1
|
Ziental D, Czarczynska-Goslinska B, Wysocki M, Ptaszek M, Sobotta Ł. Advances and perspectives in use of semisolid formulations for photodynamic methods. Eur J Pharm Biopharm 2024; 204:114485. [PMID: 39255919 DOI: 10.1016/j.ejpb.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Although nearly 30 years have passed since the introduction of the first clinically approved photosensitizer for photodynamic therapy, progress in developing new pharmaceutical formulations remains unsatisfactory. This review highlights that despite years of research, many recurring challenges and issues remain unresolved. The paper includes an analysis of selected essential studies involving aminolevulinic acid and its derivatives, as well as other photosensitizers with potential for development as medical products. Among various possible vehicles, special attention is given to gelatin, alginates, poly(ethylene oxide), polyacrylic acid, and chitosan. The focus is particularly on infectious and cancerous diseases. Key aspects of developing new semi-solid drug forms should prioritize the creation of easily manufacturable and biocompatible preparations for clinical use. At the same time, new formulations should preserve the primary function of photosensitizers, which is the generation of reactive oxygen species capable of destroying pathogenic cells or tumors. Additionally, the use of adjuvant properties of carriers, which can enhance the effectiveness of macrocycles, is emphasized, especially in chitosan-based antibacterial formulations. Current research indicates that many promising dyes and macrocyclic compounds with high potential as photosensitizers in photodynamic therapy remain unexplored in formulation and development work. This review outlines potential new and previously explored pathways for advancing photosensitizers as active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Łukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Promsuk J, Manissorn J, Laomeephol C, Luckanagul JA, Methachittipan A, Tonsomboon K, Jenjob R, Yang SG, Thongnuek P, Wangkanont K. Optimizing protein delivery rate from silk fibroin hydrogel using silk fibroin-mimetic peptides conjugation. Sci Rep 2024; 14:4428. [PMID: 38395958 PMCID: PMC10891107 DOI: 10.1038/s41598-024-53689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Controlled release of proteins, such as growth factors, from biocompatible silk fibroin (SF) hydrogel is valuable for its use in tissue engineering, drug delivery, and other biological systems. To achieve this, we introduced silk fibroin-mimetic peptides (SFMPs) with the repeating unit (GAGAGS)n. Using green fluorescent protein (GFP) as a model protein, our results showed that SFMPs did not affect the GFP function when conjugated to it. The SFMP-GFP conjugates incorporated into SF hydrogel did not change the gelation time and allowed for controlled release of the GFP. By varying the length of SFMPs, we were able to modulate the release rate, with longer SFMPs resulting in a slower release, both in water at room temperature and PBS at 37 °C. Furthermore, the SF hydrogel with the SFMPs showed greater strength and stiffness. The increased β-sheet fraction of the SF hydrogel, as revealed by FTIR analysis, explained the gel properties and protein release behavior. Our results suggest that the SFMPs effectively control protein release from SF hydrogel, with the potential to enhance its mechanical stability. The ability to modulate release rates by varying the SFMP length will benefit personalized and controlled protein delivery in various systems.
Collapse
Affiliation(s)
- Jaturong Promsuk
- Department of Biochemistry, Center of Excellence for Molecular Biology and Genomics of Shrimp, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry, Center of Excellence in Molecular Crop, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Juthatip Manissorn
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering Research Unit (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chavee Laomeephol
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering Research Unit (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jittima Amie Luckanagul
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering Research Unit (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apipon Methachittipan
- Nano Engineering Program, International School of Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Khaow Tonsomboon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, 12120, Pathum Thani, Thailand
| | - Ratchapol Jenjob
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| | - Su-Geun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| | - Peerapat Thongnuek
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering Research Unit (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Kittikhun Wangkanont
- Department of Biochemistry, Center of Excellence for Molecular Biology and Genomics of Shrimp, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Biochemistry, Center of Excellence in Molecular Crop, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Ulloa Rojas JE, Oliveira VLD, de Araujo DR, Tofoli GR, de Oliveira MM, Carastan DJ, Palaci M, Giuntini F, Alves WA. Silk Fibroin/Poly(vinyl Alcohol) Microneedles as Carriers for the Delivery of Singlet Oxygen Photosensitizers. ACS Biomater Sci Eng 2021; 8:128-139. [PMID: 34752076 DOI: 10.1021/acsbiomaterials.1c00913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) is a medical treatment in which a combination of a photosensitizing drug and visible light produces highly cytotoxic reactive oxygen species (ROS) that leads to cell death. One of the main drawbacks of PDT for topical treatments is the limited skin penetration of some photosensitizers commonly used in this therapy. In this study, we propose the use of polymeric microneedles (MNs) prepared from silk fibroin and poly(vinyl alcohol) (PVA) to increase the penetration efficiency of porphyrin as possible applications in photodynamic therapy. The microneedle arrays were fabricated from mixtures in different proportions (1:0, 7:3, 1:1, 3:7, and 0:1) of silk fibroin and PVA solutions (7%); the polymer solutions were cast in polydimethylsiloxane (PDMS) molds and dried overnight. Patches containing grids of 10 × 10 microneedles with a square-based pyramidal shape were successfully produced through this approach. The polymer microneedle arrays showed good mechanical strength under compression force and sufficient insertion depth in both Parafilm M and excised porcine skin at different application forces (5, 20, 30, and 40 N) using a commercial applicator. We observe an increase in the cumulative permeation of 5-[4-(2-carboxyethanoyl) aminophenyl]-10,15,20-tris-(4-sulphonatophenyl) porphyrin trisodium through porcine skin treated with the polymer microneedles after 24 h. MNs may be a promising carrier for the transdermal delivery of photosensitizers for PDT, improving the permeation of photosensitizer molecules through the skin, thus improving the efficiency of this therapy for topical applications.
Collapse
Affiliation(s)
- Jose Eduardo Ulloa Rojas
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | - Vivian Leite de Oliveira
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | | | - Giovana Radomille Tofoli
- São Leopoldo Mandic Faculty, São Leopoldo Mandic Research Institute, Campinas, 01332-000 São Paulo, Brazil
| | - Matheus Mendes de Oliveira
- Center for Engineering Modeling and Applied Social Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | - Danilo Justino Carastan
- Center for Engineering Modeling and Applied Social Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | - Moises Palaci
- Center for Health Sciences, Federal University of Espirito Santo, Vitória, 29075-910 ES, Brazil
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, U.K
| | - Wendel Andrade Alves
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| |
Collapse
|
4
|
Xia QH, Lu CT, Tong MQ, Yue M, Chen R, Zhuge DL, Yao Q, Xu HL, Zhao YZ. Ganoderma Lucidum Polysaccharides Enhance the Abscopal Effect of Photothermal Therapy in Hepatoma-Bearing Mice Through Immunomodulatory, Anti-Proliferative, Pro-Apoptotic and Anti-Angiogenic. Front Pharmacol 2021; 12:648708. [PMID: 34295244 PMCID: PMC8290260 DOI: 10.3389/fphar.2021.648708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 06/15/2021] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma is a malignant tumor with high morbidity and mortality, a highly effective treatment with low side effects and tolerance is needed. Photothermal immunotherapy is a promising treatment combining photothermal therapy (PTT) and immunotherapy. PTT induces the release of tumor-associated antigens by ablating tumor and Ganoderma lucidum polysaccharides (GLP) enhance the antitumor immunity. Results showed that Indocyanine Green (ICG) was successfully encapsulated into SF-Gel. ICG could convert light to heat and SF-Gel accelerates the photothermal effect in vitro and in vivo. PTT based on ICG/ICG-SF-Gel inhibited the growth of primary and distal tumors, GLP enhanced the inhibitory efficacy. ICG/ICG-SF-Gel-based PTT and GLP immunotherapy improved the survival time. ICG/ICG-SF-Gel-based PTT induces tumor necrosis and GLP enhanced the photothermal efficacy. ICG/ICG-SF-Gel-based PTT inhibited cell proliferation and angiogenesis, induced cell apoptosis, enhanced cellular immunity, and GLP enhanced these effects. In conclusion, GLP could enhance the abscopal effect of PTT in Hepatoma-bearing mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, China
| |
Collapse
|
5
|
Wang W, Liu Y, Wang S, Fu X, Zhao T, Chen X, Shao Z. Physically Cross-Linked Silk Fibroin-Based Tough Hydrogel Electrolyte with Exceptional Water Retention and Freezing Tolerance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25353-25362. [PMID: 32347700 DOI: 10.1021/acsami.0c07558] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flexible ionic conductive hydrogel is attracting significant interest as it could be one of the crucial components for multifunctional ionotronic devices. However, their features of inevitably drying out without package and freezing at subzero temperatures may greatly limit the applications of conventional hydrogels in specific situations. Here, we present an ionic conductive hydrogel with water retention and freezing tolerance that consists of silk fibroin, ionic liquid, water, and inorganic salt. It is discovered that the ionic liquid serves multiple purposes to prevent water evaporation, decrease the freezing point, provide the essential conductivity of the hydrogel, etc. As a binary mixed solvent, the ionic liquid/water mixture enhances both water retention and freezing tolerance of the hydrogel electrolyte. Based on the silk fibroin (SF)/1-ethyl-3-methylimidazolium acetate (EMImAc)/H2O/KCl hydrogel electrolyte, the flexible fiberlike supercapacitor could still function well at a temperature as low as -50 °C and after being stored in the open air for a long time. It is anticipated that this hydrogel will prove useful in developing new applications operating under harsh environments.
Collapse
Affiliation(s)
- Wenqi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Yizhuo Liu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Shiqiang Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuemei Fu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Tiancheng Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
6
|
Gerbelli BB, Ly I, Pedemay S, Alves WA, de Oliveira EA. The Role of Amylogenic Fiber Aggregation on the Elasticity of a Lipid Membrane. ACS APPLIED BIO MATERIALS 2020; 3:815-822. [PMID: 35019285 DOI: 10.1021/acsabm.9b00861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work presents a systematic study of the swelling behavior of a lecithin lamellar phase incorporating different amounts of the short peptide sequence diphenylalanine (FF). Small- and wide-angle X-ray scattering assays provide relevant information about the structure and elasticity of the lamellar stacking. These data show that important changes occur at the interface of the lipid membrane dependent not only on the peptide content but also on the hydration of the lamellar structure. Multilamellar-to-unilamellar transitions, previously observed for an increasing number of peptides, are now observed to be dependent on the hydration of the lamellar phase. Wide-angle X-ray scattering and electron microscopy observations (TEM) provide experimental evidence of peptide aggregation into long amylogenic fibers. We argue that aggregates that partition in water may become large enough to destabilize the lamellar structure. It is also shown that, for a given peptide concentration, the lamellar structure can be rendered more flexible or more rigid, by tuning the hydration.
Collapse
Affiliation(s)
- Barbara B Gerbelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Isabelle Ly
- Centre de Recherche Paul Pascal, University of Bordeau, 33600 Pessac, France
| | - Sandra Pedemay
- Centre de Recherche Paul Pascal, University of Bordeau, 33600 Pessac, France
| | - Wendel A Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | | |
Collapse
|
7
|
Gou S, Xie D, Ma Y, Huang Y, Dai F, Wang C, Xiao B. Injectable, Thixotropic, and Multiresponsive Silk Fibroin Hydrogel for Localized and Synergistic Tumor Therapy. ACS Biomater Sci Eng 2019; 6:1052-1063. [DOI: 10.1021/acsbiomaterials.9b01676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shuangquan Gou
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Dengchao Xie
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Ya Ma
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Yamei Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Chenhui Wang
- School of Pharmaceutical Sciences, Chongqing University, No. 55 South Daxuecheng Road, Chongqing 401331, P. R. China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
| |
Collapse
|
8
|
Gerbelli BB, Vassiliades SV, Rojas JEU, Pelin JNBD, Mancini RSN, Pereira WSG, Aguilar AM, Venanzi M, Cavalieri F, Giuntini F, Alves WA. Hierarchical Self‐Assembly of Peptides and its Applications in Bionanotechnology. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900085] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Barbara B. Gerbelli
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Sandra V. Vassiliades
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Jose E. U. Rojas
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Juliane N. B. D. Pelin
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Rodrigo S. N. Mancini
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Wallace S. G. Pereira
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Andrea M. Aguilar
- Instituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo Diadema 09972270 Brazil
| | - Mariano Venanzi
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata Via Cracovia, 50 00133 Roma RM Italy
| | - Francesca Cavalieri
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata Via Cracovia, 50 00133 Roma RM Italy
- Department of Chemical and Biomolecular EngineeringThe University of Melbourne Parkville Vitória 3010 Australia
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street Liverpool L3 3AF UK
| | - Wendel A. Alves
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| |
Collapse
|