1
|
Wang Y, Zhang X, Liu P, Liu Z, Ren T, Wang Z. Template-Free Synthesis of Phosphorus/Nitrogen-Doped Mesoporous Titania Materials with Excellent Adsorption for Lysozymes. ACS OMEGA 2023; 8:49129-49136. [PMID: 38162772 PMCID: PMC10753566 DOI: 10.1021/acsomega.3c07222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Element-doped mesoporous titanium oxide has significant advantages in substance separation and adsorption due to its larger specific surface area and stronger hydrophobicity. However, its current synthesis methods have limitations such as complicated preparation process, high production cost, or not being environmentally friendly, and the synthesis of elementally doped titanium oxide materials by simple, low-cost, and green means is the research goal of this study. In this study, phosphorus-doped mesoporous titanium oxides (TiP) materials have been synthesized through a facile template-free method in an ethanol system, which were further modified by nitrogen doping with the use of urea as the nitrogen source. Both the synthesized TiP and P-N codoped sample (N-TiP) are amorphous with mesopores. It was revealed by FTIR and XPS spectra that the formation of Ti-O-P and -O-Ti-N bonds in the synthesized samples was due to the partial substitution of phosphorus for titanium in Ti-O-Ti bonds in mesoporous titanium oxide, while nitrogen replaced some oxygen in the -O-Ti-O bonds in the form of anions. The TiP sample was estimated by the BET method to have a relatively large surface area, up to 317 m2/g. The adsorption of TiP and N-TiP materials to lysozyme protein in a buffer solution at different pH values showed that the adsorption of TiP to lysozyme protein was larger, which was 32.68 μmol/g. It shows that TiP has potential as a multifunctional adsorbent.
Collapse
Affiliation(s)
- Yajing Wang
- School
of Gemology and Materials, Hebei GEO University, Shijiazhuang 050031, China
- Engineering
Research Center for Silicate Solid Waste Resource Utilization of Hebei
Province, Shijiazhuang 050031, China
- Hebei
Key Laboratory of Green Development of Rock Mineral Materials, Shijiazhuang 050031, China
| | - Xu Zhang
- School
of Gemology and Materials, Hebei GEO University, Shijiazhuang 050031, China
- Engineering
Research Center for Silicate Solid Waste Resource Utilization of Hebei
Province, Shijiazhuang 050031, China
- Hebei
Key Laboratory of Green Development of Rock Mineral Materials, Shijiazhuang 050031, China
| | - Peng Liu
- School
of Gemology and Materials, Hebei GEO University, Shijiazhuang 050031, China
- Engineering
Research Center for Silicate Solid Waste Resource Utilization of Hebei
Province, Shijiazhuang 050031, China
- Hebei
Key Laboratory of Green Development of Rock Mineral Materials, Shijiazhuang 050031, China
| | - Zhao Liu
- School
of Water Resources and Environment, Hebei
GEO University, Shijiazhuang 050031, China
| | - Tiezhen Ren
- College
of Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Ziqian Wang
- School
of Gemology and Materials, Hebei GEO University, Shijiazhuang 050031, China
| |
Collapse
|
2
|
Alvarado YJ, Olivarez Y, Lossada C, Vera-Villalobos J, Paz JL, Vera E, Loroño M, Vivas A, Torres FJ, Jeffreys LN, Hurtado-León ML, González-Paz L. Interaction of the new inhibitor paxlovid (PF-07321332) and ivermectin with the monomer of the main protease SARS-CoV-2: A volumetric study based on molecular dynamics, elastic networks, classical thermodynamics and SPT. Comput Biol Chem 2022; 99:107692. [PMID: 35640480 PMCID: PMC9107165 DOI: 10.1016/j.compbiolchem.2022.107692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023]
Abstract
The COVID-19 pandemic has accelerated the study of drugs, most notably ivermectin and more recently Paxlovid (PF-07321332) which is in phase III clinical trials with experimental data showing covalent binding to the viral protease Mpro. Theoretical developments of catalytic site-directed docking support thermodynamically feasible non-covalent binding to Mpro. Here we show that Paxlovid binds non-covalently at regions other than the catalytic sites with energies stronger than reported and at the same binding site as the ivermectin B1a homologue, all through theoretical methodologies, including blind docking. We volumetrically characterize the non-covalent interaction of the ivermectin homologues (avermectins B1a and B1b) and Paxlovid with the mMpro monomer, through molecular dynamics and scaled particle theory (SPT). Using the fluctuation-dissipation theorem (FDT), we estimated the electric dipole moment fluctuations at the surface of each of complex involved in this study, with similar trends to that observed in the interaction volume. Using fluctuations of the intrinsic volume and the number of flexible fragments of proteins using anisotropic and Gaussian elastic networks (ANM+GNM) suggests the complexes with ivermectin are more dynamic and flexible than the unbound monomer. In contrast, the binding of Paxlovid to mMpro shows that the mMpro-PF complex is the least structurally dynamic of all the species measured in this investigation. The results support a differential molecular mechanism of the ivermectin and PF homologues in the mMpro monomer. Finally, the results showed that Paxlovid despite beingbound in different sites through covalent or non-covalent forms behaves similarly in terms of its structural flexibility and volumetric behaviour.
Collapse
Affiliation(s)
- Ysaias José Alvarado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Bolivarian Republic of Venezuela.
| | - Yosmari Olivarez
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Carla Lossada
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Joan Vera-Villalobos
- Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Eddy Vera
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Marcos Loroño
- Departamento Académico de Química Analítica e Instrumental, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Alejandro Vivas
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Fernando Javier Torres
- Grupo de Química Computacional y Teórica (QCT-UR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Grupo de Química Computacional y Teórica (QCT-USFQ), Instituto de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Laura N Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - María Laura Hurtado-León
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Maracaibo 4001, Zulia, Bolivarian Republic of Venezuela
| | - Lenin González-Paz
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Maracaibo 4001, Zulia, Bolivarian Republic of Venezuela; Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Botanicos y Agroforestales, (CEBA), Laboratorio de Proteccion Vegetal, 4001 Maracaibo, Bolivarian Republic of Venezuela.
| |
Collapse
|
3
|
Norton-Baker B, Rocha MA, Granger-Jones J, Fishman DA, Martin RW. Human γS-Crystallin Resists Unfolding Despite Extensive Chemical Modification from Exposure to Ionizing Radiation. J Phys Chem B 2022; 126:679-690. [PMID: 35021623 PMCID: PMC9977691 DOI: 10.1021/acs.jpcb.1c08157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ionizing radiation has dramatic effects on living organisms, causing damage to proteins, DNA, and other cellular components. γ radiation produces reactive oxygen species (ROS) that damage biological macromolecules. Protein modification due to interactions with hydroxyl radical is one of the most common deleterious effects of radiation. The human eye lens is particularly vulnerable to the effects of ionizing radiation, as it is metabolically inactive and its proteins are not recycled after early development. Therefore, radiation damage accumulates and eventually can lead to cataract formation. Here we explore the impact of γ radiation on a long-lived structural protein. We exposed the human eye lens protein γS-crystallin (HγS) to high doses of γ radiation and investigated the chemical and structural effects. HγS accumulated many post-translational modifications (PTMs), appearing to gain significant oxidative damage. Biochemical assays suggested that cysteines were affected, with the concentration of free thiol reduced with increasing γ radiation exposure. SDS-PAGE analysis showed that irradiated samples form protein-protein cross-links, including nondisulfide covalent bonds. Tandem mass spectrometry on proteolytic digests of irradiated samples revealed that lysine, methionine, tryptophan, leucine, and cysteine were oxidized. Despite these chemical modifications, HγS remained folded past 10.8 kGy of γ irradiation as evidenced by circular dichroism and intrinsic tryptophan fluorescence spectroscopy.
Collapse
Affiliation(s)
- Brenna Norton-Baker
- These authors contributed equally.,Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Megan A. Rocha
- These authors contributed equally.,Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | | - Dmitry A. Fishman
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| |
Collapse
|
4
|
Liu L, Scott L, Tariq N, Kume T, Dubins DN, Macgregor RB, Chalikian TV. Volumetric Interplay between the Conformational States Adopted by Guanine-Rich DNA from the c-MYC Promoter. J Phys Chem B 2021; 125:7406-7416. [PMID: 34185535 DOI: 10.1021/acs.jpcb.1c04075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The kinetic and thermodynamic stabilities of G-quadruplex structures have been extensively studied. In contrast, systematic investigations of the volumetric properties of G-quadruplexes determining their pressure stability are still relatively scarce. The G-rich strand from the promoter region of the c-MYC oncogene (G-strand) is known to adopt a range of conformational states including the duplex, G-quadruplex, and coil states depending on the presence of the complementary C-rich strand (C-strand) and solution conditions. In this work, we report changes in volume, ΔV, and adiabatic compressibility, ΔKS, accompanying interconversions of G-strand between the G-quadruplex, duplex, and coil conformations in the presence and absence of C-strand. We rationalize these volumetric characteristics in terms of the hydration and intrinsic properties of the DNA in each of the sampled conformational states. We further use our volumetric results in conjunction with the reported data on changes in expansibility, ΔE, and heat capacity, ΔCP, associated with G-quadruplex-to-coil transitions to construct the pressure-temperature phase diagram describing the stability of the G-quadruplex. The phase diagram is elliptic in shape, resembling the classical elliptic phase diagram of a globular protein, and is distinct from the phase diagram for duplex DNA. The observed similarity of the pressure-temperature phase diagrams of G-quadruplexes and globular proteins stems from their shared structural and hydration features that, in turn, result in the similarity of their volumetric properties. To the best of our knowledge, this is the first pressure-temperature stability diagram reported for a G-quadruplex.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Lily Scott
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Nabeel Tariq
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Takuma Kume
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - David N Dubins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
5
|
Atyaksheva LF, Pilipenko OS, Tarasevich BN. Adsorption of Lysozyme on Silica and Aluminosilicate Adsorbents. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Chalikian TV, Macgregor RB. On empirical decomposition of volumetric data. Biophys Chem 2018; 246:8-15. [PMID: 30597448 DOI: 10.1016/j.bpc.2018.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/26/2022]
Abstract
Volumetric characterization of proteins and their recognition events has been instrumental in providing information on the role of intra- and intermolecular interactions, including hydration, in stabilizing biomolecules. The credibility of molecular models and interpretation schemes used to rationalize experimental data are essential for the validity of microscopic insights derived from volumetric results. Current empirical schemes used to interpret volumetric data suffer from a lack of theoretical and computational substantiation. In this contribution, we take advantage age of recent MD simulations of proteins in solution coupled with Voronoi-Delaunay tessellation of simulated structures that have provided an exceptional level of structural detail on the nature of protein-water interfaces. We use these structural insights to re-evaluate empirical frameworks used for interpretation of volumetric data. An important issue in this respect is the actual dividing surface between water and protein atoms that is used in volumetric studies when the solute and solvent are treated as hard spheres enclosed within their respective van der Waals surfaces. In one development, using Voronoi tessellation of MD simulated protein-water systems the dividing surface has been defined as the points equidistant from the water and protein atoms. The interstitial void volume between the solute and the dividing surface corresponds to thermal volume envisaged by Scaled Particle Theory. In this communication, we explicitly account for the contributions of thermal volume to the partial molar volume, compressibility, and expansibility of proteins and re-examine and redefine the intrinsic and hydration volumetric contributions. We discuss the implications of our results for protein transitions and association events.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
7
|
Khago D, Bierma JC, Roskamp KW, Kozlyuk N, Martin RW. Protein refractive index increment is determined by conformation as well as composition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:435101. [PMID: 30280702 PMCID: PMC6387658 DOI: 10.1088/1361-648x/aae000] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The refractive index gradient of the eye lens is controlled by the concentration and distribution of its component crystallin proteins, which are highly enriched in polarizable amino acids. The current understanding of the refractive index increment ([Formula: see text]) of proteins is described using an additive model wherein the refractivity and specific volume of each amino acid type contributes according to abundance in the primary sequence. Here we present experimental measurements of [Formula: see text] for crystallins from the human lens and those of aquatic animals under uniform solvent conditions. In all cases, the measured values are much higher than those predicted from primary sequence alone, suggesting that structural factors also contribute to protein refractive index.
Collapse
Affiliation(s)
- Domarin Khago
- Department of Chemistry, University of California, Irvine, CA 92697, United States of America
| | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Filip Persson
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Bertil Halle
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
9
|
Flexibility and Hydration of Amphiphilic Hyperbranched Arabinogalactan-Protein from Plant Exudate: A Volumetric Perspective. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2010011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Jansens KJA, Brijs K, Stetefeld J, Delcour JA, Scanlon MG. Ultrasonic Characterization of Amyloid-Like Ovalbumin Aggregation. ACS OMEGA 2017; 2:4612-4620. [PMID: 31457750 PMCID: PMC6641891 DOI: 10.1021/acsomega.7b00366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/29/2017] [Indexed: 06/10/2023]
Abstract
Thermal processing conditions, pH, and salt content affect the formation of egg white ovalbumin amyloid, which was investigated using high-precision measurements of ultrasonic velocity and attenuation. These were related to fluorescence and particle size measurements. Fluorescence changes indicated the formation of amyloid-like aggregates that was enhanced by increasing time-temperature treatments. The ultrasonic velocity of ovalbumin after heating at neutral pH (60 min at 70 or 80 °C) was lower than that of unheated ovalbumin, whereas the attenuation was higher. The decrease in the velocity represents increased compressibility associated with a change in the compactness of the protein, whereas changes in attenuation are due to protein conformational changes. Heating ramp studies revealed transitions at approximately 58 and 73 °C. During heating at a constant temperature, the ultrasonic velocity decreased slowly with increasing heating time, indicating an increase in ovalbumin compressibility. It is suggested that the obtained amyloid-like ovalbumin aggregates contain a compact core surrounded by loosely packed protein segments.
Collapse
Affiliation(s)
- Koen J. A. Jansens
- Laboratory
of Food Chemistry and Biochemistry, Leuven
Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Kristof Brijs
- Laboratory
of Food Chemistry and Biochemistry, Leuven
Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jörg Stetefeld
- Department
of Chemistry, University of Manitoba, Winnipeg, Canada R2T 2N2
| | - Jan A. Delcour
- Laboratory
of Food Chemistry and Biochemistry, Leuven
Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Martin G. Scanlon
- Department
of Food Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|
11
|
Naderi N, House JD, Pouliot Y, Doyen A. Effects of High Hydrostatic Pressure Processing on Hen Egg Compounds and Egg Products. Compr Rev Food Sci Food Saf 2017; 16:707-720. [DOI: 10.1111/1541-4337.12273] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/10/2017] [Accepted: 05/17/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Nassim Naderi
- Inst. of Nutrition and Functional Foods (INAF), Dept. of Food Science; Univ. Laval; Québec QC Canada G1V 0A6
- Dept. of Human Nutritional Sciences; Univ. of Manitoba; Winnipeg MB Canada R3T 2N2
| | - James D. House
- Inst. of Nutrition and Functional Foods (INAF), Dept. of Food Science; Univ. Laval; Québec QC Canada G1V 0A6
- Dept. of Human Nutritional Sciences; Univ. of Manitoba; Winnipeg MB Canada R3T 2N2
| | - Yves Pouliot
- Inst. of Nutrition and Functional Foods (INAF), Dept. of Food Science; Univ. Laval; Québec QC Canada G1V 0A6
| | - Alain Doyen
- Inst. of Nutrition and Functional Foods (INAF), Dept. of Food Science; Univ. Laval; Québec QC Canada G1V 0A6
| |
Collapse
|
12
|
Jansens KJ, Brijs K, Delcour JA, Scanlon MG. Amyloid-like aggregation of ovalbumin: Effect of disulfide reduction and other egg white proteins. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Microscopic insight into role of protein flexibility during ion exchange chromatography by nuclear magnetic resonance and quartz crystal microbalance approaches. J Chromatogr A 2016; 1438:65-75. [DOI: 10.1016/j.chroma.2016.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 11/17/2022]
|
14
|
|
15
|
Ergometric studies of proteins: New insights into protein functionality in food systems. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Abstract
The partial specific (or molar) volume, expansibility, and compressibility of a protein are fundamental thermodynamic quantities for characterizing its structure in solution. We review the definitions, measurements, and implications of these volumetric quantities in relation to protein structural biology. The partial specific volumes under constant molality (isomolal) and chemical potential (isopotential) conditions of the cosolvent (multicomponent systems) are explained in terms of preferential solvent interactions relevant to the solubility and stability of proteins. The partial expansibility is briefly discussed in terms of the effects of temperature on protein-solvent interactions (hydration) and internal packing defects (cavities). We discuss the compressibility-structure-function relationships of proteins based on analyses of the correlations between the partial adiabatic compressibilities and the structures or functions of various globular proteins (including mutants), focusing on the roles of the internal cavities in structural fluctuations. The volume and compressibility changes associated with various conformational transitions are also discussed in terms of the changes in hydration and cavities in order to elucidate the nonnative structures and the transition mechanisms, especially those associated with pressure denaturation.
Collapse
|
17
|
Saxton MJ. Wanted: scalable tracers for diffusion measurements. J Phys Chem B 2014; 118:12805-17. [PMID: 25319586 PMCID: PMC4234437 DOI: 10.1021/jp5059885] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/03/2014] [Indexed: 12/02/2022]
Abstract
Scalable tracers are potentially a useful tool to examine diffusion mechanisms and to predict diffusion coefficients, particularly for hindered diffusion in complex, heterogeneous, or crowded systems. Scalable tracers are defined as a series of tracers varying in size but with the same shape, structure, surface chemistry, deformability, and diffusion mechanism. Both chemical homology and constant dynamics are required. In particular, branching must not vary with size, and there must be no transition between ordinary diffusion and reptation. Measurements using scalable tracers yield the mean diffusion coefficient as a function of size alone; measurements using nonscalable tracers yield the variation due to differences in the other properties. Candidate scalable tracers are discussed for two-dimensional (2D) diffusion in membranes and three-dimensional diffusion in aqueous solutions. Correlations to predict the mean diffusion coefficient of globular biomolecules from molecular mass are reviewed briefly. Specific suggestions for the 3D case include the use of synthetic dendrimers or random hyperbranched polymers instead of dextran and the use of core-shell quantum dots. Another useful tool would be a series of scalable tracers varying in deformability alone, prepared by varying the density of crosslinking in a polymer to make say "reinforced Ficoll" or "reinforced hyperbranched polyglycerol."
Collapse
Affiliation(s)
- Michael J. Saxton
- Department of Biochemistry
and Molecular Medicine, University of California, One Shields Ave., Davis, California 95616, United States
| |
Collapse
|
18
|
Samanta N, Mahanta DD, Hazra S, Kumar GS, Mitra RK. Short chain polyethylene glycols unusually assist thermal unfolding of human serum albumin. Biochimie 2014; 104:81-9. [DOI: 10.1016/j.biochi.2014.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
|
19
|
Comparative thermodynamic study of functional polymeric latex particles with different morphologies. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Suladze S, Ismail S, Winter R. Thermodynamic, dynamic and solvational properties of PDEδ binding to farnesylated cystein: a model study for uncovering the molecular mechanism of PDEδ interaction with prenylated proteins. J Phys Chem B 2014; 118:966-75. [PMID: 24401043 DOI: 10.1021/jp411466r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The protein PDEδ is an important solubilizing factor for several prenylated proteins including the Ras subfamily members. The binding occurs mainly through the farnesyl anchor of Ras proteins, which is recognized by a hydrophobic pocket of PDEδ. In this study, we carried out a detailed study of the thermodynamic and solvational properties of PDEδ binding to farnesyl-cystein, which serves as a model for PDEδ association to prenylated proteins. Using various biophysical approaches in conjunction with theoretical considerations, we show here that binding of the largely hydrophobic ligand surprisingly has enthalpy-driven signature, and the entropy change is largely controlled by the fine balance between the hydrational and conformational terms. Moreover, binding of PDEδ to farnesyl-cystein is accompanied by an increase in thermal stability, the release of about 150 water molecules from the interacting species, a decrease in solvent accessible surface area, and a marked decrease of the volume fluctuations and hence dynamics of the protein. Altogether, our results shed more light on the molecular mechanism of PDEδ interaction with prenylated Ras proteins, which is also prerequisite for an optimization of the structure-based molecular design of drugs against Ras related diseases and for understanding the multitude of biological functions of PDEδ.
Collapse
Affiliation(s)
- S Suladze
- TU Dortmund University , Department of Chemistry and Chemical Biology, D-44221 Dortmund, Germany
| | | | | |
Collapse
|
21
|
Son I, Selvaratnam R, Dubins DN, Melacini G, Chalikian TV. Ultrasonic and densimetric characterization of the association of cyclic AMP with the cAMP-binding domain of the exchange protein EPAC1. J Phys Chem B 2013; 117:10779-84. [PMID: 23968295 DOI: 10.1021/jp406451p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We employed a combination of densimetric and ultrasonic velocimetric techniques to characterize the volumetric properties of the association of the cAMP-binding domain (CBD) of EPAC1 with cAMP at 25 °C in a pH 7.6 buffer. The binding of cAMP to the CBD of EPAC1 is accompanied by changes in volume, ΔV, and adiabatic compressibility, ΔKS, of -59 ± 4 cm(3) mol(-1) and (34 ± 9) × 10(-4) cm(3) mol(-1) bar(-1), respectively. We use these volumetric results in conjunction with the structural data to estimate a change in hydration, Δnh, accompanying the binding. We calculate that approximately 103 water molecules are released to the bulk from the associating surfaces of the protein and the ligand. This number is ∼30% larger than the number of water molecules in direct contact with the associating surfaces while also being within the error of our Δnh determination. Therefore, we conclude that cAMP binding to EPAC1 may involve, in addition to the waters from within the first coordination sphere, also some waters from the second coordination sphere of the protein and cAMP. Our analysis of the compressibility data reveals that the protein becomes more rigid and less dynamic upon the cAMP binding as reflected in a 4 ± 0.5% decrease in its intrinsic coefficient of adiabatic compressibility. Finally, we estimate the hydration, ΔShyd, and configurational, ΔSconf, contributions to the binding entropy, ΔSb. We find that the binding entropy is determined by the fine balance between the ΔShyd and ΔSconf terms. In general, we discuss insights that are derived from a combination of volumetric and structural properties, in particular, emphasizing how measured changes in volume and compressibility can be interpreted in terms of hydration and dynamic properties of EPAC1 in its apo- and holo-forms.
Collapse
Affiliation(s)
- Ikbae Son
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto , 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Buckin V. Application of High-Resolution Ultrasonic Spectroscopy for analysis of complex formulations. Compressibility of solutes and solute particles in liquid mixtures. ACTA ACUST UNITED AC 2012. [DOI: 10.1088/1757-899x/42/1/012001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Pilipenko OS, Atyaksheva LF, Kryuchkova EV, Chukhrai ES. Adsorption characteristics of lysozyme on silochrome at different pH values. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2012. [DOI: 10.1134/s0036024412080109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Son I, Shek YL, Dubins DN, Chalikian TV. Volumetric Characterization of Tri-N-acetylglucosamine Binding to Lysozyme. Biochemistry 2012; 51:5784-90. [DOI: 10.1021/bi3006994] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ikbae Son
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S
3M2, Canada
| | - Yuen Lai Shek
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S
3M2, Canada
| | - David N. Dubins
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S
3M2, Canada
| | - Tigran V. Chalikian
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S
3M2, Canada
| |
Collapse
|
26
|
Thakkar SV, Joshi SB, Jones ME, Sathish HA, Bishop SM, Volkin DB, Middaugh CR. Excipients differentially influence the conformational stability and pretransition dynamics of two IgG1 monoclonal antibodies. J Pharm Sci 2012; 101:3062-77. [PMID: 22581714 DOI: 10.1002/jps.23187] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/11/2012] [Accepted: 04/20/2012] [Indexed: 01/16/2023]
Abstract
Since immunoglobulins are conformationally dynamic molecules in solution, we studied the effect of stabilizing and destabilizing excipients on the conformational stability and dynamics of two IgG1 monoclonal antibodies (mAbs; mAb-A and mAb-B) using a variety of biophysical approaches. Even though the two mAbs are of the same IgG1 subtype, the unfolding patterns, aggregation behavior, and pretransition dynamics of these two antibodies were strikingly different in response to external perturbations such as pH, temperature, and presence of excipients. Sucrose and arginine were identified as stabilizers and destabilizers, respectively, on the basis of their influence on conformational stability for both the IgG1 mAbs. The two excipients, however, had distinct effective concentrations and different effects on the conformational stability and pretransition dynamics of the two mAbs as measured by a combination of differential scanning calorimetry, high-resolution ultrasonic spectroscopy, and red-edge excitation shift fluorescence studies. Stabilizing concentrations of sucrose were found to decrease the internal motions of mAb-B, whereas arginine marginally increased its adiabatic compressibility in the pretransition region. Both sucrose and arginine did not influence the pretransition dynamics of mAb-A. The potential reasons for such differences in excipient effects between two IgG1 mAbs are discussed.
Collapse
Affiliation(s)
- Santosh V Thakkar
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Hedwig GR, Høiland H. Partial Molar Isentropic Compressions of Some Tetra- and Pentapeptides in Aqueous Solution: Implications for Group Additivity Schemes for Unfolded Proteins. J SOLUTION CHEM 2012. [DOI: 10.1007/s10953-012-9818-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Liu J, Bai S, Jin Q, Li C, Yang Q. Enhanced thermostability of enzymes accommodated in thermo-responsive nanopores. Chem Sci 2012. [DOI: 10.1039/c2sc21026f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
29
|
Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 2011; 63:1118-59. [PMID: 21855584 DOI: 10.1016/j.addr.2011.07.006] [Citation(s) in RCA: 350] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/19/2011] [Accepted: 07/26/2011] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to demonstrate the critical importance of understanding protein-excipient interactions as a key step in the rational design of formulations to stabilize and deliver protein-based therapeutic drugs and vaccines. Biophysical methods used to examine various molecular interactions between solutes and protein molecules are discussed with an emphasis on applications to pharmaceutical excipients in terms of their effects on protein stability. Key mechanisms of protein-excipient interactions such as electrostatic and cation-pi interactions, preferential hydration, dispersive forces, and hydrogen bonding are presented in the context of different physical states of the formulation such as frozen liquids, solutions, gels, freeze-dried solids and interfacial phenomenon. An overview of the different classes of pharmaceutical excipients used to formulate and stabilize protein therapeutic drugs is also presented along with the rationale for use in different dosage forms including practical pharmaceutical considerations. The utility of high throughput analytical methodologies to examine protein-excipient interactions is presented in terms of expanding formulation design space and accelerating experimental timelines.
Collapse
Affiliation(s)
- Tim J Kamerzell
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
30
|
Verma PK, Rakshit S, Mitra RK, Pal SK. Role of hydration on the functionality of a proteolytic enzyme α-chymotrypsin under crowded environment. Biochimie 2011; 93:1424-33. [DOI: 10.1016/j.biochi.2011.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 04/20/2011] [Indexed: 11/28/2022]
|
31
|
Nfor BK, Hylkema NN, Wiedhaup KR, Verhaert PDEM, van der Wielen LAM, Ottens M. High-throughput protein precipitation and hydrophobic interaction chromatography: salt effects and thermodynamic interrelation. J Chromatogr A 2011; 1218:8958-73. [PMID: 21868020 DOI: 10.1016/j.chroma.2011.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/01/2011] [Accepted: 08/07/2011] [Indexed: 11/29/2022]
Abstract
Salt-induced protein precipitation and hydrophobic interaction chromatography (HIC) are two widely used methods for protein purification. In this study, salt effects in protein precipitation and HIC were investigated for a broad combination of proteins, salts and HIC resins. Interrelation between the critical thermodynamic salting out parameters in both techniques was equally investigated. Protein precipitation data were obtained by a high-throughput technique employing 96-well microtitre plates and robotic liquid handling technology. For the same protein-salt combinations, isocratic HIC experiments were performed using two or three different commercially available stationary phases-Phenyl Sepharose low sub, Butyl Sepharose and Resource Phenyl. In general, similar salt effects and deviations from the lyotropic series were observed in both separation methods, for example, the reverse Hofmeister effect reported for lysozyme below its isoelectric point and at low salt concentrations. The salting out constant could be expressed in terms of the preferential interaction parameter in protein precipitation, showing that the former is, in effect, the net result of preferential interaction of a protein with water molecules and salt ions in its vicinity. However, no general quantitative interrelation was found between salting out parameters or the number of released water molecules in protein precipitation and HIC. In other words, protein solubility and HIC retention factor could not be quantitatively interrelated, although for some proteins, regular trends were observed across the different resins and salt types.
Collapse
Affiliation(s)
- Beckley K Nfor
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Chukhrai ES, Pilipenko OS, Ovsyannikov RA, Atyaksheva LF, Knyazeva EE, Ivanova II. Mechanism of the dimerization of enzymes upon adsorption on silicate adsorbents using the example of lysozyme and β-galactosidase. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2010. [DOI: 10.1134/s0036024410110282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Sarupria S, Ghosh T, García AE, Garde S. Studying pressure denaturation of a protein by molecular dynamics simulations. Proteins 2010; 78:1641-51. [PMID: 20146357 DOI: 10.1002/prot.22680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many globular proteins unfold when subjected to several kilobars of hydrostatic pressure. This "unfolding-up-on-squeezing" is counter-intuitive in that one expects mechanical compression of proteins with increasing pressure. Molecular simulations have the potential to provide fundamental understanding of pressure effects on proteins. However, the slow kinetics of unfolding, especially at high pressures, eliminates the possibility of its direct observation by molecular dynamics (MD) simulations. Motivated by experimental results-that pressure denatured states are water-swollen, and theoretical results-that water transfer into hydrophobic contacts becomes favorable with increasing pressure, we employ a water insertion method to generate unfolded states of the protein Staphylococcal Nuclease (Snase). Structural characteristics of these unfolded states-their water-swollen nature, retention of secondary structure, and overall compactness-mimic those observed in experiments. Using conformations of folded and unfolded states, we calculate their partial molar volumes in MD simulations and estimate the pressure-dependent free energy of unfolding. The volume of unfolding of Snase is negative (approximately -60 mL/mol at 1 bar) and is relatively insensitive to pressure, leading to its unfolding in the pressure range of 1500-2000 bars. Interestingly, once the protein is sufficiently water swollen, the partial molar volume of the protein appears to be insensitive to further conformational expansion or unfolding. Specifically, water-swollen structures with relatively low radii of gyration have partial molar volume that are similar to that of significantly more unfolded states. We find that the compressibility change on unfolding is negligible, consistent with experiments. We also analyze hydration shell fluctuations to comment on the hydration contributions to protein compressibility. Our study demonstrates the utility of molecular simulations in estimating volumetric properties and pressure stability of proteins, and can be potentially extended for applications to protein complexes and assemblies.
Collapse
Affiliation(s)
- Sapna Sarupria
- Howard P Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
34
|
Ascone I, Kahn R, Girard E, Prangé T, Dhaussy AC, Mezouar M, Ponikwicki N, Fourme R. Isothermal compressibility of macromolecular crystals and macromolecules derived from high-pressure X-ray crystallography. J Appl Crystallogr 2010. [DOI: 10.1107/s0021889810003055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The compressibility of several nucleic acid and globular protein crystals has been investigated by high-pressure macromolecular crystallography. Further, crystal structures at four different pressures allowed the determination of the intrinsic compressibilityversuspressure of d(GGTATACC)2and hen egg-white lysozyme. For lysozyme, the values for the intrinsic molecular compressibility at atmospheric pressure and the nonlinearity index were 0.070 GPa−1and 8.15, respectively. On the basis of two crystal structures at atmospheric and high pressure, similar, albeit less complete, information was derived for d(CGCGAATTCGCG)2and bovine erythrocyte Cu,Zn superoxide dismutase. Using these data and accurate calculations of the solvent-excluded volume, the apparent solvent compressibility in the crystalline state was determined as a function of pressure and compared with results from a simple model that assumes invariant unit-cell content, with the conclusion that solvent compressibility was abnormal for three out of the five crystals investigated. Experimental results suggest that macromolecular crystals submitted to high pressure may have a variable unit-cell mass due to solvent exchange with the surrounding pool, as already observed in other hydrated crystals such as zeolites.
Collapse
|
35
|
Pressure dependence of the apparent specific volume of bovine serum albumin: Insight into the difference between isothermal and adiabatic compressibilities. Biophys Chem 2009; 144:67-71. [PMID: 19632757 DOI: 10.1016/j.bpc.2009.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/24/2009] [Accepted: 06/24/2009] [Indexed: 11/23/2022]
Abstract
There are some theoretical arguments related to interpreting the adiabatic compressibility (beta(s)) of a protein determined from the sound velocity and the difference between beta(s) and isothermal compressibility (beta(T)). To address these problems experimentally, we constructed a high-pressure oscillating densitometer and used it to measure the apparent specific volume of bovine serum albumin as a function of pressure (0.1-78MPa) and temperature (5-35 degrees C). The beta(T) determined from plots of the apparent specific volume vs. pressure was slightly larger than beta(s) at all temperatures examined, with the difference between the two compressibilities increasing as the temperature was decreased. Only at room temperature did the observed beta(T) agree with those estimated from beta(s) using the heat capacity and the thermal expansibility of the protein, suggesting that there are significant as-yet-unknown mechanisms that affect protein compressibility.
Collapse
|
36
|
|
37
|
Vinu A, Gokulakrishnan N, Balasubramanian V, Alam S, Kapoor M, Ariga K, Mori T. Three-Dimensional Ultralarge-Pore Ia3d Mesoporous Silica with Various Pore Diameters and Their Application in Biomolecule Immobilization. Chemistry 2008; 14:11529-38. [DOI: 10.1002/chem.200801304] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Hydrophobic interaction chromatography of proteins. J Chromatogr A 2008; 1205:46-59. [DOI: 10.1016/j.chroma.2008.07.079] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 07/22/2008] [Accepted: 07/25/2008] [Indexed: 11/18/2022]
|
39
|
Pfeiffer H, Heremans K, Wevers M. The influence of correlated protein-water volume fluctuations on the apparent compressibility of proteins determined by ultrasonic velocimetry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1546-51. [PMID: 18773977 DOI: 10.1016/j.bbapap.2008.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 08/06/2008] [Accepted: 08/08/2008] [Indexed: 11/30/2022]
Abstract
The elasticity of proteins, expressed by the compressibility, is potentially one of the most important properties of proteins because of the close relationship with its functionality. The compressibility of solutions can be determined by measurements of sound velocity and density. These quantities are related by the Newton-Laplace equation. In order to interpret the apparent compressibility of solutes in highly dilute solutions, it is required to consider the relation between compressibility and sound velocity of the solution using an appropriate reference system. The classical approach usually gives too small values for the apparent compressibility when compared with other methods. We show that the difference can partially be explained if the correlated volume fluctuations of the solvent are taken into consideration. A special attention is given to the compressibility of proteins. Finally, the present paper is not intended to replace established approaches, but it wants to create awareness that the classical mixing rules refer to ideal gasses assuming uncorrelated volume fluctuations and that a considerable part of the hydration effects could be explained by correlated volume fluctuations.
Collapse
Affiliation(s)
- Helge Pfeiffer
- Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven, Belgium.
| | | | | |
Collapse
|
40
|
Cavity-creating mutations in Pseudomonas aeruginosa azurin: effects on protein dynamics and stability. Biophys J 2008; 95:771-81. [PMID: 18424505 DOI: 10.1529/biophysj.107.128009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in flexibility and structural stability of Pseudomonas aeruginosa azurin in response to cavity-creating mutations were probed by the phosphorescence emission of Trp-48, which was deeply buried in the compact hydrophobic core of the macromolecule, and by measurements of guanidinum hydrochloride unfolding, respectively. Replacement of the bulky side chains Phe-110, Phe-29, and Tyr-108 with the smaller Ala introduced cavities at different distances from the hydrophobic core. The phosphorescence lifetime (tau(0)) of Trp-48, buried inside the protein core, and the acrylamide quenching rate constant (k(q)) were used to monitor local and global flexibility changes induced by the introduction of the cavity. The results of this work demonstrate the following: 1), the effect on core flexibility of the insertion of cavities is not correlated readily to the distance of the cavity from the core; 2), the protein global flexibility results are related to the cavity distance from the packed core of the macromolecule; and 3), the increase in protein flexibility does not correspond necessarily to a comparable destabilizing effect of some mutations.
Collapse
|
41
|
Partial molar volumes and adiabatic compressibilities of unfolded protein states. Biophys Chem 2008; 134:185-99. [PMID: 18342425 DOI: 10.1016/j.bpc.2008.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 02/12/2008] [Accepted: 02/12/2008] [Indexed: 11/22/2022]
Abstract
We determined the partial molar volumes, V degrees , and adiabatic compressibilities, K degrees (S), of N-acetyl amino acids with neutralized carboxyl termini, N-acetyl amino acid amides, and N-acetyl amino acid methylamides between 18 and 55 degrees C. The individual compounds in the three classes have been selected so as to collectively cover the 20 naturally occurring amino acid side chains. We interpret our experimental results in terms of the volumetric contributions and hydration properties of individual amino acid side chains and their constituent atomic groups. We also conducted pH-dependent densimetric and acoustic measurements to determine changes in volume and compressibility accompanying protonation of the aspartic acid, glutamic acid, histidine, lysine, and arginine side chains. We use our resulting data to develop an additive scheme for calculating the partial molar (specific) volume and adiabatic compressibility of fully extended polypeptide chains as a function of pH and temperature. We discuss the differences and similarities between our proposed scheme and the reported additive approaches. We compare our calculated volumetric characteristics of the fully extended conformations of apocytochrome c and apomyoglobin with the experimental values measured in water (for apocytochrome c) or acidic pH (for apomyoglobin). At these respective experimental conditions, the two proteins are unfolded. However, the comparison between the calculated and experimental volumetric characteristics suggests that neither apocytochrome c nor apomyoglobin are fully unfolded and retain a sizeable core of solvent-inaccessible groups.
Collapse
|
42
|
Kamerzell TJ, Ramsey JD, Middaugh CR. Immunoglobulin Dynamics, Conformational Fluctuations, and Nonlinear Elasticity and Their Effects on Stability. J Phys Chem B 2008; 112:3240-50. [DOI: 10.1021/jp710061a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Burakowski A, Gliński J. Additivity of adiabatic compressibility with the size and geometry of the solute molecule. J Mol Liq 2008. [DOI: 10.1016/j.molliq.2007.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Mitra RK, Sinha SS, Pal SK. Hydration in protein folding: thermal unfolding/refolding of human serum albumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:10224-9. [PMID: 17711315 DOI: 10.1021/la7014447] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Human serum albumin (HSA) is known to undergo both reversible and irreversible thermal unfolding and refolding, depending upon the experimental conditions (end temperature) at neutral pH. In this report we have used high precision densimetric and ultrasonic measurements to determine the apparent specific volume (phi v) and compressibility (phi k) of HSA at different unfolded and refolded states at two different end temperatures, 55 degrees C and 70 degrees C. The unfolded and refolded states were characterized using dynamic light scattering (DLS), circular dichroism (CD), picosecond-resolved fluorescence decay, and anisotropy of the single-tryptophan residue in HSA (Trp214). Both the unfolded states were allowed to refold by cooling wherein the former and latter processes were found to be reversible and irreversible, respectively, in nature. The results obtained from the densimetric and ultrasonic measurements reveal that the apparent specific volume and compressibility of the protein in the reversible protein unfolding process is preserved upon restoration of HSA to ambient temperature. However, a significant change in phi v and phi k occurs in the process of irreversible protein refolding (from 70 to 20 degrees C). The experimental observation is rationalized in terms of the exposure of domain IIA to an aqueous environment, resulting in the swelling of the protein to a higher hydrodynamic diameter. Our studies attempt to explore the extent of hydration associated with the structural integrity of the popular protein HSA.
Collapse
Affiliation(s)
- Rajib Kumar Mitra
- Unit for Nano Science and Technology, Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Center for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098, India
| | | | | |
Collapse
|
45
|
Shi X, Liu J, Li C, Yang Q. Pore-Size Tunable Mesoporous Zirconium Organophosphonates with Chiral l-Proline for Enzyme Adsorption. Inorg Chem 2007; 46:7944-52. [PMID: 17696427 DOI: 10.1021/ic700892z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mesoporous zirconium organophosphonates with a tunable mesopore (pore diameter: from 4.8 to 16.3 nm) were synthesized through co-condensation of ZrCl4 and 1-phosphomethylproline (H3PMP) with the aid of organic additives in the presence of an anionic surfactant (sodium dodecyl sulfate) under weak acidic conditions. The organic additives, tetrahydrofuran, can effectively strengthen the assembly of ZrCl4 and H3PMP around the surfactant micelles through decreasing the hydrolysis and condensation rate of ZrCl4. The results of the N2 sorption isotherm and SEM image show that zirconium phosphate with a bimodal structure is formed by calcination of mesoporous zirconium organophosphonate. Mesoporous zirconium organophosphonates can effectively adsorb lysozyme (Lz) and papain, and the adsorption equilibrium for Lz can be reached within 30 min. The adsorption capacity for Lz and papain can reach as high as 438 and 297 mg/g, respectively. Furthermore, Lz adsorbed on mesoporous zirconium organophosphonates can retain its structural conformation as in its free state, and no leaching of Lz from the solid was observed when shaking the Lz-loaded solid in a buffer solution. Also, the existence of L-proline in the mesopore could help the adsorption of papain at a pH value lower than the pI of papain.
Collapse
Affiliation(s)
- Xin Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | | | | | | |
Collapse
|
46
|
Pereira B, Jain S, Garde S. Quantifying the protein core flexibility through analysis of cavity formation. J Chem Phys 2007; 124:74704. [PMID: 16497067 DOI: 10.1063/1.2149848] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an extensive analysis of cavity statistics in the interior of three different proteins, in liquid n-hexane, and in water performed using molecular-dynamics simulations. The heterogeneity of packing density over atomic length scales in different parts of proteins is evident in the wide range of values observed for the average cavity size, the probability of cavity formation, and the corresponding free energy of hard-sphere insertion. More interestingly, however, the distribution of cavity sizes observed at various points in the protein interior is surprisingly homogeneous in width. That width is significantly smaller than that measured for similar distributions in liquid n-hexane or water, indicating that protein interior is much less flexible than liquid hexane. The width of the cavity size distribution correlates well with the experimental isothermal compressibility data for liquids and proteins. An analysis of cavity statistics thus provides an efficient method to quantify local properties, such as packing, stiffness, or compressibility in heterogeneous condensed media.
Collapse
Affiliation(s)
- Brian Pereira
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | |
Collapse
|
47
|
Girard E, Prangé T, Dhaussy AC, Migianu-Griffoni E, Lecouvey M, Chervin JC, Mezouar M, Kahn R, Fourme R. Adaptation of the base-paired double-helix molecular architecture to extreme pressure. Nucleic Acids Res 2007; 35:4800-8. [PMID: 17617642 PMCID: PMC1950552 DOI: 10.1093/nar/gkm511] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/13/2007] [Accepted: 06/13/2007] [Indexed: 11/14/2022] Open
Abstract
The behaviour of the d(GGTATACC) oligonucleotide has been investigated by X-ray crystallography at 295 K in the range from ambient pressure to 2 GPa (approximately 20,000 atm). Four 3D-structures of the A-DNA form (at ambient pressure, 0.55, 1.09 and 1.39 GPa) were refined at 1.60 or 1.65 A resolution. In addition to the diffraction pattern of the A-form, the broad meridional streaks previously explained by occluded B-DNA octamers within the channels of the crystalline A-form matrix were observed up to at least 2 GPa. This work highlights an important property of nucleic acids, their capability to withstand very high pressures, while keeping in such conditions a nearly invariant geometry of base pairs that store and carry genetic information. The double-helix base-paired architecture behaves as a molecular spring, which makes it especially adapted to very harsh conditions. These features may have contributed to the emergence of a RNA World at prebiotic stage.
Collapse
Affiliation(s)
- Eric Girard
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kobryn AE, Hirata F. Statistical-mechanical theory of ultrasonic absorption in molecular liquids. J Chem Phys 2007; 126:044504. [PMID: 17286484 DOI: 10.1063/1.2424709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present results of the theoretical description of ultrasonic phenomena in molecular liquids. In particular, we are interested in the development of a microscopical, i.e., statistical-mechanical, framework capable of explaining the long living puzzle of excess ultrasonic absorption in liquids. Typically, an ultrasonic wave in a liquid can be generated by applying a periodically alternating external pressure with an angular frequency that corresponds to the ultrasound. If the perturbation introduced by such a process is weak, its statistical-mechanical treatment can be done with the use of a linear response theory. We treat the liquid as a system of interacting sites, so that all the response/aftereffect functions as well as the energy dissipation and generalized (wave-vector and frequency-dependent) ultrasonic absorption coefficient are obtained in terms of familiar site-site static and time correlation functions such as static structure factors or intermediate scattering functions. To express the site-site intermediate scattering functions, we refer to the site-site memory equations in the mode-coupling approximation for first-order memory kernels, while equilibrium properties such as site-site static structure factors, and direct and total correlation functions are deduced from the integral equation theory of molecular liquids known as RISM, or one of its generalizations. All of the formalism is phrased in a general manner, hence the results obtained are expected to work for arbitrary types of molecular liquids including simple, ionic, polar, and nonpolar liquids.
Collapse
Affiliation(s)
- Alexander E Kobryn
- Department of Theoretical Study, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | | |
Collapse
|
49
|
To BCS, Lenhoff AM. Hydrophobic interaction chromatography of proteins. J Chromatogr A 2007; 1141:191-205. [PMID: 17207806 DOI: 10.1016/j.chroma.2006.12.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 11/30/2006] [Accepted: 12/05/2006] [Indexed: 11/18/2022]
Abstract
The contributions of protein and adsorbent properties to retention and recovery were examined for hydrophobic interaction chromatography (HIC) using eight commercially available phenyl media and five model proteins (ribonuclease A, lysozyme, alpha-lactalbumin, ovalbumin and BSA). The physical properties of the adsorbents were determined by inverse size exclusion chromatography (ISEC). The adsorbents examined differ from each other in terms of base matrix, ligand density, porosity, mean pore radius, pore size distribution (PSD) and phase ratio, allowing systematic studies to understand how these properties affect protein retention and recovery in HIC media. The proteins differ in such properties as adiabatic compressibility and molecular mass. The retention factors of the proteins in the media were determined by isocratic elution. The results show a very clear trend in that proteins with high adiabatic compressibility (higher flexibility) were more strongly retained. For proteins with similar adiabatic compressibilities, those with higher molecular mass showed stronger retention in Sepharose media, but this trend was not observed in adsorbents with polymethacrylate and polystyrene divinylbenzene base matrices. This observation could be related to protein recovery, which was sensitive to protein flexibility, molecular size, and conformation as well as the ligand densities and base matrices of the adsorbents. Low protein recovery during isocratic elution could affect the interpretation of protein selectivity results in HIC media. The retention data were fitted to a previously published retention model based on the preferential interaction theory, in terms of which retention is driven by release of water molecules and ions upon protein-adsorbent interaction. The calculated number of water molecules released was found to be statistically independent of protein retention strength and adsorbent and protein properties.
Collapse
Affiliation(s)
- Brian C S To
- Merck Research Laboratories, Sumneytown Pike, West Point, PA 19486, USA
| | | |
Collapse
|
50
|
|