1
|
Spectroscopy of model-membrane liposome-protein systems: complementarity of linear dichroism, circular dichroism, fluorescence and SERS. Emerg Top Life Sci 2021; 5:61-75. [PMID: 33942863 DOI: 10.1042/etls20200354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
A range of membrane models have been developed to study components of cellular systems. Lipid vesicles or liposomes are one such artificial membrane model which mimics many properties of the biological system: they are lipid bilayers composed of one or more lipids to which other molecules can associate. Liposomes are thus ideal to study the roles of cellular lipids and their interactions with other membrane components to understand a wide range of cellular processes including membrane disruption, membrane transport and catalytic activity. Although liposomes are much simpler than cellular membranes, they are still challenging to study and a variety of complementary techniques are needed. In this review article, we consider several currently used analytical methods for spectroscopic measurements of unilamellar liposomes and their interaction with proteins and peptides. Among the variety of spectroscopic techniques seeing increasing application, we have chosen to discuss: fluorescence based techniques such as FRET (fluorescence resonance energy transfer) and FRAP (fluorescence recovery after photobleaching), that are used to identify localisation and dynamics of molecules in the membrane; circular dichroism (CD) and linear dichroism (LD) for conformational and orientation changes of proteins on membrane binding; and SERS (Surface Enhanced Raman Spectroscopy) as a rapidly developing ultrasensitive technique for site-selective molecular characterisation. The review contains brief theoretical basics of the listed techniques and recent examples of their successful applications for membrane studies.
Collapse
|
2
|
Zan T, Wu F, Pei X, Jia S, Zhang R, Wu S, Niu Z, Zhang Z. Into the polymer brush regime through the "grafting-to" method: densely polymer-grafted rodlike viruses with an unusual nematic liquid crystal behavior. SOFT MATTER 2016; 12:798-805. [PMID: 26531814 DOI: 10.1039/c5sm02015h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The current work reports an intriguing discovery of how the force exerted on protein complexes like filamentous viruses by the strong interchain repulsion of polymer brushes can induce subtle changes of the constituent subunits at the molecular scale. Such changes transform into the macroscopic rearrangement of the chiral ordering of the rodlike virus in three dimensions. For this, a straightforward "grafting-to" PEGylation method has been developed to densely graft a filamentous virus with poly(ethylene glycol) (PEG). The grafting density is so high that PEG is in the polymer brush regime, resulting in straight and thick rodlike particles with a thin viral backbone. Scission of the densely PEGylated viruses into fragments was observed due to the steric repulsion of the PEG brush, as facilitated by adsorption onto a mica surface. The high grafting density of PEG endows the virus with an isotropic-nematic (I-N) liquid crystal (LC) phase transition that is independent of the ionic strength and the densely PEGylated viruses enter into the nematic LC phase at much lower virus concentrations. Most importantly, while the intact virus and the one grafted with PEG of low grafting density can form a chiral nematic LC phase, the densely PEGylated viruses only form a pure nematic LC phase. This can be traced back to the secondary to tertiary structural change of the major coat protein of the virus, driven by the steric repulsion of the PEG brush. Quantitative parameters characterising the conformation of the grafted PEG derived from the grafting density or the I-N LC transition are elegantly consistent with the theoretical prediction.
Collapse
Affiliation(s)
- Tingting Zan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Liu S, Zan T, Chen S, Pei X, Li H, Zhang Z. Thermoresponsive Chiral to Nonchiral Ordering Transformation in the Nematic Liquid-Crystal Phase of Rodlike Viruses: Turning the Survival Strategy of a Virus into Valuable Material Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6995-7005. [PMID: 26053642 DOI: 10.1021/acs.langmuir.5b01476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The current work investigates the thermoresponsive in situ chiral to nonchiral ordering transformation of a rodlike virus in the naturally assembled state-the chiral nematic liquid crystal (CLC) phase. We take this as an elegant example of reconfigurable self-assembly, through which it is possible to realize in situ transformation from one assembled state to another without disrupting the preformed assembly in general or going through a secondary assembling procedure of the disassembled building blocks. The detailed investigation presented here reveals many unique characteristics of the thermoresponsive 3D chiral ordering of rodlike viruses induced by heat stress. The chiral to nonchiral ordering transformation is highly reversible in the temperature range of up to 60 °C and can be repeated many times. There exists a critical temperature around 40 °C which is independent of the ionic strength and virus concentration. Such reconfigurable ordering in the CLC phase stems from the intrinsic structure change of constituent coat proteins without disrupting the structural integrity of the virus, as revealed by three analytical techniques targeting levels ranging from the molecular, secondary conformation of the constituent proteins to the whole single virus, respectively. Such structural flexibility, also termed polymorphism, is relative to the survival strategies of a biological organism such as the virus and can be transformed into very precious material properties. The potential of the virus-based CLC phase as the chiral matrix to regulate chiro-optical properties of gold nanorods is also presented.
Collapse
Affiliation(s)
- Shuaiyu Liu
- †Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tingting Zan
- †Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- ‡School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Si Chen
- †Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaodong Pei
- †Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Henmin Li
- †Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenkun Zhang
- †Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S. Structural disorder in viral proteins. Chem Rev 2014; 114:6880-911. [PMID: 24823319 DOI: 10.1021/cr4005692] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, College of Fine Arts and Sciences, and ‡Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | | | | | | | |
Collapse
|
5
|
Wu R, Li Y, Wang Q, Yu J, Jiang F, Wang F, Zhang X. Biosilica structures with controllable morphology produced by an electrochemical process on indium tin oxide surfaces. RSC Adv 2012. [DOI: 10.1039/c2ra21326e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Wang Q, Yu J, Yan Y, Xu S, Wang F, Li Q, Wang J, Zhang X, Liu D. Controlled biomimetic silica formation using star-shaped poly(l-lysine). Polym Chem 2012. [DOI: 10.1039/c2py20070h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Morag O, Abramov G, Goldbourt A. Similarities and Differences within Members of the Ff Family of Filamentous Bacteriophage Viruses. J Phys Chem B 2011; 115:15370-9. [DOI: 10.1021/jp2079742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Omry Morag
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Gili Abramov
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Amir Goldbourt
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| |
Collapse
|
8
|
Xu H, Cao B, George A, Mao C. Self-assembly and mineralization of genetically modifiable biological nanofibers driven by β-structure formation. Biomacromolecules 2011; 12:2193-9. [PMID: 21520924 DOI: 10.1021/bm200274r] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioinspired mineralization is an innovative approach to the fabrication of bone biomaterials mimicking the natural bone. Bone mineral hydroxylapatite (HAP) is preferentially oriented with c-axis parallel to collagen fibers in natural bone. However, such orientation control is not easy to achieve in artificial bone biomaterials. To overcome the lack of such orientation control, we fabricated a phage-HAP composite by genetically engineering M13 phage, a nontoxic bionanofiber, with two HAP-nucleating peptides derived from one of the noncollagenous proteins, Dentin Matrix Protein-1 (DMP1). The phage is a biological nanofiber that can be mass produced by infecting bacteria and is nontoxic to human beings. The resultant HAP-nucleating phages are able to self-assemble into bundles by forming β-structure between the peptides displayed on their side walls. The β-structure further promotes the oriented nucleation and growth of HAP crystals within the nanofibrous phage bundles with their c-axis preferentially parallel to the bundles. We proposed that the preferred orientation resulted from the stereochemical matching between the negatively charged amino acid residues within the β-structure and the positively charged calcium ions on the (001) plane of HAP crystals. The self-assembly and mineralization driven by the β-structure formation represent a new route for fabricating mineralized fibers that can serve as building blocks in forming bone repair biomaterials and mimic the basic structure of natural bones.
Collapse
Affiliation(s)
- Hong Xu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Norman, OK 73019-5251, USA
| | | | | | | |
Collapse
|
9
|
Opella SJ, Zeri AC, Park SH. Structure, Dynamics, and Assembly of Filamentous Bacteriophages by Nuclear Magnetic Resonance Spectroscopy. Annu Rev Phys Chem 2008; 59:635-57. [PMID: 18393681 DOI: 10.1146/annurev.physchem.58.032806.104640] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stanley J. Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093;
| | - Ana Carolina Zeri
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093;
| | - Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
10
|
Zeri AC, Mesleh MF, Nevzorov AA, Opella SJ. Structure of the coat protein in fd filamentous bacteriophage particles determined by solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 2003; 100:6458-63. [PMID: 12750469 PMCID: PMC164468 DOI: 10.1073/pnas.1132059100] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The atomic resolution structure of fd coat protein determined by solid-state NMR spectroscopy of magnetically aligned filamentous bacteriophage particles differs from that previously determined by x-ray fiber diffraction. Most notably, the 50-residue protein is not a single curved helix, but rather is a nearly ideal straight helix between residues 7 and 38, where there is a distinct kink, and then a straight helix with a different orientation between residues 39 and 49. Residues 1-5 have been shown to be mobile and unstructured, and proline 6 terminates the helix. The structure of the coat protein in virus particles, in combination with the structure of the membrane-bound form of the same protein in bilayers, also recently determined by solid-state NMR spectroscopy, provides insight into the viral assembly process. In addition to their roles in molecular biology and biotechnology, the filamentous bacteriophages continue to serve as model systems for the development of experimental methods for determining the structures of proteins in biological supramolecular assemblies. New NMR results include the complete sequential assignment of the two-dimensional polarization inversion spin-exchange at the magic angle spectrum of a uniformly 15N-labeled 50-residue protein in a 1.6 x 107 Da particle in solution, and the calculation of the three-dimensional structure of the protein from orientational restraints with an accuracy equivalent to an rms deviation of approximately 1A.
Collapse
Affiliation(s)
- Ana Carolina Zeri
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla 92093, USA
| | | | | | | |
Collapse
|
11
|
Kessel A, Ben-Tal N. Free energy determinants of peptide association with lipid bilayers. PEPTIDE-LIPID INTERACTIONS 2002. [DOI: 10.1016/s1063-5823(02)52010-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Olofsson L, Ankarloo J, Andersson PO, Nicholls IA. Filamentous bacteriophage stability in non-aqueous media. CHEMISTRY & BIOLOGY 2001; 8:661-71. [PMID: 11451667 DOI: 10.1016/s1074-5521(01)00041-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Filamentous bacteriophage are used as general cloning vectors as well as phage display vectors in order to study ligand-receptor interactions. Exposure to biphasic chloroform-water interface leads to specific contraction of phage, to non-infective I- or S-forms. RESULTS Upon exposure, phage were inactivated (non-infective) at methanol, ethanol and 1-propanol concentrations inversely dependent upon alcohol hydrophobicity. Infectivity loss of phage at certain concentrations of 1-propanol or ethanol coincided with changes in the spectral properties of the f1 virion in ultraviolet fluorescence and circular dichroism studies. CONCLUSIONS The alcohols inactivate filamentous phage by a general mechanism--solvation of coat protein--thereby disrupting the capsid in a manner quite different from the previously reported I- and S-forms. The infectivity retention of phagemid pG8H6 in 99% acetonitrile and the relatively high general solvent resistance of the phage strains studied here open up the possibility of employing phage display in non-aqueous media.
Collapse
Affiliation(s)
- L Olofsson
- Bioorganic and Biophysical Chemistry Laboratory, Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-391 82, Kalmar, Sweden
| | | | | | | |
Collapse
|
13
|
Pederson DM, Welsh LC, Marvin DA, Sampson M, Perham RN, Yu M, Slater MR. The protein capsid of filamentous bacteriophage PH75 from Thermus thermophilus. J Mol Biol 2001; 309:401-21. [PMID: 11371161 DOI: 10.1006/jmbi.2001.4685] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The PH75 strain of filamentous bacteriophage (Inovirus) grows in the thermophilic bacterium Thermus thermophilus at 70 degrees C. We have characterized the viral DNA and determined the amino acid sequence of the major coat protein, p8. The p8 protein is synthesized without a leader sequence, like that of bacteriophage Pf3 but unlike that of bacteriophage Pf1, both of which grow in the mesophile Pseudomonas aeruginosa. X-ray diffraction patterns from ordered fibres of the PH75 virion are similar to those from bacteriophages Pf1 and Pf3, indicating that the protein capsid of the PH75 virion has the same helix symmetry and subunit shape, even though the primary structures of the major coat proteins are quite different and the virions assemble at very different temperatures. We have used this information to build a molecular model of the PH75 protein capsid based on that of Pf1, and refined the model by simulated annealing, using fibre diffraction data extending to 2.4 A resolution in the meridional direction and to 3.1 A resolution in the equatorial direction. The common design may reflect a fundamental motif of alpha-helix packing, although differences exist in the DNA packaging and in the means of insertion of the major coat protein of these filamentous bacteriophages into the membrane of the host bacterial cell. These may reflect differences in the assembly mechanisms of the virions.
Collapse
Affiliation(s)
- D M Pederson
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Kneissel S, Queitsch I, Petersen G, Behrsing O, Micheel B, Dübel S. Epitope structures recognised by antibodies against the major coat protein (g8p) of filamentous bacteriophage fd (Inoviridae). J Mol Biol 1999; 288:21-8. [PMID: 10329123 DOI: 10.1006/jmbi.1999.2676] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To map the accessible surface of filamentous bacteriophage fd particles, the epitope structures of polyclonal rabbit serum and three mouse monoclonal antibodies raised against complete phage were analysed. Western blot analysis confirmed the major coat protein, gene VIII product (g8p or pVIII), to be the antigen. Overlapping peptides were synthesised by spot synthesis on cellulose membranes, covering the whole sequence of g8p. Each of the three tested monoclonal antibodies, B62-FE2, B62-GF3/G12 and B62-EA11, reacted with a core epitope covering ten amino acid residues at or near the amino terminus of g8p. The epitope recognised by B62-FE2 consists of the ten N-terminal amino acid residues of g8p. Extension of the amino terminus by various sequences did not inhibit binding, indicating that a terminal amino group is not essential for the interaction. Both B62-GF3/G12 and B62-EA11 recognise internal epitopes covering amino acid residues 3 to 12 of g8p. The epitopes of the polyclonal rabbit serum were also confined to the 12 N-terminal amino acid residues. The contribution of individual amino acid residues to the binding was analysed by a set of peptides containing individual amino acids exchanged by glycine. Accessible residues were Glu2, Asp4, Asp5, Pro6, Lys8, Phe11 and Asp12. The positions of the essential amino acid residues within the epitope are in accordance with a helical conformation of the amino-terminal region of g8p. Further, the results suggest new designs of phage display screening vectors to improve their performance in analysing non-linear epitopes.
Collapse
Affiliation(s)
- S Kneissel
- Institut für Molekulare Genetik, Universität Heidelberg, INF230, Heidelberg, 69120, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Matsuno M, Takeuchi H, Overman SA, Thomas GJ. Orientations of tyrosines 21 and 24 in coat subunits of Ff filamentous virus: determination by Raman linear intensity difference spectroscopy and implications for subunit packing. Biophys J 1998; 74:3217-25. [PMID: 9635775 PMCID: PMC1299662 DOI: 10.1016/s0006-3495(98)78028-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Virions of the Ff group of bacteriophages (fd, f1, M13) are morphologically identical filaments (approximately 6-nm diameter x approximately 880-nm length) in which a covalently closed, single-stranded DNA genome is sheathed by approximately 2700 copies of a 50-residue alpha-helical subunit (pVIII). Orientations of pVIII tyrosines (Tyr21 and Tyr24) with respect to the filament axis have been determined by Raman linear intensity difference (RLID) spectroscopy of flow-oriented mutant virions in which the tyrosines were independently mutated to methionine. The results show that the twofold axis of the phenolic ring (C1-C4 line) of Tyr21 is inclined at 39.5 +/- 1.4 degrees from the virion axis, and that of Tyr24 is inclined at 43.7 +/- 0.6 degrees. The orientation determined for the Tyr21 phenol ring is close to that of a structural model previously proposed on the basis of fiber x-ray diffraction results (Protein Data Bank, identification code 1IFJ). On the other hand, the orientation determined for the Tyr24 phenol ring differs from the diffraction-based model by a 40 degrees rotation about the Calpha-Cbeta bond. The RLID results also indicate that each tyrosine mutation does not greatly affect the orientation of either the remaining tyrosine or single tryptophan (Trp26) of pVIII. On the basis of these results, a refined model is proposed for the coat protein structure in Ff.
Collapse
Affiliation(s)
- M Matsuno
- Pharmaceutical Institute, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
16
|
Ji X, Oh J, Dunker AK, Hipps KW. Effects of relative humidity and applied force on atomic force microscopy images of the filamentous phage fd. Ultramicroscopy 1998; 72:165-76. [PMID: 9639940 DOI: 10.1016/s0304-3991(97)00169-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The filamentous phage fd was studied by both contact- and tapping-mode atomic force microscopy under conditions of controlled variations in relative humidity and changes in the applied tip force. By spin-coating freshly cleaved mica with phage containing solutions having very low salt content followed by rapid humidity control, stable and reliable sample preparation was achieved. The apparent height of the phage varied by about 10-fold with a quadratic dependence on the stabilized relative humidity, extrapolating to 73% of the accepted X-ray diffraction-based height at 0% relative humidity. The variation in measured height with relative humidity largely reconciles previous widely varying atomic force microscopy estimates of this dimension for the filamentous phage. Our finding that contact-mode images of phage are more difficult to analyze than those acquired in tapping mode are consistent with previously published results on other biological specimens such as DNA.
Collapse
Affiliation(s)
- X Ji
- Department of Chemistry, Washington State University, Pullman 99164-4630, USA
| | | | | | | |
Collapse
|
17
|
Abstract
A Monte Carlo Dynamics simulation was used to investigate the behavior of filamentous bacteriophage coat proteins in a model membrane environment. Our simulation agrees with the previous experimental observations that despite the low sequence similarity between the major coat proteins of Pf1 and fd bacteriophages, their structure in the membrane environment is very similar. These results support the hypothesis that the hydrophobic effect exerts an important influence on membrane protein structure. The model may also be used for modeling the insertion and transport processes in protein-membrane systems. The example of fd protein was also used as a test of sensitivity of our model to temperature, thickness of the hydrocarbon phase, and simulation time. In all cases, the results were independent (over the tested range) of the particular values of the parameters.
Collapse
Affiliation(s)
- M Milik
- Scripps Research Institute, Department of Molecular Biology, La Jolla, California 92037, USA
| | | |
Collapse
|
18
|
Wolkers WF, Haris PI, Pistorius AM, Chapman D, Hemminga MA. FT-IR spectroscopy of the major coat protein of M13 and Pf1 in the phage and reconstituted into phospholipid systems. Biochemistry 1995; 34:7825-33. [PMID: 7794893 DOI: 10.1021/bi00024a006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
FT-IR spectroscopy has been applied to study the secondary structure of the major coat protein of Pf1 and M13 as present in the phage and reconstituted in DOPG and mixed DOPC/DOPG (4/1) bilayers. Infrared absorbance spectra of the samples were examined in dehydrated films and in suspensions of D2O and H2O. The secondary structure of the coat protein is investigated by second-derivative analysis, Fourier self-deconvolution, and curve fitting of the infrared bands in the amide I region (1600-1700 cm-1). It is found that, in dehydrated films of Pf1 and M13 phage, the amide I region contains three bands located at about 1633, 1657, and 1683 cm-1, that are assigned to hydrogen-bonded turn, alpha-helix/random coil, and non-hydrogen-bonded turn, respectively. From a comparison of the infrared spectra in dehydrated film with those in aqueous suspension, the percentages of secondary structure were found with an accuracy of about +/- 5%. For the coat protein of Pf1 phage, the FT-IR quantification gives 69% alpha-helix conformation, 19% turn structure, and 12% random coil structure. For Pf1 coat protein in the membrane-embedded state, the amount of alpha-helix is 57%, whereas 42% is in a turn structure and 1% in a random coil structure. The same assignment strategy was used for the analysis of the data obtained for M13 coat protein reconstitution into phospholipid systems. For M13 coat protein in the phage, this gives 75% alpha-helix conformation, 21% turn structure, and 4% random coil structure.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W F Wolkers
- Department of Molecular Physics, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Kostrikis LG, Liu DJ, Day LA. Ultraviolet absorbance and circular dichroism of Pf1 virus: nucleotide/subunit ratio of unity, hyperchromic tyrosines and DNA bases, and high helicity in the subunits. Biochemistry 1994; 33:1694-703. [PMID: 8110771 DOI: 10.1021/bi00173a011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Data have been obtained for the Pf1 virion that establish its stoichiometry and conformational features of its DNA and its protein. The absorbance spectrum of the dissociated virus under alkaline denaturing conditions is fit exactly by spectra for DNA and protein at a mole ratio of one nucleotide per protein subunit. This result, together with three previous values by independent methods, establishes that the nucleotide/subunit ratio (n/s) of Pf1 is unity. The absorbance spectrum of DNA in the intact native virus is assigned as the spectrum for heat denatured Pf1 DNA, with epsilon (P) = 8400 M-1 cm-1 at 259 nm. The absorbance spectrum assigned to protein (two tyrosines) in the intact virus has <epsilon (Y)> = 2500 M-1 cm-1 per tyrosine at lambda max of 281.5 nm; this is the most red-shifted and hyperchromic tyrosine spectrum known. The CD spectrum of the intact virus from 250 to 320 nm has no apparent DNA contribution, but has a strong contribution from the red-shifted tyrosine(s). The CD spectrum from 185 to 250 nm has the shape of alpha-helical CD reference spectra, but is perceptibly blue-shifted, with a crossover from negative to positive ellipticity at 199.7 nm, and it has very high amplitudes (e.g. [theta 207.5nm] = -44,000 deg cm2 dmol-1). This spectrum indicates completely helical protein in the virus, with a predominance of alpha-helix and perhaps some 3(10)-helix. The unit n/s ratio, the high absorbance and negligible near-UV CD for the DNA bases, and the high amplitudes for the helical protein are critical input data for the determination of Pf1 virus structure.
Collapse
Affiliation(s)
- L G Kostrikis
- Public Health Research Institute, New York, New York 10016
| | | | | |
Collapse
|
20
|
Marvin DA, Hale RD, Nave C, Helmer-Citterich M. Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages Ff (fd, f1, M13), If1 and IKe. J Mol Biol 1994; 235:260-86. [PMID: 8289247 DOI: 10.1016/s0022-2836(05)80032-4] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The filamentous bacteriophages are flexible rods about 1 to 2 microns long and 6 nm in diameter, with a helical shell of protein subunits surrounding a DNA core. The approximately 50-residue coat protein subunit is largely alpha-helix and the axis of the alpha-helix makes a small angle with the axis of the virion. The protein shell can be considered in three sections: the outer surface, occupied by the N-terminal region of the subunit, rich in acidic residues that interact with the surrounding solvent and give the virion a low isoelectric point; the interior of the shell, including a 19-residue stretch of apolar side-chains, where protein subunits interact mainly with each other; and the inner surface, occupied by the C-terminal region of the subunit, rich in basic residues that interact with the DNA core. The fact that virtually all protein side-chain interactions are between different subunits in the coat protein array, rather than within subunits, makes this a useful model system for studies of interactions between alpha-helix subunits in a macromolecular assembly. We describe molecular models of the class I filamentous bacteriophages. This class includes strains fd, f1, M13 (these 3 very similar strains are members of the Ff group), If1 and IKe. Our model of fd has been refined to fit quantitative X-ray fibre diffraction data to 30 A resolution in the meridional direction and 7 A resolution in the equatorial direction. A simulated 3.3 A resolution diffraction pattern from this model has the same general distribution of intensity as the experimental diffraction pattern. The observed diffraction data at 7 A resolution are fitted much better by the calculated diffraction pattern of our molecular model than by that of a model in which the alpha-helix subunit is represented by a rod of uniform density. The fact that our fd model explains the fd diffraction data is only part of our structure analysis. The atomic details of the model are supported by non-diffraction data, in part previously published and in part newly reported here. These data include information about permitted or forbidden side-chain replacements, about the effect of chemical modification, and about spectroscopic experiments.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D A Marvin
- Department of Biochemistry, University of Cambridge, U.K
| | | | | | | |
Collapse
|
21
|
Sanders JC, Haris PI, Chapman D, Otto C, Hemminga MA. Secondary structure of M13 coat protein in phospholipids studied by circular dichroism, Raman, and Fourier transform infrared spectroscopy. Biochemistry 1993; 32:12446-54. [PMID: 8241135 DOI: 10.1021/bi00097a024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is considerable uncertainty about the precise secondary structure adopted by the M13 coat protein when embedded in a phospholipid bilayer. Circular dichroism (CD) spectroscopy suggests that a major change in the structure of the coat protein occurs upon membrane insertion. It is reported that the structure of the protein in the membrane has only about 50% alpha-helix, the rest being mainly in a beta-sheet conformation, whereas the protein is almost completely alpha-helical when intact in the phage. In this study we have undertaken a spectroscopic analysis using Fourier transform infrared, Raman, and CD spectroscopy to characterize the secondary structure of M13 coat protein when present in membranes consisting of dioleoylphosphatidylglycerol and dimyristoylphosphatidylglycerol. In sharp contrast to earlier CD studies, our results indicate that the coat protein in its membrane-embedded state has a very high alpha-helical content with virtually no beta-sheet structures present. This result indicates that the structures of the coat protein when intact in the phage or when embedded in the membrane are similar. Although our results differ from earlier CD studies, they are consistent with a recent NMR study, which showed that the M13 coat protein in sodium dodecyl sulfate micelles is primarily alpha-helical with no evidence for beta-sheet structure [Henry, G. D., & Sykes, B.D. (1992) Biochemistry 31, 5284-5297]. These results lead to the conclusion that the M13 coat protein can insert from the membrane-bound state into a virus particle with a similar secondary structure, without large energy implications.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J C Sanders
- Department of Molecular Physics, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Hemminga MA, Sanders JC, Wolfs CJ, Spruijt RB. Chapter 8 Lipid-protein interactions involved in bacteriophage M13 infection. PROTEIN-LIPID INTERACTIONS 1993. [DOI: 10.1016/s0167-7306(08)60237-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Li SC, Deber CM. Influence of glycine residues on peptide conformation in membrane environments. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1992; 40:243-8. [PMID: 1478781 DOI: 10.1111/j.1399-3011.1992.tb00297.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transmembrane (TM) segments of integral membrane proteins are putatively alpha-helical in conformation, yet their primary sequences are rich in residues known in globular proteins as helix-breakers (Gly) and beta-sheet promoters (Ile, Val, Thr). To examine the specific 2 degrees structure propensities of such residues in membrane environments, we have now designed and synthesized a series of model 20-residue peptides with "guest" hydrophobia segments embedded in "host" N- and C-terminal hydrophilic matrices. Molecular design was based on the prototypical sequence NH2-(Ser-Lys)2-Ala5-Leu6-x7-Ala8-Leu9-y10-Trp 11-Ala12-Leu13-z14-(Lys-Ser)3-OH. The 10-residue hydrophobic mid-segment 5-14 is expected to act as ca. three turns of an alpha-helix. In the present work, we compare the 20-residue peptide having three "helix-forming" Ala residues [x = y = z = Ala (peptide 3A)] to the corresponding peptide 3G (x = y = z = Gly) which contains three "helix-breaking" Gly residues. Trp was inserted to provide a measure of aromatic character typical of TM segments; Ser and Lys enhanced solubility in aqueous media. Circular dichroism studies in water, in a membrane-mimetic [sodium dodecylsulfate (SDS)], medium, and in methanol solutions, demonstrated the exquisite sensitivity of the conformations of these peptides to environment, and proved that despite its backbone flexibility, Gly can be accommodated as readily as Ala into a hydrophobic alpha-helix in a membrane. Nevertheless, the relative stability of Ala- vs. Gly-containing helices emerged in methanol solvent titration and temperature dependence experiments in SDS.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S C Li
- Division of Biochemistry Research, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
24
|
Arnold GE, Day LA, Dunker AK. Tryptophan contributions to the unusual circular dichroism of fd bacteriophage. Biochemistry 1992; 31:7948-56. [PMID: 1510981 DOI: 10.1021/bi00149a028] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The circular dichroism (CD) spectrum of fd bacteriophage has a deep minimum at 222 nm characteristic of highly alpha-helical protein, but there is a shoulder at 208 nm rather than a minimum, with a 222/208-nm amplitude ratio near 1.5 rather than near 1. Oxidation of fd phage with the tryptophan reagent N-bromosuccinimide (NBS) changes the ratio. In this report, the NBS titration of fd is followed by CD and three other spectroscopies, the results of which yield an explanation of the unusual CD spectrum. Absorbance, fluorescence, and Raman data show the oxidation to have two phases, the first of which involves the destruction of tryptophan and the second, tryptophan and tyrosine. Raman spectra reveal the invariance of an environmentally-sensitive tyrosine Fermi resonance doublet during the first oxidative phase. Raman spectra also show that little or no change of alpha-helicity occurs in the first or second oxidation phase, although very slight changes in the helix parameters might be occurring. Concurrent with the destruction of tryptophan during the first phase is the appearance in CD difference spectra ([theta]NBS-treated fd - [theta]native fd) of positive maxima at 208-210 nm and negative maxima at 224 nm, with crossovers at 217 nm. Enormous difference ellipticities, per oxidized subunit of 50 amino acids, of +490,000 +/- 80,000 deg cm2 dmol-1 at 208 nm and -520,000 +/- 110,000 deg cm2 dmol-1 at 224 nm have been derived from the data.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G E Arnold
- Department of Biochemistry/Biophysics, Washington State University, Pullman 99164
| | | | | |
Collapse
|
25
|
Glucksman MJ, Bhattacharjee S, Makowski L. Three-dimensional structure of a cloning vector. X-ray diffraction studies of filamentous bacteriophage M13 at 7 A resolution. J Mol Biol 1992; 226:455-70. [PMID: 1640460 DOI: 10.1016/0022-2836(92)90960-r] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Filamentous bacteriophage M13 is a single-stranded DNA phage about 65 A in diameter and 9300 A long. X-ray diffraction studies of magnetically oriented fibers of native, mercury and iodine-labeled phage particles have been used to determine the arrangement of the major coat protein, the gene 8 product, in the virion. The coat protein is made up of a single gently curving alpha-helix extending from approximately Pro6 to near the carboxyl terminus. The axis of the alpha-helix is tilted about 20 degrees from the viral axis and wraps around the axis in a right-handed helical sense. The surface of the virus is made up largely of polar residues in the amino-terminal half of the protein including the segment of alpha-helix extending from Pro6 to Tyr24. The interior surface of the protein coat faces the DNA and consists of an amphipathic helical segment extending from Thr36 to Ser50. The alpha-helices form a tightly packed 15 to 20 A thick cylindrical coat around the DNA. This structural model provides insight into the potential sites for incorporating foreign protein domains that may act as functional binding sites on the surface of M13.
Collapse
Affiliation(s)
- M J Glucksman
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | | | | |
Collapse
|
26
|
Clack BA, Gray DM. Flow linear dichroism spectra of four filamentous bacteriophages: DNA and coat protein contributions. Biopolymers 1992; 32:795-810. [PMID: 1391632 DOI: 10.1002/bip.360320708] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we have separated the contributions of DNA and protein to the absorption and linear dichroism (LD) of each of four phages: fd, IKe, Pf1, and Pf3. We have found that the DNA packaged in each of the phages is hypochromic relative to the purified single-stranded DNA, suggesting that bases are stacked in all of the phages. We have oriented the phages by flow and for the first time report the intrinsic LD from 320 to 190 nm for each of these phages. From the intrinsic LD of the phages and the isotropic absorption of the individual components, we have determined the reduced dichroism of the DNA within the phages and, subsequently, the maximum angle of inclination of the DNA bases (from the helix axis) for the packaged DNA. The maximum angles were 63 degrees and 64 degrees for the DNAs of class I phages fd and IKe, respectively. The angles were significantly less, 51 degrees and 49 degrees, for the DNAs of the class II phages Pf1 and Pf3, respectively. Thus, the two classes of phage differ in the structures of their packaged DNA, the DNA bases of the class II phages being more parallel to the long axis of the phage than are the DNA bases of the class I phages.
Collapse
Affiliation(s)
- B A Clack
- Program in Molecular and Cell Biology, University of Texas at Dallas, Richardson 75083-0688
| | | |
Collapse
|
27
|
Abstract
Below 15 degrees C, chloroform causes fd phage to contract to I-forms, which are compact structures about 1/3 as long as the original phage. Above 15 degrees C, chloroform causes I-forms to contract to even more compact spheroidal S-forms. Here we show that the coat protein structure in I-forms is the same as the protein structure in the phage and the protein structure in S-forms is the same as the protein structure in bilayers. The conversions from fd----I-forms----S-forms are therefore suggested to mimic steps in fd penetration. The same conversions, in reverse order, are suggested to mimic steps in fd assembly.
Collapse
Affiliation(s)
- A K Dunker
- Department of Biochemistry and Biophysics, Washington State University, Pullman 99164
| | | | | | | |
Collapse
|