1
|
Guo T, Lu C, Chen Z, Song Y, Li H, Han Y, Hou Y, Zhong Y, Guo J. Bioinspired facilitation of intrinsically conductive polymers: Mediating intra/extracellular electron transfer and microbial metabolism in denitrification. CHEMOSPHERE 2022; 295:133865. [PMID: 35124084 DOI: 10.1016/j.chemosphere.2022.133865] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/02/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Intrinsically conductive polymers, polyaniline and polyaniline sulfonate (PASAni) were used to explore their effect on denitrification. Denitrification was accelerated 1.90 times by 2 mM PASAni and the possible mechanisms were mainly attributed to the accelerated electron transfer and the enhanced microbial metabolism activity. Intracellular electron transfer was accelerated by PASAni and the acceleration sites were from NADH to coenzyme Q (CoQ), quinone loop, from Complex II to CoQ and from QH2 to Cyt. c1. Extracellular electron transfer was accelerated because PASAni promoted more secretion of redox species and PASAni embedded in extracellular polymeric substance (EPS). Moreover, PASAni itselfprovided more electron transfer pathways as redox species. Microbial metabolism activity was also enhanced by PASAni, which was reflected in the increased nitrate/nitrite reductase activity (236.13/155.43%), electron transfer system activity (112.49%), adenosine triphosphate level (133.41%) and EPS content (189.06%). Besides, the enriched Proteobacteria in PASAni supplement system was also conducive to denitrification. This work provided fundamental information for conductive polymers mediating microbial electron transfer and enhancing contaminants biotransformation.
Collapse
Affiliation(s)
- Tingting Guo
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Caicai Lu
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Zhuhai Orbita Aerospace Science & Technology Co.,LTD, Orbita Techpark1, Baisha Road, Tangjia Dong'an, Zhuhai, China.
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W, Montreal, Quebec, Canada
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Yi Han
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Yuan Zhong
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, Zhejiang, China; School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China.
| |
Collapse
|
2
|
Jiang M, Feng L, Zheng X, Chen Y. Bio-denitrification performance enhanced by graphene-facilitated iron acquisition. WATER RESEARCH 2020; 180:115916. [PMID: 32438140 DOI: 10.1016/j.watres.2020.115916] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/21/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Bio-denitrification is widely used for remediation of nitrate contaminated site or removal of nitrate from wastewater, but its efficiency is not always satisfied and high nitrite accumulation and nitrous oxide emission occur frequently. Iron plays an important role in achieving efficient biological denitrification. Nevertheless, its concentration in cells is usually inadequate, and additional supply of iron to denitrification system has been adopted in the literature. In this study, a novel approach to increase the intracellular iron concentration of denitrifying microbes by using graphene to accelerate iron transport, which significantly enhanced bio-denitrification and decreased intermediates accumulations, was reported, and the underlying mechanisms were explored. The presence of 50 mg/L of graphene was observed to not only significantly promote nitrate removal efficiency by 67.3%, but also decrease nitrite and nitrous oxide generation by 49.0% and 63.9%, respectively. It was found that graphene promoted the generation, transfer and consumption of electrons, increased the activities or gene expressions of Fe-containing enzymes (such as complex I, complex III, various cytochromes, and most denitrification reductases), and enhanced the growth of denitrifiers due to iron acquisition by denitrifying bacteria being remarkably facilitated, leading to a significant increment of intracellular iron concentration. Meanwhile, the intracellular proton-motive force and ATP levels were promoted as well. This study provided a new approach to enhancing bio-denitrification and revealed a novel insight into biological iron acquisition.
Collapse
Affiliation(s)
- Meng Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
3
|
Liu H, Chen Y. Enhanced Methane Production from Food Waste Using Cysteine To Increase Biotransformation of l-Monosaccharide, Volatile Fatty Acids, and Biohydrogen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3777-3785. [PMID: 29465997 DOI: 10.1021/acs.est.7b05355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The enhancement of two-stage anaerobic digestion of polysaccharide-enriched food waste by the addition of cysteine-an oxygen scavenger, electron mediator, and nitrogen source-to the acidification stage was reported. It was found that in the acidification stage the accumulation of volatile fatty acids (VFA), which mainly consisted of acetate, butyrate, and propionate, was increased by 49.3% at a cysteine dosage of 50 mg/L. Although some cysteine was biodegraded in the acidification stage, the VFA derived from cysteine was negligible. In the methanogenesis stage, the biotransformations of both VFA and biohydrogen to methane were enhanced, and the methane yield was improved by 43.9%. The mechanisms study showed that both d-glucose and l-glucose (the model monosaccharides) were detectable in the hydrolysis product, and the addition of cysteine remarkably increased the acidification of l-glucose, especially acetic acid and hydrogen generation, due to key enzymes involved in l-glucose metabolism being enhanced. Cysteine also improved the activity of homoacetogens by 34.8% and hydrogenotrophic methanogens by 54%, which might be due to the electron transfer process being accelerated. This study provided an alternative method to improve anaerobic digestion performance and energy recovery from food waste.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| |
Collapse
|
4
|
Mu H, Li Y, Zhao Y, Zhang X, Hua D, Xu H, Jin F. Microbial and nutritional regulation of high-solids anaerobic mono-digestion of fruit and vegetable wastes. ENVIRONMENTAL TECHNOLOGY 2018; 39:405-413. [PMID: 28278097 DOI: 10.1080/09593330.2017.1301571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
The anaerobic digestion of single fruit and vegetable wastes (FVW) can be easily interrupted by rapid acidogenesis and inhibition of methanogen, and the digestion system tends to be particularly unstable at high solid content. In this study, the anaerobic digestion of FVW in batch experiments under mesophilic condition at a high solid concentration of 10% was successfully conducted to overcome the acidogenesis problem through several modifications. Firstly, compared with the conventional anaerobic sludge (CAS), the acclimated anaerobic granular sludge (AGS) was found to be a better inoculum due to its higher Archaea abundance. Secondly, waste activated sludge (WAS) was chosen to co-digest with FVW, because WAS had abundant proteins that could generate intermediate ammonium. The ammonium could neutralize the accumulated volatile fatty acids (VFAs) and prevent the pH value of the digestion system from rapidly decreasing. Co-digestion of FVW and WAS with TS ratio of 60:40 gave the highest biogas yield of 562 mL/g-VS and the highest methane yield of 362 mL/g-VS. Key parameters in the digestion process, including VFAs concentration, pH, enzyme activity, and microbial activity, were also examined.
Collapse
Affiliation(s)
- Hui Mu
- a Energy Research Institute of Shandong Academy of Sciences , Key Laboratory for Biomass Gasification Technology of Shandong Province , Jinan , People's Republic of China
| | - Yan Li
- a Energy Research Institute of Shandong Academy of Sciences , Key Laboratory for Biomass Gasification Technology of Shandong Province , Jinan , People's Republic of China
| | - Yuxiao Zhao
- a Energy Research Institute of Shandong Academy of Sciences , Key Laboratory for Biomass Gasification Technology of Shandong Province , Jinan , People's Republic of China
| | - Xiaodong Zhang
- a Energy Research Institute of Shandong Academy of Sciences , Key Laboratory for Biomass Gasification Technology of Shandong Province , Jinan , People's Republic of China
| | - Dongliang Hua
- a Energy Research Institute of Shandong Academy of Sciences , Key Laboratory for Biomass Gasification Technology of Shandong Province , Jinan , People's Republic of China
| | - Haipeng Xu
- a Energy Research Institute of Shandong Academy of Sciences , Key Laboratory for Biomass Gasification Technology of Shandong Province , Jinan , People's Republic of China
| | - Fuqiang Jin
- a Energy Research Institute of Shandong Academy of Sciences , Key Laboratory for Biomass Gasification Technology of Shandong Province , Jinan , People's Republic of China
| |
Collapse
|
5
|
Zhao C, Mu H, Zhao Y, Wang L, Zuo B. Microbial characteristics analysis and kinetic studies on substrate composition to methane after microbial and nutritional regulation of fruit and vegetable wastes anaerobic digestion. BIORESOURCE TECHNOLOGY 2018; 249:315-321. [PMID: 29054061 DOI: 10.1016/j.biortech.2017.10.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
This study firstly evaluated the microbial role when choosing the acclimated anaerobic granular sludge (AGS) and waste activated sludge (WAS) as microbial and nutritional regulators to improve the biomethanation of fruit and vegetable wastes (FVW). Results showed that the enriched hydrogenotrophic methanogens, and Firmicutes and Spirochaeta in the AGS were responsible for the enhanced methane yield. A synthetic waste representing the mixture of WAS and FVW was then used to investigate the influences of different substrate composition on methane generations. The optimal mass ratio of carbohydrate/protein/cellulose was observed to be 50:45:5, and the corresponding methane yield was 411mL/g-VSadded. Methane kinetic studies suggested that the modified Gompertz model fitted better with those substrates of carbohydrate- than protein-predominated. Parameter results indicated that the maximum methane yield and production rate were enhanced firstly and then reduced with the decreasing carbohydrate and increasing protein percentages; the lag phase time however increased continuously.
Collapse
Affiliation(s)
- Chunhui Zhao
- Key Laboratory of Water Resources and Environmental Engineering in Universities of Shandong (University of Jinan), School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Hui Mu
- Energy Research Institute of Shandong Academy of Sciences, Key Laboratory for Biomass Gasification Technology of Shandong Province, Jinan 250014, China.
| | - Yuxiao Zhao
- Energy Research Institute of Shandong Academy of Sciences, Key Laboratory for Biomass Gasification Technology of Shandong Province, Jinan 250014, China
| | - Liguo Wang
- Key Laboratory of Water Resources and Environmental Engineering in Universities of Shandong (University of Jinan), School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Bin Zuo
- Shandong Bori Biomass Energy Co., Ltd, China
| |
Collapse
|
6
|
Development of an ATP measurement method suitable for xenobiotic treatment activated sludge biomass. J Chromatogr B Analyt Technol Biomed Life Sci 2015. [PMID: 26210584 DOI: 10.1016/j.jchromb.2015.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Activated sludge consumes a large amount of energy to degrade a xenobiotic organic compound. By tracking the energy inventory of activated sludge biomass during the sludge's degradation of a xenobiotic, any disadvantageous effect on the sludge's performance caused by energy deficiency can be observed. The purpose of this study was to develop a reliable and accurate method for measuring the ATP contents of activated sludge cells that were to degrade a xenobiotic organic. Cell disruption and cellular ATP extraction were performed by a protocol with which xenobiotic degrading activated sludge biomass was washed with SDS, treated by Tris and TCA, and followed by bead blasting. The suspension of disrupted cells was filtered before the filtrate was injected into HPLC that was set at optimal conditions to measure the ATP concentration therein. This extraction protocol and HPLC measurement of ATP was evaluated for its linearity, limits of detection, and reproducibility. Evaluation test results reported a R(2) of 0.999 of linear fit of ATP concentration versus activated sludge concentration, a LOD=0.00045mg/L, a LOQ=0.0015mg/L for HPLC measurement of ATP, a MDL=0.46mg/g SS for ATP extraction protocol, and a recovery efficiency of 96.4±2%. This method of ATP measurement was simple, rapid, reliable, and was unburdened of some limitations other methods may have.
Collapse
|
7
|
Two-stage CSTR–UASB digestion enables superior and alkali addition-free cheese whey treatment. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Yan Y, Chen H, Xu W, He Q, Zhou Q. Enhancement of biochemical methane potential from excess sludge with low organic content by mild thermal pretreatment. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2012.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Luo G, Angelidaki I. Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights. Appl Microbiol Biotechnol 2012; 97:1373-81. [DOI: 10.1007/s00253-012-4547-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 11/29/2022]
|
10
|
Biotechnological Utilization with a Focus on Anaerobic Treatment of Cheese Whey: Current Status and Prospects. ENERGIES 2012. [DOI: 10.3390/en5093492] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Mu H, Zheng X, Chen Y, Chen H, Liu K. Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:5997-6003. [PMID: 22587556 DOI: 10.1021/es300616a] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The increasing use of zinc oxide nanoparticles (ZnO NPs) in consumer and industrial products highlights a need to understand their potential environmental impacts. In this study, the response of anaerobic granular sludge (AGS) to a shock load of ZnO NPs during anaerobic biological wastewater treatment was reported. It was observed that the extracellular polymeric substances (EPS) of AGS and the methane production were not significantly influenced at ZnO NPs of 10 and 50 mg per gram of total suspended solids (mg/g-TSS), but they were decreased when the dosage of ZnO NPs was greater than 100 mg/g-TSS. The visualization of EPS structure with multiple fluorescence labeling and confocal laser scanning microscope revealed that ZnO NPs mainly caused the decrease of proteins by 69.6%. The Fourier transform infrared spectroscopy analysis further indicated that the C-O-C group of polysaccharides and carboxyl group of proteins in EPS were also changed in the presence of ZnO NPs. The decline of EPS induced by ZnO NPs resulted in their deteriorating protective role on the inner microorganisms of AGS, which was in correspondence with the observed lower general physiological activity of AGS and the death of microorganisms. Further investigation showed that the negative influence of ZnO NPs on methane production was due to their severe inhibition on the methanization step.
Collapse
Affiliation(s)
- Hui Mu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
12
|
Zhang D, Chen Y, Zhao Y, Ye Z. A new process for efficiently producing methane from waste activated sludge: alkaline pretreatment of sludge followed by treatment of fermentation liquid in an EGSB reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:803-8. [PMID: 21128635 DOI: 10.1021/es102696d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the literature the production of methane from waste activated sludge (WAS) was usually conducted in a continuous stirred tank reactor (CSTR) after sludge was pretreated. It was reported in our previous publication that compared with other pretreatment methods the methane production in CSTR could be significantly enhanced when sludge was pretreated by NaOH at pH 10 for 8 days. In order to further improve methane production, this study reported a new process for efficiently producing methane from sludge, that is, sludge was fermented at pH 10 for 8 days, which was adjusted by Ca(OH)(2), and then the fermentation liquid was treated in an expanded granular sludge bed (EGSB) for methane generation. First, for comparing the methane production observed in this study with that reported in the literature, the conventional operational model was applied to produce methane from the pH 10 pretreated sludge, that is, directly using the pH 10 pretreated sludge to produce methane in a CSTR. It was observed that the maximal methane production was only 0.61 m(3)CH(4)/m(3)-reactor/day. Then, the use of fermentation liquid of pH 10 pretreated sludge to produce methane in the reactors of up-flow anaerobic sludge bed (UASB), anaerobic sequencing batch reactor (ASBR) and EGSB was compared. The maximal methane production in UASB, ASBR, and EGSB reached 1.41, 3.01, and 12.43 m(3)CH(4)/m(3)-reactor/day, respectively. Finally, the mechanisms for EGSB exhibiting remarkably higher methane production were investigated by enzyme, adenosine-triphosphate (ATP), scanning electron microscope (SEM) and fluorescence in situ hybridization (FISH) analyses. It was found that the granular sludge in EGSB had the highest conversion efficiency of acetic acid to methane, and the greatest activity of hydrolysis and acidification enzymes and general physiology with much more Methanosarcinaceae.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, China
| | | | | | | |
Collapse
|
13
|
Zhang D, Chen Y, Zhao Y, Zhu X. New sludge pretreatment method to improve methane production in waste activated sludge digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:4802-8. [PMID: 20496937 DOI: 10.1021/es1000209] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
During two-phase sludge anaerobic digestion, sludge is usually hydrolyzed and acidified in the first phase, then methane is produced in the second stage. To get more methane from sludge, most studies in literature focused on the increase of sludge hydrolysis. In this paper a different sludge pretreatment method, i.e., pretreating sludge at pH 10 for 8 d is reported, by which both waste activated sludge hydrolysis and acidification were increased, and the methane production was significantly improved. First, the effect of different sludge pretreatment methods on methane yield was compared. The pH 10 pretreated sludge showed the highest accumulative methane yield (398 mL per g of volatile suspended solids), which was 4.4-, 3.5-, 3.1-, and 2.3-fold of the blank (unpretreated), ultrasonic, thermal, and thermal-alkaline pretreated sludge, respectively. Nevertheless, its total time involved in the first (hydrolysis and acidification) and second (methanogenesis) stages was 17 (8 + 9) d, which was almost the same as other pretreatments. Then, the mechanisms for pH 10 pretreatment significantly improving methane yield were investigated. It was found that pretreating sludge at pH 10 caused the greatest sludge hydrolysis, acidification, soluble C:N and C:P ratios, and Fe(3+) concentration with a suitable short-chain fatty acids composition in the first stage, which resulted in the highest microorganism activity (ATP) and methane production in the second phase. Further investigation on the second phase microorganisms with fluorescence in situ hybridization (FISH) and scanning electron microscopy (SEM) indicated that there were much greater active methanogenesis Archaea when methane was produced with the pH 10 pretreated sludge, and the predominant morphology of the microcolonies suggest a shift to Methanosarcina sp. like.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | | | | | | |
Collapse
|
14
|
Kaewsuk J, Thorasampan W, Thanuttamavong M, Seo GT. Kinetic development and evaluation of membrane sequencing batch reactor (MSBR) with mixed cultures photosynthetic bacteria for dairy wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2010; 91:1161-1168. [PMID: 20149520 DOI: 10.1016/j.jenvman.2010.01.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 12/15/2009] [Accepted: 01/10/2010] [Indexed: 05/28/2023]
Abstract
This experimental study was conducted to evaluate a membrane sequencing batch reactor (MSBR) with mixed culture photosynthetic bacteria for dairy wastewater treatment. The study was undertaken in two steps: laboratory and pilot scale experiments. In the first step, kinetics analysis of the MSBR was carried out in a laboratory scale experiment with influent COD concentration of 2500 mg/L. The pilot scale experiment was conducted to investigate the performance of the MSBR and checked the suitability of the kinetics for an engineering design. The kinetic coefficients K(s), k, k(d), Y and mu(m) were found to be 174-mg-COD/L, 7.42/d, 0.1383/d, 0.2281/d and 1.69/d, respectively. There were some deviations of COD removal efficiency between the design value and the actual value. From the kinetics estimation, COD effluent from the design was 27 mg/L while the average actual COD effluent from the experiment was 149 mg/L. Due to the different light source condition, the factors relating to light energy (i.e. L(f) and IR(%)) must be incorporated into engineering design and performance prediction with these kinetic coefficients of the photosynthetic MSBR.
Collapse
Affiliation(s)
- Jutamas Kaewsuk
- Department of Environmental Engineering, Faculty of Engineering, Changwon National University, 9, Sarim-dong Changwon, Kyungnam 641-773, Republic of Korea.
| | | | | | | |
Collapse
|
15
|
Fermentation and growth kinetic study of Aeromonas caviae under anaerobic conditions. Appl Microbiol Biotechnol 2009; 83:767-73. [DOI: 10.1007/s00253-009-1983-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 03/19/2009] [Accepted: 03/19/2009] [Indexed: 11/25/2022]
|
16
|
Shanmugam P, Horan NJ. Simple and rapid methods to evaluate methane potential and biomass yield for a range of mixed solid wastes. BIORESOURCE TECHNOLOGY 2009; 100:471-4. [PMID: 18694638 DOI: 10.1016/j.biortech.2008.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 05/30/2008] [Accepted: 06/05/2008] [Indexed: 05/08/2023]
Abstract
This paper describes rapid techniques to evaluate the methane potential and biomass yield of solid wastes. A number of solid wastes were mixed to provide a range of C:N ratios. Empirical formulae were calculated for each waste based on the results of chemical analysis and these formulae were used to estimate the COD equivalent and stoichiometric methane potential (SMP). The actual COD and biochemical methane potential (BMP) were determined experimentally for each waste and for both parameters there was a good agreement between the empirical and experimental values. The potential of adenosine triphosphate (ATP) to act as an indicator of biomass yield (mg VSS mg(-1) COD removed) was determined during the anaerobic digestion process. The biomass yield determined from ATP analysis was in the range 0.01-0.25mg VSS mg(-1) COD removed which corroborated well with previously reported studies. Empirical formula based SMP together with ATP measurement were shown to provide rapid methods to replace or augment the traditional BMP and VSS measurements and are useful for evaluating the bioenergy and biomass potential of solid wastes for anaerobic digestion.
Collapse
Affiliation(s)
- P Shanmugam
- Public Health and Environmental Engineering, School of Civil Engineering, University of Leeds, Leeds, UK.
| | | |
Collapse
|
17
|
Biochemical indication of microbial mass changes using ATP and DNA measurement in biological treatment of thiocyanate. Appl Microbiol Biotechnol 2008; 80:525-30. [PMID: 18654771 DOI: 10.1007/s00253-008-1601-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
This study was designed to monitor changes in the levels of adenosine 5'-triphosphate (ATP) and deoxyribonucleic acid (DNA) per unit of microbial mass during the autotrophic biodegradation of thiocyanate (SCN(-)). An artificial medium containing trace minerals and 500 mg SCN(-)/L was used as a substrate for bacterial growth. An SCN(-)-degrading bioreactor with a working volume of 6 L, equipped with temperature, pH, and dissolved oxygen controls, was operated in batch mode. During the exponential phase of SCN(-) biodegradation, the ratios of ATP and DNA to microbial dry weight varied from 0.6 to 1.1 microg ATP/mg of volatile suspended solid (VSS), and from 3.5 to 8.8 microg DNA/mg of VSS, respectively. The ATP and DNA concentrations correlated linearly with microbial mass (r (2) > 0.9) within the exponential phase. The linear regression equations were as follows: (1) microbial mass concentration (mg/L) = 0.663 x ATP concentration (microg/L) + 11.1 and (2) microbial concentration (mg/L) = 0.081 x DNA concentration (microg/L) + 10.9. The applicable ranges were 6.8 to 47.4 microg/L for ATP concentration and 41.5 to 395 microg/L for DNA concentration, respectively.
Collapse
|
18
|
Kim J, Lee C, Shin SG, Hwang S. Correlation of microbial mass with ATP and DNA concentrations in acidogenesis of whey permeate. Biodegradation 2007; 19:187-95. [PMID: 17487553 DOI: 10.1007/s10532-007-9125-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 04/11/2007] [Indexed: 11/26/2022]
Abstract
In this paper, we examine variations in the contents of ATP and DNA per unit microbial mass in an acidogenesis of whey permeate. We also introduce a novel approach to estimate microbial mass by measuring ATP and DNA when the ratios of ATP and DNA to microbial mass vary. Acidogenic experiments were performed at 35 degrees C and pH 6.0 in batch mode. The amounts of ATP and DNA per unit microbial mass were not consistent during the incubation except during the post-decay phase. Especially within the exponential phase, each showed a 10-fold difference between maximal and minimal values. In this case, the conventional method which converts ATP or DNA concentration into microbial mass using a fixed conversion factor can give inaccurate results. While the constant ratios of 0.74 mg ATP/g VSS and 1.96 mg DNA/g VSS were determined for the post-decay phase, the ATP and DNA concentrations showed strong linear relationships with the microbial mass (r2=0.99) within the ranges of 0.039-1.078 mg ATP/l and 0.075-2.080 mg DNA/l, respectively. The linear regression equations are as follows: (1) microbial mass concentration (mg/l)=478.5xATP concentration (mg/l)+293.5, (2) microbial mass concentration (mg/l)=257.2xDNA concentration (mg/l)+250.4. Therefore, changes in the mass of the acidogenic population should be monitored by the combined use of the regression equations obtained in the exponential phase and the constant ratios determined in the post-decay phase. This procedure should be widely applicable to the acidogenesis of dairy processing wastewaters, especially of a highly suspended organic wastewater such as whey.
Collapse
Affiliation(s)
- Jaai Kim
- School of Environmental Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | |
Collapse
|
19
|
|
20
|
Lee C, Kim J, Hwang S. Optimization of adenosine 5'-triphosphate extraction for the measurement of acidogenic biomass utilizing whey wastewater. Biodegradation 2006; 17:347-55. [PMID: 16491306 DOI: 10.1007/s10532-005-9005-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2005] [Indexed: 10/25/2022]
Abstract
A set of experiments was carried out to maximize adenosine 5'-triphosphate (ATP) extraction efficiency from acidogenic culture using whey wastewater. ATP concentrations at different microbial concentrations increased linearly as microbial concentration decreased. More than 50% of ATP was extracted from the sample of 39 mg volatile suspended solids (VSS)/l compared to the sample of 2.8 g VSS/l. The ATP concentrations of the corresponding samples were 0.74+/-0.06 and 0.49+/-0.05 mg/l, respectively. For low VSS concentrations ranging from 39 to 92 mg/l, the extracted ATP concentration did not vary significantly at 0.73+/-0.01 mg ATP/l. Response surface methodology with a central composite in cube design for the experiments was used to locate the optimum for maximal ATP extraction with respect to boiling and bead beating treatments. The overall designed intervals were from 0 to 15 min and from 0 to 3 min for boiling and bead beating, respectively. The extracted ATP concentration ranged from 0.01 to 0.74 mg/l within the design boundary. The following is a partial cubic model where eta is the concentration of ATP and x ( k ) is the corresponding variable term (k=boiling time and bead beating time in order): eta=0.629+0.035x (1)-0.818x (2)-0.002x (1) x (2)-0.003x (1) (2) +0.254x (2) (2) +0.002x (1) (2) x (2). This model successfully approximates the response of ATP concentration with respect to the boiling- and bead beating-time. The condition for maximal ATP extraction was 5.6 min boiling without bead beating. The maximal ATP concentration using the model was 0.74 mg/l, which was identical to the experimental value at optimum condition for ATP extraction.
Collapse
Affiliation(s)
- Changsoo Lee
- School of Environmental Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, 790-784 Pohang, Kyungbuk, Korea
| | | | | |
Collapse
|
21
|
|
22
|
Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 2005; 89:670-9. [PMID: 15696537 DOI: 10.1002/bit.20347] [Citation(s) in RCA: 925] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Real-time polymerase chain reaction (PCR) is a highly sensitive method that can be used for the detection and quantification of microbial populations without cultivating them in anaerobic processes and environmental samples. This work was conducted to design primer and probe sets for the detection of methanogens using a real-time PCR with the TaqMan system. Six group-specific methanogenic primer and probe sets were designed. These sets separately detect four orders (Methanococcales, Methanobacteriales, Methanomicrobiales, and Methanosarcinales) along with two families (Methanosarcinaceae and Methanosaetaceae) of the order Methanosarcinales. We also designed the universal primer and probe sets that specifically detect the 16S rDNA of prokaryotes and of the domain Bacteria and Archaea, and which are fully compatible with the TaqMan real-time PCR system. Target-group specificity of each primer and probe set was empirically verified by testing DNA isolated from 28 archaeal cultures and by analyzing potential false results. In general, each primer and probe set was very specific to the target group. The primer and probe sets designed in this study can be used to detect and quantify the order-level (family-level in the case of Methanosarcinales) methanogenic groups in anaerobic biological processes and various environments.
Collapse
Affiliation(s)
- Youngseob Yu
- School of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea
| | | | | | | |
Collapse
|
23
|
Yu Y, Park B, Hwang S. Co-digestion of lignocellulosics with glucose using thermophilic acidogens. Biochem Eng J 2004. [DOI: 10.1016/s1369-703x(03)00127-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Lee S, Yang K, Hwang S. Use of response surface analysis in selective bioconversion of starch wastewater to acetic acid using a mixed culture of anaerobes. Process Biochem 2004. [DOI: 10.1016/s0032-9592(03)00229-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
|
26
|
Yang K, Yu Y, Hwang S. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation. WATER RESEARCH 2003; 37:2467-2477. [PMID: 12727259 DOI: 10.1016/s0043-1354(03)00006-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
For partial acidogenesis of cheese-whey wastewater, a set of experiments were carried out to produce short-chain volatile fatty acids (VFA) in laboratory-scale continuously stirred tank reactors (CSTR). The maximum rate of acetic and butyric acid production associated with simultaneous changes in hydraulic retention time (HRT), pH, and temperature was investigated, in which the degree of acidification of the whey to the short-chain VFAs was less than 20% of the influent chemical oxygen demand (COD) concentration. Response surface methodology was successfully applied to determine the optimum physiological conditions where the maximum rates of acetic and butyric acid production occurred. These were 0.40-day HRT, pH 6.0 at 54.1 degrees C and 0.22-day HRT, pH 6.5 at 51.9 degrees C, respectively. The optimum conditions for acetic acid production were selected for partial acidification of cheese-whey wastewater because of a higher rate in combined productions of acetic and butyric acids than that at optimum conditions for butyric acid production. A thermophilic two-phase process with the partial acidification followed by a methanation step was operated. Performance of the two-phase process was compared to the single-phase anaerobic system. The two-phase process clearly showed a better performance in management of cheese-whey wastewater over the single-phase system. Maximum rate of COD removal and the rate of methane production in the two-phase process were, respectively, 116% and 43% higher than those of the single-phase system.
Collapse
Affiliation(s)
- Keunyoung Yang
- School of Environmental Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | |
Collapse
|