; (M.M.); (S.V.-M.); (J.B.M.)
| |
Collapse
|
5
|
Loffredo MR, Cappiello F, Cappella G, Capuozzo E, Torrini L, Diaco F, Di YP, Mangoni ML, Casciaro B. The pH-Insensitive Antimicrobial and Antibiofilm Activities of the Frog Skin Derived Peptide Esc(1-21): Promising Features for Novel Anti-Infective Drugs. Antibiotics (Basel) 2024; 13:701. [PMID: 39200001 PMCID: PMC11350779 DOI: 10.3390/antibiotics13080701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The number of antibiotic-resistant microbial infections is dramatically increasing, while the discovery of new antibiotics is significantly declining. Furthermore, the activity of antibiotics is negatively influenced by the ability of bacteria to form sessile communities, called biofilms, and by the microenvironment of the infection, characterized by an acidic pH, especially in the lungs of patients suffering from cystic fibrosis (CF). Antimicrobial peptides represent interesting alternatives to conventional antibiotics, and with expanding properties. Here, we explored the effects of an acidic pH on the antimicrobial and antibiofilm activities of the AMP Esc(1-21) and we found that it slightly lost activity (from 2- to 4-fold) against the planktonic form of a panel of Gram-negative bacteria, with respect to a ≥ 32-fold of traditional antibiotics. Furthermore, it retained its activity against the sessile form of these bacteria grown in media with a neutral pH, and showed similar or higher effectiveness against the biofilm form of bacteria grown in acidic media, simulating a CF-like acidic microenvironment, compared to physiological conditions.
Collapse
Affiliation(s)
- Maria Rosa Loffredo
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Floriana Cappiello
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Giacomo Cappella
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Elisabetta Capuozzo
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Luisa Torrini
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.D.)
| | - Fabiana Diaco
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.D.)
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Bruno Casciaro
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| |
Collapse
|
6
|
Loffredo M, Casciaro B, Bellavita R, Troiano C, Brancaccio D, Cappiello F, Merlino F, Galdiero S, Fabrizi G, Grieco P, Stella L, Carotenuto A, Mangoni ML. Strategic Single-Residue Substitution in the Antimicrobial Peptide Esc(1-21) Confers Activity against Staphylococcus aureus, Including Drug-Resistant and Biofilm Phenotype. ACS Infect Dis 2024; 10:2403-2418. [PMID: 38848266 PMCID: PMC11250030 DOI: 10.1021/acsinfecdis.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
Staphylococcus aureus, a bacterium resistant to multiple drugs, is a significant cause of illness and death worldwide. Antimicrobial peptides (AMPs) provide an excellent potential strategy to cope with this threat. Recently, we characterized a derivative of the frog-skin AMP esculentin-1a, Esc(1-21) (1) that is endowed with potent activity against Gram-negative bacteria but poor efficacy against Gram-positive strains. In this study, three analogues of peptide 1 were designed by replacing Gly8 with α-aminoisobutyric acid (Aib), Pro, and dPro (2-4, respectively). The single substitution Gly8 → Aib8 in peptide 2 makes it active against the planktonic form of Gram-positive bacterial strains, especially Staphylococcus aureus, including multidrug-resistant clinical isolates, with an improved biostability without resulting in cytotoxicity to mammalian cells. Moreover, peptide 2 showed a higher antibiofilm activity than peptide 1 against both reference and clinical isolates of S. aureus. Peptide 2 was also able to induce rapid bacterial killing, suggesting a membrane-perturbing mechanism of action. Structural analysis of the most active peptide 2 evidenced that the improved biological activity of peptide 2 is the consequence of a combination of higher biostability, higher α helical content, and ability to reduce membrane fluidity and to adopt a distorted helix, bent in correspondence of Aib8. Overall, this study has shown how a strategic single amino acid substitution is sufficient to enlarge the spectrum of activity of the original peptide 1, and improve its biological properties for therapeutic purposes, thus paving the way to optimize AMPs for the development of new broad-spectrum anti-infective agents.
Collapse
Affiliation(s)
- Maria
Rosa Loffredo
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| | - Bruno Casciaro
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| | - Rosa Bellavita
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Cassandra Troiano
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133 Rome, Italy
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Floriana Cappiello
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| | - Francesco Merlino
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Stefania Galdiero
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Giancarlo Fabrizi
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, 00185 Rome, Italy
| | - Paolo Grieco
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Lorenzo Stella
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133 Rome, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Maria Luisa Mangoni
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| |
Collapse
|
7
|
Mangoni ML, Loffredo MR, Casciaro B, Ferrera L, Cappiello F. An Overview of Frog Skin-Derived Esc Peptides: Promising Multifunctional Weapons against Pseudomonas aeruginosa-Induced Pulmonary and Ocular Surface Infections. Int J Mol Sci 2024; 25:4400. [PMID: 38673985 PMCID: PMC11049899 DOI: 10.3390/ijms25084400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Antimicrobial resistance is a silent pandemic harming human health, and Pseudomonas aeruginosa is the most common bacterium responsible for chronic pulmonary and eye infections. Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics. In this review, the in vitro/in vivo activities of the frog skin-derived AMP Esc(1-21) are shown. Esc(1-21) rapidly kills both the planktonic and sessile forms of P. aeruginosa and stimulates migration of epithelial cells, likely favoring repair of damaged tissue. However, to undertake preclinical studies, some drawbacks of AMPs (cytotoxicity, poor biostability, and limited delivery to the target site) must be overcome. For this purpose, the stereochemistry of two amino acids of Esc(1-21) was changed to obtain the diastereomer Esc(1-21)-1c, which is more stable, less cytotoxic, and more efficient in treating P. aeruginosa-induced lung and cornea infections in mouse models. Incorporation of these peptides (Esc peptides) into nanoparticles or immobilization to a medical device (contact lens) was revealed to be an effective strategy to ameliorate and/or to prolong the peptides' antimicrobial efficacy. Overall, these data make Esc peptides encouraging candidates for novel multifunctional drugs to treat lung pathology especially in patients with cystic fibrosis and eye dysfunctions, characterized by both tissue injury and bacterial infection.
Collapse
Affiliation(s)
- Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| | - Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| | - Loretta Ferrera
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| |
Collapse
|
8
|
Liu X, Ye Y, Ge Y, Qu J, Liedberg B, Zhang Q, Wang Y. Smart Contact Lenses for Healthcare Monitoring and Therapy. ACS NANO 2024; 18:6817-6844. [PMID: 38407063 DOI: 10.1021/acsnano.3c12072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The eye contains a wealth of physiological information and offers a suitable environment for noninvasive monitoring of diseases via smart contact lens sensors. Although extensive research efforts recently have been undertaken to develop smart contact lens sensors, they are still in an early stage of being utilized as an intelligent wearable sensing platform for monitoring various biophysical/chemical conditions. In this review, we provide a general introduction to smart contact lenses that have been developed for disease monitoring and therapy. First, different disease biomarkers available from the ocular environment are summarized, including both physical and chemical biomarkers, followed by the commonly used materials, manufacturing processes, and characteristics of contact lenses. Smart contact lenses for eye-drug delivery with advancing technologies to achieve more efficient treatments are then introduced as well as the latest developments for disease diagnosis. Finally, sensor communication technologies and smart contact lenses for antimicrobial and other emerging bioapplications are also discussed as well as the challenges and prospects of the future development of smart contact lenses.
Collapse
Affiliation(s)
- Xiaohu Liu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Ying Ye
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Yuancai Ge
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Bo Liedberg
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qingwen Zhang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yi Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
9
|
Cappiello F, Verma S, Lin X, Moreno IY, Casciaro B, Dutta D, McDermott AM, Willcox M, Coulson-Thomas VJ, Mangoni ML. Novel Peptides with Dual Properties for Treating Pseudomonas aeruginosa Keratitis: Antibacterial and Corneal Wound Healing. Biomolecules 2023; 13:1028. [PMID: 37509064 PMCID: PMC10377436 DOI: 10.3390/biom13071028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The corneal epithelium is a layer in the anterior part of eye that contributes to light refraction onto the retina and to the ocular immune defense. Although an intact corneal epithelium is an excellent barrier against microbial pathogens and injuries, corneal abrasions can lead to devastating eye infections. Among them, Pseudomonas aeruginosa-associated keratitis often results in severe deterioration of the corneal tissue and even blindness. Hence, the discovery of new drugs able not only to eradicate ocular infections, which are often resistant to antibiotics, but also to elicit corneal wound repair is highly demanded. Recently, we demonstrated the potent antipseudomonal activity of two peptides, Esc(1-21) and its diastereomer Esc(1-21)-1c. In this study, by means of a mouse model of P. aeruginosa keratitis and an in vivo corneal debridement wound, we discovered the efficacy of these peptides, particularly Esc(1-21)-1c, to cure keratitis and to promote corneal wound healing. This latter property was also supported by in vitro cell scratch and ELISA assays. Overall, the current study highlights Esc peptides as novel ophthalmic agents for treating corneal infection and injury, being able to display a dual function, antimicrobial and wound healing, rarely identified in a single peptide at the same micromolar concentration range.
Collapse
Affiliation(s)
- Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.C.); (B.C.)
| | - Sudhir Verma
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Xiao Lin
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Isabel Y. Moreno
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.C.); (B.C.)
| | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia; (D.D.); (M.W.)
- School of Optometry, Aston University, Birmingham B4 7ET, UK
| | - Alison M. McDermott
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia; (D.D.); (M.W.)
| | - Vivien J. Coulson-Thomas
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.C.); (B.C.)
| |
Collapse
|
10
|
Imperlini E, Massaro F, Buonocore F. Antimicrobial Peptides against Bacterial Pathogens: Innovative Delivery Nanosystems for Pharmaceutical Applications. Antibiotics (Basel) 2023; 12:antibiotics12010184. [PMID: 36671385 PMCID: PMC9854484 DOI: 10.3390/antibiotics12010184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The introduction of antibiotics has revolutionized the treatment and prevention of microbial infections. However, the global spread of pathogens resistant to available antibiotics is a major concern. Recently, the WHO has updated the priority list of multidrug-resistant (MDR) species for which the discovery of new therapeutics is urgently needed. In this scenario, antimicrobial peptides (AMPs) are a new potential alternative to conventional antibiotics, as they show a low risk of developing antimicrobial resistance, thus preventing MDR bacterial infections. However, there are limitations and challenges related to the clinical impact of AMPs, as well as great scientific efforts to find solutions aimed at improving their biological activity, in vivo stability, and bioavailability by reducing the eventual toxicity. To overcome some of these issues, different types of nanoparticles (NPs) have been developed for AMP delivery over the last decades. In this review, we provide an update on recent nanosystems applied to AMPs, with special attention on their potential pharmaceutical applications for the treatment of bacterial infections. Among lipid nanomaterials, solid lipid NPs and lipid nanocapsules have been employed to enhance AMP solubility and protect peptides from proteolytic degradation. In addition, polymeric NPs, particularly nanogels, are able to help in reducing AMP toxicity and also increasing AMP loading. To boost AMP activity instead, mesoporous silica or gold NPs can be selected due to their easy surface functionalization. They have been also used as nanocarriers for different AMP combinations, thus synergistically potentiating their action against pathogens.
Collapse
|
11
|
Casciaro B, Loffredo MR, Cappiello F, O’Sullivan N, Tortora C, Manzer R, Karmakar S, Haskell A, Hasan SK, Mangoni ML. KDEON WK-11: A short antipseudomonal peptide with promising potential. Front Chem 2022; 10:1000765. [PMID: 36465859 PMCID: PMC9713011 DOI: 10.3389/fchem.2022.1000765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/01/2022] [Indexed: 08/27/2023] Open
Abstract
The plight of antimicrobial resistance continues to limit the availability of antibiotic treatment effective in combating resistant bacterial infections. Despite efforts made to rectify this issue and minimise its effects on both patients and the wider community, progress in this area remains minimal. Here, we de-novo designed a peptide named KDEON WK-11, building on previous work establishing effective residues and structures active in distinguished antimicrobial peptides such as lactoferrin. We assessed its antimicrobial activity against an array of bacterial strains and identified its most potent effect, against Pseudomonas aeruginosa with an MIC value of 3.12 μM, lower than its counterparts developed with similar residues and chain lengths. We then determined its anti-biofilm properties, potential mechanism of action and in vitro cytotoxicity. We identified that KDEON WK-11 had a broad range of antimicrobial activity and specific capabilities to fight Pseudomonas aeruginosa with low in vitro cytotoxicity and promising potential to express anti-lipopolysaccharide qualities, which could be exploited to expand its properties into an anti-sepsis agent.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Niamh O’Sullivan
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Carola Tortora
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, Rome, Italy
| | - Rizwan Manzer
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Sougata Karmakar
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Alan Haskell
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Syed K. Hasan
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Ting DSJ, Mohammed I, Lakshminarayanan R, Beuerman RW, Dua HS. Host Defense Peptides at the Ocular Surface: Roles in Health and Major Diseases, and Therapeutic Potentials. Front Med (Lausanne) 2022; 9:835843. [PMID: 35783647 PMCID: PMC9243558 DOI: 10.3389/fmed.2022.835843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Sight is arguably the most important sense in human. Being constantly exposed to the environmental stress, irritants and pathogens, the ocular surface – a specialized functional and anatomical unit composed of tear film, conjunctival and corneal epithelium, lacrimal glands, meibomian glands, and nasolacrimal drainage apparatus – serves as a crucial front-line defense of the eye. Host defense peptides (HDPs), also known as antimicrobial peptides, are evolutionarily conserved molecular components of innate immunity that are found in all classes of life. Since the first discovery of lysozyme in 1922, a wide range of HDPs have been identified at the ocular surface. In addition to their antimicrobial activity, HDPs are increasingly recognized for their wide array of biological functions, including anti-biofilm, immunomodulation, wound healing, and anti-cancer properties. In this review, we provide an updated review on: (1) spectrum and expression of HDPs at the ocular surface; (2) participation of HDPs in ocular surface diseases/conditions such as infectious keratitis, conjunctivitis, dry eye disease, keratoconus, allergic eye disease, rosacea keratitis, and post-ocular surgery; (3) HDPs that are currently in the development pipeline for treatment of ocular diseases and infections; and (4) future potential of HDP-based clinical pharmacotherapy for ocular diseases.
Collapse
Affiliation(s)
- Darren Shu Jeng Ting
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
- *Correspondence: Darren Shu Jeng Ting
| | - Imran Mohammed
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Roger W. Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Harminder S. Dua
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
13
|
Dumpati S, Naroo SA, Shah S, Dutta D. Antimicrobial Efficacy of an Ultraviolet-C Device against Microorganisms Related to Contact Lens Adverse Events. Antibiotics (Basel) 2022; 11:antibiotics11050699. [PMID: 35625343 PMCID: PMC9138024 DOI: 10.3390/antibiotics11050699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of the study was to assess the antimicrobial activity of an ultraviolet-C (UVC) device against microorganisms implicated in contact lens related adverse events. An UVC device with an emitting 4.5 mm diameter Light Emitting Diode (LED; 265 nm; 1.93 mJ/cm2) was used. Pseudomonas aeruginosa, Staphylococcus aureus, Fusarium solani, and Candida albicans agar plate lawns were exposed to the device beams for 15 and 30 s at 8 mm distance. Following the exposure, the diameter of the growth inhibition zone was recorded. Contact lenses made of Delfilicon-A, Senofilicon-A, Comfilicon-A, Balafilicon-A, Samfilicon-A and Omafilicon-A and a commercially available contact storage case was used. They were exposed to bacterial and fungal strains for 18 h at 37 °C and 25 °C respectively. After this, the samples were exposed to UVC for 30 s at 8 mm distance to determine the antimicrobial efficacy. Samples were then gently washed and plated on appropriate agar for enumeration of colonies. The UVC exposure reduced microbial growth by 100% in agar lawns, and significantly (p < 0.05) reduced microbial contamination to contact lenses and cases, ranging between 0.90 to 4.6 log. Very short UVC exposure has high antimicrobial efficacy against most of the predominant causative microorganisms implicated in contact lens related keratitis. UVC could be readily used as a broad-spectrum antimicrobial treatment for lens disinfection.
Collapse
|
14
|
Zhao L, Wang H, Feng C, Song F, Du X. Preparation and Evaluation of Starch Hydrogel/Contact Lens Composites as Epigallocatechin Gallate Delivery Systems for Inhibition of Bacterial Adhesion. Front Bioeng Biotechnol 2021; 9:759303. [PMID: 34869268 PMCID: PMC8637123 DOI: 10.3389/fbioe.2021.759303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
Microbial infections caused by wearing contact lenses has become a major health problem, so the design and development of antibacterial contact lenses has attracted widespread attention. To safely and effectively inhibit bacterial adhesion of contact lenses, we have facilely prepared epigallocatechin gallate (EGCG) loaded starch hydrogel/contact lens composites by in-situ free radical polymerization of the mixture containing 2-hydroxylethyl methacrylate, methacrylic acid and ethylene glycol dimethacrylate. The adequate transmittance of the resulting contact lenses was characterized by ultraviolet-visible spectrophotometry, and their satisfactory stability was examined using differential scanning calorimetry and thermogravimetric analysis. Whereafter, cytotoxicity and degradation experiments were performed to investigate the biocompatibility and degradability of the contact lenses. The results showed the nontoxicity and good degradability of the composites. Besides, the capacity of the contact lenses for in vitro release of EGCG was also evaluated, and the results showed that the EGCG in these contact lenses can be sustainably released for at least 14 days. Further bacterial adhesion assay suggested that the EGCG loaded starch hydrogel/contact lenses could significantly reduce the adhesion of Pseudomonas aeruginosa compared to the control. The EGCG loaded starch hydrogel/contact lens composites provide a potential intervention strategy for preventing ocular microbial infections and inhibiting bacterial keratitis.
Collapse
Affiliation(s)
- Lianghui Zhao
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Weifang Medical University, Weifang, China
| | - Hongwei Wang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Chengcheng Feng
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Fangying Song
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Xianli Du
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
15
|
Contact lenses coated with hybrid multifunctional ternary nanocoatings (Phytomolecule-coated ZnO nanoparticles:Gallic Acid:Tobramycin) for the treatment of bacterial and fungal keratitis. Acta Biomater 2021; 128:262-276. [PMID: 33866034 DOI: 10.1016/j.actbio.2021.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Contact lenses are widely used for visual corrections. However, while wearing contact lenses, eyes typically face discomforts (itching, irritation, burning, etc.) due to foreign object sensation, lack of oxygen permeability, and tear film disruption as opposed to a lack of wetting agents. Eyes are also prone to ocular infections such as bacterial keratitis (BK) and fungal keratitis (FK) and inflammatory events such as contact lens-related acute red eye (CLARE), contact lens peripheral ulcer (CLPU), and infiltrative keratitis (IK) caused by pathogenic bacterial and fungal strains that contaminate contact lenses. Therefore, a good design of contact lenses should adequately address the need for wetting, the supply of antioxidants, and antifouling and antimicrobial efficacy. Here, we developed multifunctional gallic acid (GA), phytomolecules-coated zinc oxide nanoparticles (ZN), and phytomolecules-coated zinc oxide nanoparticles + gallic acid + tobramycin (ZGT)-coated contact lenses using a sonochemical technique. The coated contact lenses exhibited significant antibacterial (>log10 5.60), antifungal, and antibiofilm performance against BK-causing multidrug resistant bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia. coli) and FK-related pathogenic fungal strains (Candida albicans, Aspergillus fumigatus, and Fusarium solani). The gallic acid, tobramycin, and phytomolecules-coated zinc oxide nanoparticles have different functionalities (-OH, -NH2, -COOH, -COH, etc.) that enhanced wettability of the coated contact lenses as compared to that of uncoated ones and further enabled them to exhibit remarkable antifouling property by prohibiting adhesion of platelets and proteins. The coated contact lenses also showed significant antioxidant activity by scavenging DPPH and good cytocompatibility to human corneal epithelial cells and keratinocytes cell lines. STATEMENT OF SIGNIFICANCE: • Multifunctional coated lenses were developed with an efficient sonochemical approach. • Lens surface was modified with nanocoatings of ZnO nanoparticles, gallic acid, and tobramycin. • This synergistic combination endowed the lenses with remarkable antimicrobial activity. • Coated lenses also showed noteworthy antifouling and biofilm inhibition activities. • Coated lenses showed good antioxidant, biocompatibility, and wettability characteristics.
Collapse
|
16
|
Luong HX, Thanh TT, Tran TH. Antimicrobial peptides - Advances in development of therapeutic applications. Life Sci 2020; 260:118407. [PMID: 32931796 PMCID: PMC7486823 DOI: 10.1016/j.lfs.2020.118407] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
The severe infection is becoming a significant health problem which threaten the lives of patients and the safety and economy of society. In the way of finding new strategy, antimicrobial peptides (AMPs) - an important part of host defense family, emerged with tremendous potential. Up to date, huge numbers of AMPs has been investigated from both natural and synthetic sources showing not only the ability to kill microbial pathogens but also propose other benefits such as wound healing, anti-tumor, immune modulation. In this review, we describe the involvements of AMPs in biological systems and discuss the opportunity in developing AMPs for clinical applications. In the detail, their properties in antibacterial activity is followed by their application in some infection diseases and cancer. The key discussions are the approaches to improve biological activities of AMPs either by modifying chemical structure or incorporating into delivery systems. The new applications and perspectives for the future of AMPs would open the new era of their development.
Collapse
Affiliation(s)
- Huy Xuan Luong
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Viet Nam.
| | - Tung Truong Thanh
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Viet Nam.
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam.
| |
Collapse
|
17
|
Khan SA, Lee CS. Recent progress and strategies to develop antimicrobial contact lenses and lens cases for different types of microbial keratitis. Acta Biomater 2020; 113:101-118. [PMID: 32622052 DOI: 10.1016/j.actbio.2020.06.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
Although contact lenses are widely used for vision correction, they are also the primary cause of a number of ocular diseases such as microbial keratitis (MK), etc. and inflammatory events such as infiltrative keratitis (IK), contact lens acute red eye (CLARE), contact lens-induced peripheral ulcer (CLPU), etc. These diseases and infiltrative events often result from microbial contamination of lens care solutions and lens cases that can be exacerbated by unsanitary lens care and extended lens wear. The treatment of microbial biofilms (MBs) on lens cases and contact lenses are complicated and challenging due to their resistance to conventional antimicrobial lens care solutions. More importantly, MK caused by MBs can lead to acute visual damage or even vision impairment. Therefore, the development of lens cases, lens care solutions, and contact lenses with effective antimicrobial performance against MK will contribute to the safe use of contact lenses. This review article summarizes and discusses different chemical approaches for the development of antimicrobial contact lenses and lens cases employing passive surface modifications, antimicrobial peptides, free-radical fabricating agents, quorum sensing quenchers, antibiotics, antifungal drugs and various metals and coatings with antimicrobial nanomaterials. The benefits and shortcomings of these approaches are assessed, and alternative solutions for future developments are discussed.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
18
|
Dosler S, Hacioglu M, Yilmaz FN, Oyardi O. Biofilm modelling on the contact lenses and comparison of the in vitro activities of multipurpose lens solutions and antibiotics. PeerJ 2020; 8:e9419. [PMID: 32612893 PMCID: PMC7320721 DOI: 10.7717/peerj.9419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/03/2020] [Indexed: 01/31/2023] Open
Abstract
During the contact lens (CL) usage, microbial adhesion and biofilm formation are crucial threats for eye health due to the development of mature biofilms on CL surfaces associated with serious eye infections such as keratitis. For CL related eye infections, multi drug resistant Pseudomonas aeruginosa or Staphylococcus aureus (especially MRSA) and Candida albicans are the most common infectious bacteria and yeast, respectively. In this study, CL biofilm models were created by comparing them to reveal the differences on specific conditions. Then the anti-biofilm activities of some commercially available multipurpose CL solutions (MPSs) and antibiotic eye drops against mature biofilms of S. aureus, P. aeruginosa, and C. albicans standard and clinical strains were determined by the time killing curve (TKC) method at 6, 24 and 48 h. According to the biofilm formation models, the optimal biofilms occurred in a mixture of bovine serum albumin (20% v/v) and lysozyme (2 g/L) diluted in PBS at 37 °C for 24 h, without shaking. When we compared the CL types under the same conditions, the strongest biofilms according to their cell density, were formed on Pure Vision ≥ Softens 38 > Acuve 2 ∼ Softens Toric CLs. When we compared the used CLs with the new ones, a significant increase at the density of biofilms on the used CLs was observed. The most active MPS against P. aeruginosa and S. aureus biofilms at 24 h was Opti-Free followed by Bio-True and Renu according to the TKC analyses. In addition, the most active MPS against C. albicans was Renu followed by Opti-Free and Bio-True at 48 h. None of the MPSs showed 3 Log bactericidal/fungicidal activity, except for Opti-Free against S. aureus and P. aeruginosa biofilms during 6 h contact time. Moreover, all studied antibiotic eye drops were active against S. aureus and P. aeruginosa biofilms on CLs at 6 h and 24 h either directly or as 1/10 concentration, respectively. According to the results of the study, anti-biofilm activities of MPSs have changed depending on the chemical ingredients and contact times of MPSs, the type of infectious agent, and especially the CL type and usage time.
Collapse
Affiliation(s)
- Sibel Dosler
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| | - Mayram Hacioglu
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| | - Fatima Nur Yilmaz
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| | - Ozlem Oyardi
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| |
Collapse
|
19
|
The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics (Basel) 2020. [DOI: 10.3390/antibiotics9060325
expr 928323768 + 816400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The discovery of antibiotics has revolutionized the medicine and treatment of microbial infections. However, the current scenario has highlighted the difficulties in marketing new antibiotics and an exponential increase in the appearance of resistant strains. On the other hand, research in the field of drug-discovery has revaluated the potential of natural products as a unique source for new biologically active molecules and scaffolds for the medicinal chemistry. In this review, we first contextualized the worldwide problem of antibiotic resistance and the importance that natural products of plant origin acquire as a source of new lead compounds. We then focused on terpenes and their potential development as antimicrobials, highlighting those studies that showed an activity against conventional antibiotic-resistant strains.
Collapse
|
20
|
The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics (Basel) 2020; 9:antibiotics9060325. [PMID: 32545761 PMCID: PMC7344648 DOI: 10.3390/antibiotics9060325] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
The discovery of antibiotics has revolutionized the medicine and treatment of microbial infections. However, the current scenario has highlighted the difficulties in marketing new antibiotics and an exponential increase in the appearance of resistant strains. On the other hand, research in the field of drug-discovery has revaluated the potential of natural products as a unique source for new biologically active molecules and scaffolds for the medicinal chemistry. In this review, we first contextualized the worldwide problem of antibiotic resistance and the importance that natural products of plant origin acquire as a source of new lead compounds. We then focused on terpenes and their potential development as antimicrobials, highlighting those studies that showed an activity against conventional antibiotic-resistant strains.
Collapse
|
21
|
Cappiello F, Loffredo MR, Del Plato C, Cammarone S, Casciaro B, Quaglio D, Mangoni ML, Botta B, Ghirga F. The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics (Basel) 2020; 9:325. [PMID: 32545761 PMCID: PMC7344648 DOI: 10.3390/antibiotics9060325&set/a 898859781+915895989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The discovery of antibiotics has revolutionized the medicine and treatment of microbial infections. However, the current scenario has highlighted the difficulties in marketing new antibiotics and an exponential increase in the appearance of resistant strains. On the other hand, research in the field of drug-discovery has revaluated the potential of natural products as a unique source for new biologically active molecules and scaffolds for the medicinal chemistry. In this review, we first contextualized the worldwide problem of antibiotic resistance and the importance that natural products of plant origin acquire as a source of new lead compounds. We then focused on terpenes and their potential development as antimicrobials, highlighting those studies that showed an activity against conventional antibiotic-resistant strains.
Collapse
Affiliation(s)
- Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.); (M.L.M.)
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.); (M.L.M.)
| | - Cristina Del Plato
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (S.C.); (B.B.)
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Silvia Cammarone
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (S.C.); (B.B.)
| | - Bruno Casciaro
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
- Correspondence: (B.C.); (D.Q.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (S.C.); (B.B.)
- Correspondence: (B.C.); (D.Q.)
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.); (M.L.M.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (S.C.); (B.B.)
| | - Francesca Ghirga
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| |
Collapse
|
22
|
Casciaro B, Cappiello F, Loffredo MR, Ghirga F, Mangoni ML. The Potential of Frog Skin Peptides for Anti-Infective Therapies: The Case of Esculentin-1a(1-21)NH2. Curr Med Chem 2020; 27:1405-1419. [PMID: 31333082 DOI: 10.2174/0929867326666190722095408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022]
Abstract
Antimicrobial Peptides (AMPs) are the key effectors of the innate immunity and represent promising molecules for the development of new antibacterial drugs. However, to achieve this goal, some problems need to be overcome: (i) the cytotoxic effects at high concentrations; (ii) the poor biostability and (iii) the difficulty in reaching the target site. Frog skin is one of the richest natural storehouses of AMPs, and over the years, many peptides have been isolated from it, characterized and classified into several families encompassing temporins, brevinins, nigrocins and esculentins. In this review, we summarized how the isolation/characterization of peptides belonging to the esculentin-1 family drove us to the design of an analogue, i.e. esculentin-1a(1-21)NH2, with a powerful antimicrobial action and immunomodulatory properties. The peptide had a wide spectrum of activity, especially against the opportunistic Gram-negative bacterium Pseudomonas aeruginosa. We described the structural features and the in vitro/in vivo biological characterization of this peptide as well as the strategies used to improve its biological properties. Among them: (i) the design of a diastereomer carrying Damino acids in order to reduce the peptide's cytotoxicity and improve its half-life; (ii) the covalent conjugation of the peptide to gold nanoparticles or its encapsulation into poly(lactide- co-glycolide) nanoparticles; and (iii) the peptide immobilization to biomedical devices (such as silicon hydrogel contact lenses) to obtain an antibacterial surface able to reduce microbial growth and attachment. Summing up the best results obtained so far, this review traces all the steps that led these frog-skin AMPs to the direction of peptide-based drugs for clinical use.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.,Center for Life Nano Science@ Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Ghirga
- Center for Life Nano Science@ Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
23
|
Pinto IB, dos Santos Machado L, Meneguetti BT, Nogueira ML, Espínola Carvalho CM, Roel AR, Franco OL. Utilization of antimicrobial peptides, analogues and mimics in creating antimicrobial surfaces and bio-materials. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Yasir M, Dutta D, Willcox MDP. Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability. PLoS One 2019; 14:e0215703. [PMID: 31356627 PMCID: PMC6663011 DOI: 10.1371/journal.pone.0215703] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/11/2019] [Indexed: 01/30/2023] Open
Abstract
Mel4 is a novel cationic peptide with potent activity against Gram-positive bacteria. The current study examined the anti-staphylococcal mechanism of action of Mel4 and its precursor peptide melimine. The interaction of peptides with lipoteichoic acid (LTA) and with the cytoplasmic membrane using DiSC(3)-5, Sytox green, Syto-9 and PI dyes were studied. Release of ATP and DNA/RNA from cells exposed to the peptides were determined. Bacteriolysis and autolysin-activated cell death were determined by measuring decreases in OD620nm and killing of Micrococcus lysodeikticus cells by cell-free media. Both peptides bound to LTA and rapidly dissipated the membrane potential (within 30 seconds) without affecting bacterial viability. Disturbance of the membrane potential was followed by the release of ATP (50% of total cellular ATP) by melimine and by Mel4 (20%) after 2 minutes exposure (p<0.001). Mel4 resulted in staphylococcal cells taking up PI with 3.9% cells predominantly stained after 150 min exposure, whereas melimine showed 34% staining. Unlike melimine, Mel4 did not release DNA/RNA. Cell-free media from Mel4 treated cells hydrolysed peptidoglycan and produced greater zones of inhibition against M. lysodeikticus lawn than melimine treated samples. These findings suggest that pore formation is unlikely to be involved in Mel4-mediated membrane destabilization for staphylococci, since there was no significant Mel4-induced PI staining and DNA/RNA leakage. It is likely that the S. aureus killing mechanism of Mel4 involves the release of autolysins followed by cell death. Whereas, membrane interaction is the primary bactericidal activity of melimine, which includes membrane depolarization, pore formation, release of cellular contents leading to cell death.
Collapse
Affiliation(s)
- Muhammad Yasir
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
- Ophthalmic Research Group, School of Health and Life Sciences, Aston University Birmingham, United Kingdom
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Casciaro B, Lin Q, Afonin S, Loffredo MR, de Turris V, Middel V, Ulrich AS, Di YP, Mangoni ML. Inhibition of Pseudomonas aeruginosa biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentin-1a(1-21)NH 2. FEBS J 2019; 286:3874-3891. [PMID: 31144441 DOI: 10.1111/febs.14940] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/22/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
Abstract
Pseudomonas aeruginosa is a pathogenic bacterium known to cause serious human infections, especially in immune-compromised patients. This is due to its unique ability to transform from a drug-tolerant planktonic to a more dangerous and treatment-resistant sessile life form, called biofilm. Recently, two derivatives of the frog skin antimicrobial peptide esculentin-1a, i.e. Esc(1-21) and its D-amino acids containing diastereomer Esc(1-21)-1c, were characterized for their powerful anti-Pseudomonal activity against both forms. Prevention of biofilm formation already in its early stages could be even more advantageous for counteracting infections induced by this bacterium. In this work, we studied how the diastereomer Esc(1-21)-1c can inhibit Pseudomonas biofilm formation in comparison to the parent peptide and two clinically-used conventional antibiotics, i.e. colistin and aztreonam, when applied at dosages below the minimal growth inhibitory concentration. Biofilm prevention was correlated to the peptides' ability to inhibit Pseudomonas motility and to reduce the production of virulent metabolites, for example, pyoverdine and rhamnolipids. Furthermore, the molecular mechanism underlying these activities was evaluated by studying the peptides' effect on the expression of key genes involved in the virulence and motility of bacteria, as well as by monitoring the peptides' binding to the bacterial signaling nucleotide ppGpp. Our results demonstrate that the presence of only two D-amino acids in Esc(1-21)-1c is sufficient to downregulate ppGpp-mediated expression of biofilm-associated genes, presumably as a result of higher peptide stability and therefore prolonged interaction with the nucleotide. Overall, these studies should assist efficient design and optimization of new anti-infective agents with multiple pharmacologically beneficial properties.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Italy.,Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Qiao Lin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Valeria de Turris
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Volker Middel
- Institute of Toxicology and Genetics (ITG), KIT, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Organic Chemistry, KIT, Karlsruhe, Germany
| | - YuanPu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Italy
| |
Collapse
|
26
|
Querido MM, Aguiar L, Neves P, Pereira CC, Teixeira JP. Self-disinfecting surfaces and infection control. Colloids Surf B Biointerfaces 2019; 178:8-21. [PMID: 30822681 PMCID: PMC7127218 DOI: 10.1016/j.colsurfb.2019.02.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/27/2022]
Abstract
According to World Health Organization, every year in the European Union, 4 million patients acquire a healthcare associated infection. Even though some microorganisms represent no threat to healthy people, hospitals harbor different levels of immunocompetent individuals, namely patients receiving immunosuppressors, with previous infections, or those with extremes of age (young children and elderly), requiring the implementation of effective control measures. Public spaces have also been found an important source of infectious disease outbreaks due to poor or none infection control measures applied. In both places, surfaces play a major role on microorganisms' propagation, yet they are very often neglected, with very few guidelines about efficient cleaning measures and microbiological assessment available. To overcome surface contamination problems, new strategies are being designed to limit the microorganisms' ability to survive over surfaces and materials. Surface modification and/or functionalization to prevent contamination is a hot-topic of research and several different approaches have been developed lately. Surfaces with anti-adhesive properties, with incorporated antimicrobial substances or modified with biological active metals are some of the strategies recently proposed. This review intends to summarize the problems associated with contaminated surfaces and their importance on infection spreading, and to present some of the strategies developed to prevent this public health problem, namely some already being commercialized.
Collapse
Affiliation(s)
- Micaela Machado Querido
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
| | - Lívia Aguiar
- National Institute of Health, Environmental Health Department, Porto, Portugal
| | - Paula Neves
- National Institute of Health, Environmental Health Department, Porto, Portugal
| | - Cristiana Costa Pereira
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal.
| | - João Paulo Teixeira
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
| |
Collapse
|
27
|
Casciaro B, d’Angelo I, Zhang X, Loffredo MR, Conte G, Cappiello F, Quaglia F, Di YPP, Ungaro F, Mangoni ML. Poly(lactide-co-glycolide) Nanoparticles for Prolonged Therapeutic Efficacy of Esculentin-1a-Derived Antimicrobial Peptides against Pseudomonas aeruginosa Lung Infection: in Vitro and in Vivo Studies. Biomacromolecules 2019; 20:1876-1888. [DOI: 10.1021/acs.biomac.8b01829] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, via degli Apuli, 9, 00185 Rome, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Ivana d’Angelo
- Di.S.T.A.Bi.F., University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Xiaoping Zhang
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, via degli Apuli, 9, 00185 Rome, Italy
| | - Gemma Conte
- Di.S.T.A.Bi.F., University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
- Department of Pharmacy, University of Naples Federico II, Via D Montesano 49, 80131 Naples, Italy
| | - Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, via degli Apuli, 9, 00185 Rome, Italy
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, Via D Montesano 49, 80131 Naples, Italy
| | - Yuan-Pu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, Via D Montesano 49, 80131 Naples, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, via degli Apuli, 9, 00185 Rome, Italy
| |
Collapse
|
28
|
Wibowo D, Zhao CX. Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl Microbiol Biotechnol 2018; 103:659-671. [DOI: 10.1007/s00253-018-9524-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
|
29
|
Musale V, Abdel-Wahab YHA, Flatt PR, Conlon JM, Mangoni ML. Insulinotropic, glucose-lowering, and beta-cell anti-apoptotic actions of peptides related to esculentin-1a(1-21).NH2. Amino Acids 2018; 50:723-734. [DOI: 10.1007/s00726-018-2551-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/07/2018] [Indexed: 12/19/2022]
|