1
|
Ling J, Du Y, Wuelfing WP, Buist N, Krishnamachari Y, Xi H, Templeton AC, Su Y. Molecular mechanisms for stabilizing biologics in the solid state. J Pharm Sci 2025; 114:736-765. [PMID: 39617053 DOI: 10.1016/j.xphs.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024]
Abstract
Protein drugs exhibit challenges of biophysical and biochemical instability due to their structural complexity and rich dynamics. Solid-state biologics aim to enhance stability by increasing molecular rigidity within the formulation matrix, representing a primary category of drug products alongside sterile liquid formulations. Understanding the molecular mechanisms behind the stabilization and destabilization of protein drugs, influenced by formulation composition and drying processes, provides scientific rationale for drug product design. This review aims to elaborate on the two primary models of water-to-sugar substitution and matrix vitrification, respectively, via thermodynamic and kinetic stabilization. It offers an up-to-date review of experimental investigations into these hypotheses, specifically elucidating protein structure and protein-excipient interactions at the molecular level, molecular dynamics across a broad range of motion regimes, and microscopic attributes such as protein-sugar and protein-salt miscibility and microenvironmental acidity, in relevant liquid, frozen, and solid states, using advanced biophysical techniques for solid-state analysis. Moreover, we discuss how these mechanistic understandings facilitate the investigation and prediction of critical stability behaviors and enables the design of solid biological drug products.
Collapse
Affiliation(s)
- Jing Ling
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - W Peter Wuelfing
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Nicole Buist
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Yogita Krishnamachari
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Hanmi Xi
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Allen C Templeton
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Yongchao Su
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA; Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
2
|
Zhou R, Qu J, Liu X, Lin F, Ohulchanskyy TY, Alifu N, Qu J, Yin DC. Biopharmaceutical drug delivery and phototherapy using protein crystals. Adv Drug Deliv Rev 2025; 216:115480. [PMID: 39613032 DOI: 10.1016/j.addr.2024.115480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Biopharmaceutical drugs, including proteins, peptides, and antibodies, are renowned for their high specificity and efficacy, fundamentally transforming disease treatment paradigms. However, their structural complexity presents challenges for their formulation and delivery. Protein crystals, characterized by high purity, high stability and a porous structure for biopharmaceutical drug encapsulation, providing a potential avenue for formulating and delivering biopharmaceutical drugs. There is increasing interest in engineering protein crystals to delivery biopharmaceutical drugs for biomedical applications. This review summarizes the recent advances in biopharmaceutical drug delivery and phototherapy using protein crystals. First, we evaluate the advantages of using protein crystals for biopharmaceutical drugs delivery. Next, we outline the strategies for in vitro and in vivo crystallization to prepare protein crystals. Importantly, the review highlights the advanced applications of protein crystals in biopharmaceutical drug delivery, tumor phototherapy, and other optical fields. Finally, it provides insights into future perspectives of biopharmaceutical drug delivery using protein crystals. This comprehensive review aims to provide effective insights into design of protein crystals to simplify biopharmaceutical drug delivery and improve disease treatment.
Collapse
Affiliation(s)
- Renbin Zhou
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Jinghan Qu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Xuejiao Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Fangrui Lin
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China.
| | - Tymish Y Ohulchanskyy
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Nuernisha Alifu
- School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Junle Qu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
3
|
Abrol K, Basumatari J, Handique J, Rajagopalan M, Ramaswamy A. Influence of Cataract Causing Mutations on αA-Crystallin: A Computational Approach. Protein J 2024; 43:1045-1069. [PMID: 39485632 DOI: 10.1007/s10930-024-10239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
The αA-crystallin protein plays a vital role in maintaining the refractive index and transparency of the eye lens. Significant clinical studies have emerged as the αA-crystallin is prone to aggregation, resulting in the formation of cataracts with varied etiologies due to mutations. This work aims to comprehend the structural and functional role of cataract-causing mutations in αA-crystallin, particularly at N-Terminal and α-Crystallin Domains, using in-silico approaches including molecular dynamics simulation. About 19 mutants of αA-crystallin along with native structure were simulated for 100 ns and the post-simulations analyses reveal pronounced dynamics of αA-crystallin due to the enhanced structure flexibility as its native compactness was lost and is witnessed mainly by the mutants R12L, R21L, R21Q, R54L, R65Q, R116C and R116H. It is observed that αA-crystallin discloses the NTD motions as the dominant one and the same was endorsed by the linear variation between Rg and the center-of-mass of αA-crystallin. Interestingly, such enhanced dynamics of αA-crystallin mutants associated with the structure flexibility is internally modulated by the dynamic exchange of secondary structure elements β-sheets and coils (R2 = 0.619) during simulation. Besides, the observed pronounced dynamics of dimer interface region (β3-L6-β4 segment) of ACD along with CTD dynamics also gains importance. Particularly, the highly dynamic mutants are also characterized by enhanced non-covalent and hydrophobic interactions which renders detrimental effects towards its stability, and favours possible protein unfolding mechanisms. Overall, this study highlights the mutation-mediated structural distortions in αA-crystallin and demands the need for further potential development of inhibitors against cataract formation.
Collapse
Affiliation(s)
- Kajal Abrol
- Department of Bioinformatics, Pondicherry University, Pondicherry, 605014, India
| | - Jayarani Basumatari
- Department of Bioinformatics, Pondicherry University, Pondicherry, 605014, India
| | - Jupita Handique
- Department of Bioinformatics, Pondicherry University, Pondicherry, 605014, India
| | | | - Amutha Ramaswamy
- Department of Bioinformatics, Pondicherry University, Pondicherry, 605014, India.
| |
Collapse
|
4
|
Contreras-Montoya R, Álvarez de Cienfuegos L, Gavira JA, Steed JW. Supramolecular gels: a versatile crystallization toolbox. Chem Soc Rev 2024; 53:10604-10619. [PMID: 39258871 DOI: 10.1039/d4cs00271g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Supramolecular gels are unique materials formed through the self-assembly of molecular building blocks, typically low molecular weight gelators (LMWGs), driven by non-covalent interactions. The process of crystallization within supramolecular gels has broadened the scope of the traditional gel-phase crystallization technique offering the possibility of obtaining crystals of higher quality and size. The broad structural diversity of LMWGs allows crystallization in multiple organic and aqueous solvents, favouring screening and optimization processes and the possibility to search for novel polymorphic forms. These supramolecular gels have been used for the crystallization of inorganic, small organic compounds of pharmaceutical interest, and proteins. Results have shown that these gels are not only able to produce crystals of high quality but also to influence polymorphism and physicochemical properties of the crystals, giving rise to crystals with potential new bio- and technological applications. Thus, understanding the principles of crystallization in supramolecular gels is essential for tailoring their properties and applications, ranging from drug delivery systems to composite crystals with tunable stability properties. In this review, we summarize the use of LMWG-based supramolecular gels as media to grow single crystals of a broad range of compounds.
Collapse
Affiliation(s)
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, E-18071, Granada, Spain
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (IACT, CSIC), E-18100, Granada, Spain
| | | |
Collapse
|
5
|
Larpent P, Codan L, Bothe JR, Iuzzolino L, Pabit S, Gupta S, Fischmann T, Su Y, Reichert P, Stueber D, Cote A. Small-Angle X-ray Scattering as a Powerful Tool for Phase and Crystallinity Assessment of Monoclonal Antibody Crystallites in Support of Batch Crystallization. Mol Pharm 2024; 21:4024-4037. [PMID: 38958508 DOI: 10.1021/acs.molpharmaceut.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Crystalline suspensions of monoclonal antibodies (mAbs) have great potential to improve drug substance isolation and purification on a large scale and to be used for drug delivery via high-concentration formulations. Crystalline mAb suspensions are expected to have enhanced chemical and physical properties relative to mAb solutions delivered intravenously, making them attractive candidates for subcutaneous delivery. In contrast to small molecules, the development of protein crystalline suspensions is not a widely used approach in the pharmaceutical industry. This is mainly due to the challenges in finding crystalline hits and the suboptimal physical properties of the resulting crystallites when hits are found. Modern advances in instrumentation and increased knowledge of mAb crystallization have, however, resulted in higher probabilities of discovering crystal forms and improving their particle properties and characterization. In this regard, physical, analytical characterization plays a central role in the initial steps of understanding and later optimizing the crystallization of mAbs and requires careful selection of the appropriate tools. This contribution describes a novel crystal structure of the antibody pembrolizumab and demonstrates the usefulness of small-angle X-ray scattering (SAXS) for characterizing its crystalline suspensions. It illustrates the advantages of SAXS when used to (i) confirm crystallinity and crystal phase of crystallites produced in batch mode; (ii) confirm crystallinity under various conditions and detect variations in crystal phases, enabling fine-tuning of the crystallizations for phase control across multiple batches; (iii) monitor the physical response and stability of the crystallites in suspension with regard to filtration and washing; and (iv) monitor the physical stability of the crystallites upon drying. Overall, this work highlights how SAXS is an essential tool for mAb crystallization characterization.
Collapse
Affiliation(s)
- Patrick Larpent
- Department of Analytical Research and Development, MSD Werthenstein BioPharma GmbH, Industrie Nord 1, 6105 Schachen, Switzerland
| | - Lorenzo Codan
- Department of Process Research and Development, MSD Werthenstein BioPharma GmbH, Industrie Nord 1, 6105 Schachen, Switzerland
| | - Jameson R Bothe
- Department of Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Luca Iuzzolino
- Department of Computational and Structural Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Suzette Pabit
- Department of Analytical Research and Development, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Sudipta Gupta
- Department of Analytical Research and Development, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Thierry Fischmann
- Department of Protein and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Department of Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Paul Reichert
- Department of Protein and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Dirk Stueber
- Department of Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Aaron Cote
- Department of Biologics Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
6
|
Wegner CH, Eming SM, Walla B, Bischoff D, Weuster-Botz D, Hubbuch J. Spectroscopic insights into multi-phase protein crystallization in complex lysate using Raman spectroscopy and a particle-free bypass. Front Bioeng Biotechnol 2024; 12:1397465. [PMID: 38812919 PMCID: PMC11133712 DOI: 10.3389/fbioe.2024.1397465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
Protein crystallization as opposed to well-established chromatography processes has the benefits to reduce production costs while reaching a comparable high purity. However, monitoring crystallization processes remains a challenge as the produced crystals may interfere with analytical measurements. Especially for capturing proteins from complex feedstock containing various impurities, establishing reliable process analytical technology (PAT) to monitor protein crystallization processes can be complicated. In heterogeneous mixtures, important product characteristics can be found by multivariate analysis and chemometrics, thus contributing to the development of a thorough process understanding. In this project, an analytical set-up is established combining offline analytics, on-line ultraviolet visible light (UV/Vis) spectroscopy, and in-line Raman spectroscopy to monitor a stirred-batch crystallization process with multiple phases and species being present. As an example process, the enzyme Lactobacillus kefir alcohol dehydrogenase (LkADH) was crystallized from clarified Escherichia coli (E. coli) lysate on a 300 mL scale in five distinct experiments, with the experimental conditions changing in terms of the initial lysate solution preparation method and precipitant concentration. Since UV/Vis spectroscopy is sensitive to particles, a cross-flow filtration (cross-flow filtration)-based bypass enabled the on-line analysis of the liquid phase providing information on the lysate composition regarding the nucleic acid to protein ratio. A principal component analysis (PCA) of in situ Raman spectra supported the identification of spectra and wavenumber ranges associated with productspecific information and revealed that the experiments followed a comparable, spectral trend when crystals were present. Based on preprocessed Raman spectra, a partial least squares (PLS) regression model was optimized to monitor the target molecule concentration in real-time. The off-line sample analysis provided information on the crystal number and crystal geometry by automated image analysis as well as the concentration of LkADH and host cell proteins (HCPs) In spite of a complex lysate suspension containing scattering crystals and various impurities, it was possible to monitor the target molecule concentration in a heterogeneous, multi-phase process using spectroscopic methods. With the presented analytical set-up of off-line, particle-sensitive on-line, and in-line analyzers, a crystallization capture process can be characterized better in terms of the geometry, yield, and purity of the crystals.
Collapse
Affiliation(s)
- Christina Henriette Wegner
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sebastian Mathis Eming
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Brigitte Walla
- Institute of Biochemical Engineering, Technical University of Munich, Garching, Germany
| | - Daniel Bischoff
- Institute of Biochemical Engineering, Technical University of Munich, Garching, Germany
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technical University of Munich, Garching, Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
7
|
Zhu S, Fan S, Tang T, Huang J, Zhou H, Huang C, Chen Y, Qian F. Polymorphic nanobody crystals as long-acting intravitreal therapy for wet age-related macular degeneration. Bioeng Transl Med 2023; 8:e10523. [PMID: 38023710 PMCID: PMC10658565 DOI: 10.1002/btm2.10523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 12/01/2023] Open
Abstract
Wet age-related macular degeneration (wet AMD) is the most common cause of blindness, and chronic intravitreal injection of anti-vascular endothelial growth factor (VEGF) proteins has been the dominant therapeutic approach. Less intravitreal injection and a prolonged inter-injection interval are the main drivers behind new wet AMD drug innovations. By rationally engineering the surface residues of a model anti-VEGF nanobody, we obtained a series of anti-VEGF nanobodies with identical protein structures and VEGF binding affinities, while drastically different crystallization propensities and crystal lattice structures. Among these nanobody crystals, the P212121 lattice appeared to be denser and released protein slower than the P1 lattice, while nanobody crystals embedding zinc coordination further slowed the protein release rate. The polymorphic protein crystals could be a potentially breakthrough strategy for chronic intravitreal administration of anti-VEGF proteins.
Collapse
Affiliation(s)
- Shuqian Zhu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Tsinghua UniversityBeijingPeople's Republic of China
| | - Shilong Fan
- Beijing Frontier Research Center for Biological StructureTsinghua UniversityBeijingPeople's Republic of China
| | - Tianxin Tang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Tsinghua UniversityBeijingPeople's Republic of China
| | - Jinliang Huang
- Quaerite Biopharm ResearchBeijingPeople's Republic of China
| | - Heng Zhou
- Shuimu BioSciences Co. Ltd.BeijingPeople's Republic of China
| | - Chengnan Huang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Tsinghua UniversityBeijingPeople's Republic of China
| | - Youxin Chen
- Peking Union Medical College HospitalBeijingPeople's Republic of China
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Tsinghua UniversityBeijingPeople's Republic of China
| |
Collapse
|
8
|
Han K, Zhang Z, Tezcan FA. Spatially Patterned, Porous Protein Crystals as Multifunctional Materials. J Am Chem Soc 2023; 145:19932-19944. [PMID: 37642457 DOI: 10.1021/jacs.3c06348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
While the primary use of protein crystals has historically been in crystallographic structure determination, they have recently emerged as promising materials with many advantageous properties such as high porosity, biocompatibility, stability, structural and functional versatility, and genetic/chemical tailorability. Here, we report that the utility of protein crystals as functional materials can be further augmented through their spatial patterning and control of their morphologies. To this end, we took advantage of the chemically and kinetically controllable nature of ferritin self-assembly and constructed core-shell crystals with chemically distinct domains, tunable structural patterns, and morphologies. The spatial organization within ferritin crystals enabled the generation of patterned, multi-enzyme frameworks with cooperative catalytic behavior. We further exploited the differential growth kinetics of ferritin crystal facets to assemble Janus-type architectures with an anisotropic arrangement of chemically distinct domains. These examples represent a step toward using protein crystals as reaction vessels for complex multi-step reactions and broadening their utility as functional, solid-state materials. Our results demonstrate that morphology control and spatial patterning, which are key concepts in materials science and nanotechnology, can also be applied for engineering protein crystals.
Collapse
Affiliation(s)
- Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Pujahari SR, Mali PS, Purusottam RN, Kumar A. Combined Liquid-State and Solid-State Nuclear Magnetic Resonance at Natural Abundance for Comparative Higher Order Structure Assessment in the Formulated-State of Biphasic Biopharmaceutics. Anal Chem 2023. [PMID: 37154614 DOI: 10.1021/acs.analchem.2c05485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A higher-order structure (HOS) is critical to a biopharmaceutical drug as the three-dimensional structure governs its function. Even the partial perturbation in the HOS of the drug can alter the biological efficiency and efficacy. Due to current limitations in analytical technologies, it is imperative to develop a protocol to characterize the HOS of biopharmaceuticals in the native formulated state. This becomes even more challenging for the suspension formulations where solution and solid phases co-exist. Here, we have used a combinatorial approach using liquid (1D 1H) and solid-state (13C CP MAS) NMR methodology to demonstrate the HOS in the biphasic microcrystalline suspension drug in its formulated state. The data were further assessed by principal component analysis and Mahalanobis distance (DM) calculation for quantitative assessment. This approach is sufficient to provide information regarding the protein HOS and the local dynamics of the molecule when combined with orthogonal techniques such as X-ray scattering. Our method can be an elegant tool to investigate batch-to-batch variation in the process of manufacture and storage as well as a biosimilarity comparison study for biphasic/microcrystalline suspension.
Collapse
Affiliation(s)
| | - Pramod S Mali
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Rudra N Purusottam
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
10
|
Pu S, Hadinoto K. A comparative study of antisolvent versus salting-out precipitations of glycopeptide vancomycin: Precipitation efficiency and product qualities. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2022.118181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Macromolecular protein crystallisation with biotemplate of live cells. Sci Rep 2022; 12:3005. [PMID: 35194113 PMCID: PMC8864025 DOI: 10.1038/s41598-022-06999-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Macromolecular protein crystallisation was one of the potential tools to accelerate the biomanufacturing of biopharmaceuticals. In this work, it was the first time to investigate the roles of biotemplates, Saccharomyces cerevisiae live cells, in the crystallisation processes of lysozyme, with different concentrations from 20 to 2.5 mg/mL lysozyme and different concentrations from 0 to 5.0 × 107 (cfu/mL) Saccharomyces cerevisiae cells, during a period of 96 h. During the crystallisation period, the nucleation possibility in droplets, crystal numbers, and cell growth and cell density were observed and analysed. The results indicated the strong interaction between the lysozyme molecules and the cell wall of the S. cerevisiae, proved by the crystallization of lysozyme with fluorescent labels. The biotemplates demonstrated positive influence or negative influence on the nucleation, i.e. shorter or longer induction time, dependent on the concentrations of the lysozyme and the S. cerevisiae cells, and ratios between them. In the biomanufacturing process, target proteins were various cells were commonly mixed with various cells, and this work provides novel insights of new design and application of live cells as biotemplates for purification of macromolecules.
Collapse
|
12
|
Li M, Reichert P, Narasimhan C, Sorman B, Xu W, Cote A, Su Y. Investigating Crystalline Protein Suspension Formulations of Pembrolizumab from MAS NMR Spectroscopy. Mol Pharm 2022; 19:936-952. [PMID: 35107019 DOI: 10.1021/acs.molpharmaceut.1c00915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing biological formulations to maintain the chemical and structural integrity of therapeutic antibodies remains a significant challenge. Monoclonal antibody (mAb) crystalline suspension formulation is a promising alternative for high concentration subcutaneous drug delivery. It demonstrates many merits compared to the solution formulation to reach a high concentration at the reduced viscosity and enhanced stability. One main challenge in drug development is the lack of high-resolution characterization of the crystallinity and stability of mAb microcrystals in the native formulations. Conventional analytical techniques often cannot evaluate structural details of mAb microcrystals in the native suspension due to the presence of visible particles, relatively small crystal size, high protein concentration, and multicomponent nature of a liquid formulation. This study demonstrates the first high-resolution characterization of mAb microcrystalline suspension using magic angle spinning (MAS) NMR spectroscopy. Crystalline suspension formulation of pembrolizumab (Keytruda, Merck & Co., Inc., Kenilworth, NJ 07033, U.S.) is utilized as a model system. Remarkably narrow 13C spectral linewidth of approximately 29 Hz suggests a high order of crystallinity and conformational homogeneity of pembrolizumab crystals. The impact of thermal stress and dehydration on the structure, dynamics, and stability of these mAb crystals in the formulation environment is evaluated. Moreover, isotopic labeling and heteronuclear 13C and 15N spectroscopies have been utilized to identify the binding of caffeine in the pembrolizumab crystal lattice, providing molecular insights into the cocrystallization of the protein and ligand. Our study provides valuable structural details for facilitating the design of crystalline suspension formulation of Keytruda and demonstrates the high potential of MAS NMR as an advanced tool for biophysical characterization of biological therapeutics.
Collapse
Affiliation(s)
- Mingyue Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul Reichert
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Bradley Sorman
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Aaron Cote
- Biologics Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
13
|
Transfer of a Rational Crystal Contact Engineering Strategy between Diverse Alcohol Dehydrogenases. CRYSTALS 2021. [DOI: 10.3390/cryst11080975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein crystallization can serve as a purification step in biotechnological processes but is often limited by the non-crystallizability of proteins. Enabling or improving crystallization is mostly achieved by high-throughput screening of crystallization conditions and, more recently, by rational crystal contact engineering. Two selected rational crystal contact mutations, Q126K and T102E, were transferred from the alcohol dehydrogenases of Lactobacillus brevis (LbADH) to Lactobacillus kefir (LkADH). Proteins were expressed in E. coli and batch protein crystallization was performed in stirred crystallizers. Highly similar crystal packing of LkADH wild type compared to LbADH, which is necessary for the transfer of crystal contact engineering strategies, was achieved by aligning purification tag and crystallization conditions, as shown by X-ray diffraction. After comparing the crystal sizes after crystallization of LkADH mutants with the wild type, the mean protein crystal size of LkADH mutants was reduced by 40–70% in length with a concomitant increase in the total amount of crystals (higher number of nucleation events). Applying this measure to the LkADH variants studied results in an order of crystallizability T102E > Q126K > LkADH wild type, which corresponds to the results with LbADH mutants and shows, for the first time, the successful transfer of crystal contact engineering strategies.
Collapse
|
14
|
Ross B, Krapp S, Geiss-Friedlander R, Littmann W, Huber R, Kiefersauer R. Aerosol-based ligand soaking of reservoir-free protein crystals. J Appl Crystallogr 2021; 54:895-902. [PMID: 34188616 PMCID: PMC8202026 DOI: 10.1107/s1600576721003551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/01/2021] [Indexed: 11/10/2022] Open
Abstract
Soaking of macromolecular crystals allows the formation of complexes via diffusion of molecules into a preformed crystal for structural analysis. Soaking offers various advantages over co-crystallization, e.g. small samples and high-throughput experimentation. However, this method has disadvantages, such as inducing mechanical stress on crystals and reduced success rate caused by low affinity/solubility of the ligand. To bypass these issues, the Picodropper was previously developed in the authors' laboratory. This technique aimed to deliver small volumes of compound solution in response to crystal dehydration supported by the Free Mounting System humidity control or by IR-laser-induced protein crystal transformation. Herein, a new related soaking development, the Aerosol-Generator, is introduced. This device delivers compounds onto the solution-free surface of protein crystals using an ultrasonic technique. The produced aerosol stream enables an easier and more accurate control of solution volumes, reduced crystal handling, and crystal-size-independent soaking. The Aerosol-Generator has been used to produce complexes of DPP8 crystals, where otherwise regular soaking did not achieve complex formation. These results demonstrate the potential of this device in challenging ligand-binding scenarios and contribute to further understanding of DPP8 inhibitor binding.
Collapse
Affiliation(s)
- Breyan Ross
- Max Planck Institut für Biochemie, D-82152 Martinsried, Germany
- Proteros Biostructures GmbH, D-82152 Martinsried, Germany
| | - Stephan Krapp
- Proteros Biostructures GmbH, D-82152 Martinsried, Germany
| | - Ruth Geiss-Friedlander
- Center of Biochemistry and Molecular Cell Research, Albert-Ludwigs-Universität, D-79104 Freiburg, Germany
| | - Walter Littmann
- ATHENA Technologie Beratung GmbH, Technologiepark 13, D-33100 Paderborn, Germany
| | - Robert Huber
- Max Planck Institut für Biochemie, D-82152 Martinsried, Germany
- Zentrum für Medizinische Biotechnologie, Universität Duisburg-Essen, D-45147 Essen, Germany
- Fakultät für Chemie, Technische Universität München, D-85747 Garching, Germany
| | - Reiner Kiefersauer
- Max Planck Institut für Biochemie, D-82152 Martinsried, Germany
- Proteros Biostructures GmbH, D-82152 Martinsried, Germany
| |
Collapse
|
15
|
Spiliopoulou M, Valmas A, Triandafillidis DP, Fili S, Christopoulou M, Filopoulou AJ, Piskopou A, Papadea P, Fitch AN, Beckers D, Degen T, Gozzo F, Morin M, Reinle-Schmitt ML, Karavassili F, Rosmaraki E, Chasapis CT, Margiolaki I. High-throughput macromolecular polymorph screening via an NMR and X-ray powder diffraction synergistic approach: the case of human insulin co-crystallized with resorcinol derivatives. J Appl Crystallogr 2021. [DOI: 10.1107/s160057672100426x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Regular injections of insulin provide life-saving benefits to millions of diabetics. Apart from native insulin and insulin analogue formulations, microcrystalline insulin suspensions are also commercially available. The onset of action of the currently available basal insulins relies on the slow dissociation of insulin hexamers in the subcutaneous space due to the strong binding of small organic ligands. With the aim of identifying insulin–ligand complexes with enhanced pharmacokinetic and pharmacodynamic profiles, the binding affinity of two resorcinol-based molecules (4-chlororesorcinol and 4-bromoresorcinol) and the structural characteristics of insulin upon co-crystallization with them were investigated in the present study. `In solution' measurements were performed via saturation transfer difference (STD) NMR. Co-crystallization upon pH variation resulted in the production of polycrystalline precipitates, whose structural characteristics (i.e. unit-cell symmetry and dimension) were assessed. In both cases, different polymorphs (four and three, respectively) of monoclinic symmetry (P21 and C2 space groups) were identified via X-ray powder diffraction. The results demonstrate the efficiency of a new approach that combines spectroscopy and diffraction techniques and provides an innovative alternative for high-throughput examination of insulin and other therapeutic proteins.
Collapse
|
16
|
Schieferstein JM, Reichert P, Narasimhan CN, Yang X, Doyle PS. Hydrogel Microsphere Encapsulation Enhances the Flow Properties of Monoclonal Antibody Crystal Formulations. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | | | - Xiaoyu Yang
- Merck Research Laboratories Kenilworth NJ 07033
| | - Patrick S. Doyle
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02142
| |
Collapse
|
17
|
Contreras-Montoya R, Arredondo-Amador M, Escolano-Casado G, Mañas-Torres MC, González M, Conejero-Muriel M, Bhatia V, Díaz-Mochón JJ, Martínez-Augustin O, de Medina F, Lopez-Lopez MT, Conejero-Lara F, Gavira JA, de Cienfuegos LÁ. Insulin Crystals Grown in Short-Peptide Supramolecular Hydrogels Show Enhanced Thermal Stability and Slower Release Profile. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11672-11682. [PMID: 33661596 PMCID: PMC8479728 DOI: 10.1021/acsami.1c00639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 05/08/2023]
Abstract
Protein therapeutics have a major role in medicine in that they are used to treat diverse pathologies. Their three-dimensional structures not only offer higher specificity and lower toxicity than small organic compounds but also make them less stable, limiting their in vivo half-life. Protein analogues obtained by recombinant DNA technology or by chemical modification and/or the use of drug delivery vehicles has been adopted to improve or modulate the in vivo pharmacological activity of proteins. Nevertheless, strategies to improve the shelf-life of protein pharmaceuticals have been less explored, which has challenged the preservation of their activity. Herein, we present a methodology that simultaneously increases the stability of proteins and modulates the release profile, and implement it with human insulin as a proof of concept. Two novel thermally stable insulin composite crystal formulations intended for the therapeutic treatment of diabetes are reported. These composite crystals have been obtained by crystallizing insulin in agarose and fluorenylmethoxycarbonyl-dialanine (Fmoc-AA) hydrogels. This process affords composite crystals, in which hydrogel fibers are occluded. The insulin in both crystalline formulations remains unaltered at 50 °C for 7 days. Differential scanning calorimetry, high-performance liquid chromatography, mass spectrometry, and in vivo studies have shown that insulin does not degrade after the heat treatment. The nature of the hydrogel modifies the physicochemical properties of the crystals. Crystals grown in Fmoc-AA hydrogel are more stable and have a slower dissolution rate than crystals grown in agarose. This methodology paves the way for the development of more stable protein pharmaceuticals overcoming some of the existing limitations.
Collapse
Affiliation(s)
- Rafael Contreras-Montoya
- Departamento
de Química Orgánica, Universidad
de Granada, (UGR), C.
U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| | - María Arredondo-Amador
- Departamento
de Farmacología, Centro de Investigación Biomédica
en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School
of Pharmacy, Instituto de Investigación
Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain
| | - Guillermo Escolano-Casado
- Laboratorio
de Estudios Cristalográficos, Instituto
Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones
Científicas-UGR), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Mari C. Mañas-Torres
- Departamento
de Química Orgánica, Universidad
de Granada, (UGR), C.
U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| | - Mercedes González
- Departamento
de Farmacología, Centro de Investigación Biomédica
en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School
of Pharmacy, Instituto de Investigación
Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain
| | - Mayte Conejero-Muriel
- Laboratorio
de Estudios Cristalográficos, Instituto
Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones
Científicas-UGR), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Vaibhav Bhatia
- Lamark
Biotech Pvt. Ltd., VIT-TBI, 632 014 Vellore, Tamil Nadu, India
| | - Juan J. Díaz-Mochón
- Departamento
de Química Farmacéutica y Orgánica, Facultad de Farmacia, UGR, 18011 Granada, Spain
- Centre
for Genomics and Oncological Research, Pfizer/University
of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración
114, 18016 Granada, Spain
| | - Olga Martínez-Augustin
- Departamento
de Bioquímica y Biología Molecular II, Centro de Investigación
Biomédica en Red de Enfermedades Hepáticas y Digestivas
(CIBERehd), School of Pharmacy, Instituto
de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain
| | - Fermín
Sánchez de Medina
- Departamento
de Farmacología, Centro de Investigación Biomédica
en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School
of Pharmacy, Instituto de Investigación
Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain
| | - Modesto T. Lopez-Lopez
- Departamento
de Física Aplicada, Facultad de Ciencias,
UGR, C. U. Fuentenueva,
Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| | - Francisco Conejero-Lara
- Departamento de Química Física, Facultad de Ciencias, UGR, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - José A. Gavira
- Laboratorio
de Estudios Cristalográficos, Instituto
Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones
Científicas-UGR), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento
de Química Orgánica, Universidad
de Granada, (UGR), C.
U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| |
Collapse
|
18
|
|
19
|
New and novel approaches for enhancing the oral absorption and bioavailability of protein and peptides therapeutics. Ther Deliv 2020; 11:713-732. [DOI: 10.4155/tde-2020-0068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The advancement of the oral route for macromolecules has gained a lot of attention due to its noninvasive nature, safe and challenging in active research but with limited success. Oral administration poses challenges due to poor solubility, short half-life, quick elimination and the physical, chemical and biological barriers of the gastrointestinal tract. Approaches of past for improving oral absorption, such as enhancers, mucoadhesive delivery and enzyme inhibitors have been taken over by novel approaches like advanced liposomes, self-nanoemulsifying drug delivery system, nanoparticles and targeted delivery. Eudratech™ Pep, Peptelligence, Rani Pill and Pharm Film are the emerging technologies for delivering oral proteins and peptide. Calcitonin, semaglutide and octreotide are the peptides available in the market for oral delivery as outcomes of these technologies.
Collapse
|
20
|
Pu S, Hadinoto K. Continuous crystallization as a downstream processing step of pharmaceutical proteins: A review. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Grob P, Huber M, Walla B, Hermann J, Janowski R, Niessing D, Hekmat D, Weuster-Botz D. Crystal Contact Engineering Enables Efficient Capture and Purification of an Oxidoreductase by Technical Crystallization. Biotechnol J 2020; 15:e2000010. [PMID: 32302461 DOI: 10.1002/biot.202000010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/19/2020] [Indexed: 11/10/2022]
Abstract
Technical crystallization is an attractive method to purify recombinant proteins. However, it is rarely applied due to the limited crystallizability of many proteins. To overcome this limitation, single amino acid exchanges are rationally introduced to enhance intermolecular interactions at the crystal contacts of the industrially relevant biocatalyst Lactobacillus brevis alcohol dehydrogenase (LbADH). The wildtype (WT) and the best crystallizing and enzymatically active LbADH mutants K32A, D54F, Q126H, and T102E are produced with Escherichia coli and subsequently crystallized from cell lysate in stirred mL-crystallizers. Notwithstanding the high host cell protein (HCP) concentrations in the lysate, all mutants crystallize significantly faster than the WT. Combinations of mutations result in double mutants with faster crystallization kinetics than the respective single mutants, demonstrating a synergetic effect. The almost entire depletion of the soluble LbADH fraction at crystallization equilibrium is observed, proving high yields. The HCP concentration is reduced to below 0.5% after crystal dissolution and recrystallization, and thus a 100-fold HCP reduction is achieved after two successive crystallization steps. The combination of fast kinetics, high yields, and high target protein purity highlights the potential of crystal contact engineering to transform technical crystallization into an efficient protein capture and purification step in biotechnological downstream processes.
Collapse
Affiliation(s)
- Phillip Grob
- Technische Universität München, Lehrstuhl für Bioverfahrenstechnik, Boltzmannstraße 15, Garching, 85748, Germany
| | - Max Huber
- Technische Universität München, Lehrstuhl für Bioverfahrenstechnik, Boltzmannstraße 15, Garching, 85748, Germany
| | - Brigitte Walla
- Technische Universität München, Lehrstuhl für Bioverfahrenstechnik, Boltzmannstraße 15, Garching, 85748, Germany
| | - Johannes Hermann
- Technische Universität München, Lehrstuhl für Bioverfahrenstechnik, Boltzmannstraße 15, Garching, 85748, Germany
| | - Robert Janowski
- Helmholtz Zentrum München, Institute of Structural Biology, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Dierk Niessing
- Helmholtz Zentrum München, Institute of Structural Biology, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, Ulm, 89081, Germany
| | - Dariusch Hekmat
- Technische Universität München, Lehrstuhl für Bioverfahrenstechnik, Boltzmannstraße 15, Garching, 85748, Germany
| | - Dirk Weuster-Botz
- Technische Universität München, Lehrstuhl für Bioverfahrenstechnik, Boltzmannstraße 15, Garching, 85748, Germany
| |
Collapse
|
22
|
Karavassili F, Valmas A, Dimarogona M, Giannopoulou AE, Fili S, Norrman M, Schluckebier G, Beckers D, Fitch AN, Margiolaki I. Exploring the complex map of insulin polymorphism: a novel crystalline form in the presence ofm-cresol. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:366-374. [DOI: 10.1107/s2059798320002545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/24/2020] [Indexed: 11/10/2022]
Abstract
In this study, the first crystal structure of a novel crystal form of human insulin bound tometa-cresol in an acidic environment is reported. The combination of single-crystal and powder X-ray diffraction crystallography led to the detection of a previously unknown monoclinic phase (P21). The structure was identified from the powder patterns and was solved using single-crystal diffraction data at 2.2 Å resolution. The unit-cell parameters at pH 6.1 area= 47.66,b = 70.36,c = 84.75 Å, β = 105.21°. The structure consists of two insulin hexamers per asymmetric unit. The potential use of this insulin form in microcrystalline drugs is discussed.
Collapse
|
23
|
Yang Z, Zheng J, Chan CF, Wong IL, Heater BS, Chow LM, Lee MM, Chan MK. Targeted delivery of antimicrobial peptide by Cry protein crystal to treat intramacrophage infection. Biomaterials 2019; 217:119286. [DOI: 10.1016/j.biomaterials.2019.119286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/15/2022]
|
24
|
Fili S, Valmas A, Spiliopoulou M, Kontou P, Fitch A, Beckers D, Degen T, Barlos K, Barlos KK, Karavassili F, Margiolaki I. Revisiting the structure of a synthetic somatostatin analogue for peptide drug design. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2019; 75:611-620. [DOI: 10.1107/s2052520619006012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/30/2019] [Indexed: 11/10/2022]
Abstract
Natural or artificially manufactured peptides attract scientific interest worldwide owing to their wide array of pharmaceutical and biological activities. X-ray structural studies are used to provide a precise extraction of information, which can be used to enable a better understanding of the function and physicochemical characteristics of peptides. Although it is vulnerable to disassociation, one of the most vital human peptide hormones, somatostatin, plays a regulatory role in the endocrine system as well as in the release of numerous secondary hormones. This study reports the successful crystallization and complete structural model of octreotide, a stable octapeptide analogue of somatostatin. Common obstacles in crystallographic studies arising from the intrinsic difficulties of obtaining a suitable single-crystal specimen were efficiently overcome as polycrystalline material was employed for synchrotron and laboratory X-ray powder diffraction (XPD) measurements. Data collection and preliminary analysis led to the identification of unit-cell symmetry [orthorhombic, P212121, a = 18.5453 (15), b = 30.1766 (25), c = 39.798 (4) Å], a process which was later followed by complete structure characterization and refinement, underlying the efficacy of the suggested (XPD) approach.
Collapse
|
25
|
Hartje LF, Snow CD. Protein crystal based materials for nanoscale applications in medicine and biotechnology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1547. [DOI: 10.1002/wnan.1547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/28/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Luke F. Hartje
- Department of Biochemistry and Molecular Biology Colorado State University Fort Collins Colorado
| | - Christopher D. Snow
- Department of Chemical and Biological Engineering Colorado State University Fort Collins Colorado
| |
Collapse
|
26
|
Hajavi J, Ebrahimian M, Sankian M, Khakzad MR, Hashemi M. Optimization of PLGA formulation containing protein or peptide-based antigen: Recent advances. J Biomed Mater Res A 2018; 106:2540-2551. [DOI: 10.1002/jbm.a.36423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/25/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Jafar Hajavi
- Department of Basic Sciences, Faculty of Allied Medicine; Gonabad University of Medical Sciences; Gonabad Iran
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences; Mashhad Iran
| | - Mahboubeh Ebrahimian
- Division of Biotechnology, Faculty of Veterinary Medicine; Ferdowsi University of Mashhad; Mashhad Iran
| | - Mojtaba Sankian
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences; Mashhad Iran
- Department of Immunology, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mohammad Reza Khakzad
- Innovated Medical Research Center & Department of Immunology; Mashhad Branch, Islamic Azad University; Mashhad Iran
| | - Maryam Hashemi
- Nanotechnology Research Center; Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
27
|
Artusio F, Pisano R. Surface-induced crystallization of pharmaceuticals and biopharmaceuticals: A review. Int J Pharm 2018; 547:190-208. [PMID: 29859921 DOI: 10.1016/j.ijpharm.2018.05.069] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 01/18/2023]
Abstract
Despite the wide occurrence of crystallization in the pharmaceutical industry, deep understanding and fine control of the process remain a tricky issue. Nevertheless, the successful manufacturing of finished pharmaceutical products, as well as the structural determination of biopharmaceuticals, depend on the size, form, shape and purity of the crystals. The ability of substrates with precise chemistry and topological features to induce nucleation has been thoroughly assessed during the recent years. This paper reviews the major advances and discoveries in controlling small molecule drug and protein crystallization by means of engineered surfaces. By designing superficial properties and morphology, it has been possible to tune the polymorph outcome, shorten the nucleation induction time, impose specific crystal shapes, control the crystal size and carry out crystallization at very low supersaturation levels. Such achievements underline the potential of surface-induced crystallization to provide an ideal platform for the study of the nucleation process and gain control over its stochastic nature.
Collapse
Affiliation(s)
- Fiora Artusio
- Department of Applied Science and Technology, Politecnico di Torino, 24 corso Duca degli Abruzzi, Torino 10129, Italy
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 corso Duca degli Abruzzi, Torino 10129, Italy.
| |
Collapse
|
28
|
Negishi H, Abe S, Yamashita K, Hirata K, Niwase K, Boudes M, Coulibaly F, Mori H, Ueno T. Supramolecular protein cages constructed from a crystalline protein matrix. Chem Commun (Camb) 2018; 54:1988-1991. [PMID: 29405208 DOI: 10.1039/c7cc08689j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein crystals are formed via ordered arrangements of proteins, which assemble to form supramolecular structures. Here, we show a method for the assembly of supramolecular protein cages within a crystalline environment. The cages are stabilized by covalent cross-linking allowing their release via dissolution of the crystal. The high stability of the desiccated protein crystals allows cages to be constructed.
Collapse
Affiliation(s)
- Hashiru Negishi
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Farah S, Domb AJ. Crystalline paclitaxel coated DES with bioactive protective layer development. J Control Release 2018; 271:107-117. [PMID: 29289571 DOI: 10.1016/j.jconrel.2017.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/29/2017] [Accepted: 12/27/2017] [Indexed: 01/01/2023]
Abstract
Drug eluting stents (DES) based on polymeric-carriers currently lead the market, however, reports on clinical complications encourage the development of safer and more effective DES. We recently reported on carrier-free DES based on rapamycin crystalline coating as a potential therapeutic solution. Here, we report for the first time surface crystallization of paclitaxel (PT) onto metallic stents. The physicochemical principles of crystallization and key process parameters were extensively studied for fabrication of controllable and homogeneous crystalline coatings on stent scaffolds. Stents loaded with nearly 100μg PT were chosen as a potential therapeutic device with a multilayer coating of 4-7μm thickness. In vitro PT release from these coated stents shows constant release for at least 28days with 10% cumulatively released. The effect of fast dissolving top coating on the physical stability of the coated stent was determined. The top coating enhances the mechanical stability of the crystalline coating during deployment and expansion simulations. Also, incorporating PT in the protective top coating for developing bioactive top coating for multilayer controlled release purpose was intensively studied. This process has wide applications that can be further implemented for other drugs for effective local drug delivery from implantable medical devices.
Collapse
Affiliation(s)
- Shady Farah
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis, The Hebrew University of Jerusalem, 91120, Israel.
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
30
|
Sharifi F, Sooriyarachchi AC, Altural H, Montazami R, Rylander MN, Hashemi N. Fiber Based Approaches as Medicine Delivery Systems. ACS Biomater Sci Eng 2016; 2:1411-1431. [DOI: 10.1021/acsbiomaterials.6b00281] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Farrokh Sharifi
- Department
of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | | | - Hayriye Altural
- Department
of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Reza Montazami
- Department
of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center
of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Marissa Nichole Rylander
- Department
of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nastaran Hashemi
- Department
of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center
of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
31
|
Recent advances in crystalline and amorphous particulate protein formulations for controlled delivery. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
32
|
Hildebrandt C, Mathaes R, Saedler R, Winter G. Origin of Aggregate Formation in Antibody Crystal Suspensions Containing PEG. J Pharm Sci 2016; 105:1059-65. [DOI: 10.1016/j.xphs.2015.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 11/16/2022]
|
33
|
Incorporating small molecules or biologics into nanofibers for optimized drug release: A review. Int J Pharm 2015; 494:516-30. [DOI: 10.1016/j.ijpharm.2015.08.054] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022]
|
34
|
|
35
|
Díaz-Torres NA, Mahon BP, Boone CD, Pinard MA, Tu C, Ng R, Agbandje-McKenna M, Silverman D, Scott K, McKenna R. Structural and biophysical characterization of the α-carbonic anhydrase from the gammaproteobacterium Thiomicrospira crunogena XCL-2: insights into engineering thermostable enzymes for CO2 sequestration. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1745-56. [PMID: 26249355 PMCID: PMC4528804 DOI: 10.1107/s1399004715012183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/24/2015] [Indexed: 11/10/2022]
Abstract
Biocatalytic CO2 sequestration to reduce greenhouse-gas emissions from industrial processes is an active area of research. Carbonic anhydrases (CAs) are attractive enzymes for this process. However, the most active CAs display limited thermal and pH stability, making them less than ideal. As a result, there is an ongoing effort to engineer and/or find a thermostable CA to fulfill these needs. Here, the kinetic and thermal characterization is presented of an α-CA recently discovered in the mesophilic hydrothermal vent-isolate extremophile Thiomicrospira crunogena XCL-2 (TcruCA), which has a significantly higher thermostability compared with human CA II (melting temperature of 71.9°C versus 59.5°C, respectively) but with a tenfold decrease in the catalytic efficiency. The X-ray crystallographic structure of the dimeric TcruCA shows that it has a highly conserved yet compact structure compared with other α-CAs. In addition, TcruCA contains an intramolecular disulfide bond that stabilizes the enzyme. These features are thought to contribute significantly to the thermostability and pH stability of the enzyme and may be exploited to engineer α-CAs for applications in industrial CO2 sequestration.
Collapse
Affiliation(s)
- Natalia A. Díaz-Torres
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Brian P. Mahon
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Christopher D. Boone
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Melissa A. Pinard
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Chingkuang Tu
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Robert Ng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - David Silverman
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Kathleen Scott
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
36
|
Neugebauer P, Khinast JG. Continuous Crystallization of Proteins in a Tubular Plug-Flow Crystallizer. CRYSTAL GROWTH & DESIGN 2015; 15:1089-1095. [PMID: 25774098 PMCID: PMC4353059 DOI: 10.1021/cg501359h] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/18/2014] [Indexed: 05/25/2023]
Abstract
Protein crystals have many important applications in many fields, including pharmaceutics. Being more stable than other formulations, and having a high degree of purity and bioavailability, they are especially promising in the area of drug delivery. In this contribution, the development of a continuously operated tubular crystallizer for the production of protein crystals has been described. Using the model enzyme lysozyme, we successfully generated product particles ranging between 15 and 40 μm in size. At the reactor inlet, a protein solution was mixed with a crystallization agent solution to create high supersaturations required for nucleation. Along the tube, supersaturation was controlled using water baths that divided the crystallizer into a nucleation zone and a growth zone. Low flow rates minimized the effect of shear forces that may impede crystal growth. Simultaneously, a slug flow was implemented to ensure crystal transport through the reactor and to reduce the residence time distribution.
Collapse
Affiliation(s)
- Peter Neugebauer
- Graz
University of Technology, Institute for
Process and Particle Engineering, Graz, Austria
| | - Johannes G. Khinast
- Graz
University of Technology, Institute for
Process and Particle Engineering, Graz, Austria
- Research Center
Pharmaceutical Engineering, Graz, Austria
| |
Collapse
|
37
|
Hekmat D. Large-scale crystallization of proteins for purification and formulation. Bioprocess Biosyst Eng 2015; 38:1209-31. [PMID: 25700885 DOI: 10.1007/s00449-015-1374-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/02/2015] [Indexed: 12/17/2022]
Abstract
Since about 170 years, salts were used to create supersaturated solutions and crystallize proteins. The dehydrating effect of salts as well as their kosmotropic or chaotropic character was revealed. Even the suitability of organic solvents for crystallization was already recognized. Interestingly, what was performed during the early times is still practiced today. A lot of effort was put into understanding the underlying physico-chemical interaction mechanisms leading to protein crystallization. However, it was understood that already the solvation of proteins is a highly complex process not to mention the intricate interrelation of electrostatic and hydrophobic interactions taking place. Although many basic questions are still unanswered, preparative protein crystallization was attempted as illustrated in the presented case studies. Due to the highly variable nature of crystallization, individual design of the crystallization process is needed in every single case. It was shown that preparative crystallization from impure protein solutions as a capture step is possible after applying adequate pre-treatment procedures like precipitation or extraction. Protein crystallization can replace one or more chromatography steps. It was further shown that crystallization can serve as an attractive alternative means for formulation of therapeutic proteins. Crystalline proteins can offer enhanced purity and enable highly concentrated doses of the active ingredient. Easy scalability of the proposed protein crystallization processes was shown using the maximum local energy dissipation as a suitable scale-up criterion. Molecular modeling and target-oriented protein engineering may allow protein crystallization to become part of a platform purification process in the near future.
Collapse
Affiliation(s)
- Dariusch Hekmat
- Institute of Biochemical Engineering, Technische Universität München, Boltzmannstr. 15, 85748, Garching, Germany,
| |
Collapse
|
38
|
Abstract
When formulated as liquid dosage forms, therapeutic proteins and peptides often show instability during handling as a result of chemical degradation. Solid formulations are frequently required to maintain protein stability during storage, transport and upon administration. Herein we highlight current strategies used to formulate pharmaceutical proteins in the solid form. An overview of the physical instabilities which can arise with proteins is first described. The key solidification techniques of crystallization, freeze-drying and particle forming technologies are then discussed. Examples of current commercial products that are formulated in the solid state are provided and include neutral protamine Hagedorn – insulin crystal suspensions, freeze-dried monoclonal antibodies and leuproride polylactide-co-glycolide microparticles. Finally, future perspectives in solid-state protein formulation are described.
Collapse
|
39
|
Huettmann H, Berkemeyer M, Buchinger W, Jungbauer A. Preparative crystallization of a single chain antibody using an aqueous two-phase system. Biotechnol Bioeng 2014; 111:2192-9. [PMID: 24888905 DOI: 10.1002/bit.25287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/28/2014] [Accepted: 05/05/2014] [Indexed: 11/08/2022]
Abstract
A simultaneous crystallization and aqueous two-phase extraction of a single chain antibody was developed, demonstrating process integration. The process conditions were designed to form an aqueous two-phase system, and to favor crystallization, using sodium sulfate and PEG-2000. At sufficiently high concentrations of PEG, a second phase was generated in which the protein crystallization occurred simultaneously. The single chain antibody crystals were partitioned to the top, polyethylene glycol-rich phase. The crystal nucleation took place in the sodium sulfate-rich phase and at the phase boundary, whereas crystal growth was progressing mainly in the polyethylene glycol-rich phase. The crystals in the polyethylene glycol-rich phase grew to a size of >50 µm. Additionally, polyethylene glycol acted as an anti-solvent, thus, it influenced the crystallization yield. A phase diagram with an undersaturation zone, crystallization area, and amorphous precipitation zone was established. Only small differences in polyethylene glycol concentration caused significant shifts of the crystallization yield. An increase of the polyethylene glycol content from 2% (w/v) to 4% (w/v) increased the yield from approximately 63-87%, respectively. Our results show that crystallization in aqueous two-phase systems is an opportunity to foster process integration.
Collapse
Affiliation(s)
- Hauke Huettmann
- Boehringer Ingelheim RCV GmbH & CoKG, Dr. Boehringer Gasse 5-11, Vienna, A-1121, Austria
| | | | | | | |
Collapse
|
40
|
Soltanizadeh N, Mirmoghtadaie L, Nejati F, Najafabadi LI, Heshmati MK, Jafari M. Solid-State Protein-Carbohydrate Interactions and Their Application in the Food Industry. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12089] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Nafiseh Soltanizadeh
- Dept. of Food Science and Technology; College of Agriculture; Isfahan Univ. of Technology; Isfahan 84156-83111 Iran
| | - Leila Mirmoghtadaie
- Dept. of Food Science and Technology; Natl. Nutrition and Food Technology Research Inst; College of Nutrition Science and Food Technology; Shahid Beheshti Univ. of Medical Science; Tehran 1981619573 Iran
| | - Fatemeh Nejati
- Dept. of Food Science and Technology; College of Agriculture; Islamic Azad Univ. (Shahrekord Branch); Shahrekord Iran
| | - Leila Izadi Najafabadi
- Dept. of Food Science and Technology; College of Agriculture; Isfahan Univ. of Technology; Isfahan 84156-83111 Iran
| | - Maryam Khakbaz Heshmati
- Dept. of Food Science and Technology; Ahar Faculty of Agriculture and Natural Resources, Univ. of Tabriz; 51664-16471 Tabriz Iran
| | - Maryam Jafari
- Dept. of Food Science and Technology; College of Agriculture; Isfahan Univ. of Technology; Isfahan 84156-83111 Iran
| |
Collapse
|
41
|
Puhl S, Li L, Meinel L, Germershaus O. Controlled Protein Delivery from Electrospun Non-Wovens: Novel Combination of Protein Crystals and a Biodegradable Release Matrix. Mol Pharm 2014; 11:2372-80. [DOI: 10.1021/mp5001026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sebastian Puhl
- Institute
for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Linhao Li
- Institute
for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education,
College of Bioengineering, Chongqing University, Chongqing 400030, P. R. China
| | - Lorenz Meinel
- Institute
for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Oliver Germershaus
- Institute
for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| |
Collapse
|
42
|
Mathaes R, Hildebrandt C, Winter G, Engert J, Besheer A. Quality Control of Protein Crystal Suspensions Using Microflow Imaging and Flow Cytometry. J Pharm Sci 2013; 102:3860-6. [DOI: 10.1002/jps.23677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 06/27/2013] [Indexed: 11/06/2022]
|
43
|
Haj-Ahmad RR, Elkordy AA, Chaw CS, Moore A. Compare and contrast the effects of surfactants (Pluronic®F-127 and Cremophor®EL) and sugars (β-cyclodextrin and inulin) on properties of spray dried and crystallised lysozyme. Eur J Pharm Sci 2013; 49:519-34. [DOI: 10.1016/j.ejps.2013.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/06/2013] [Accepted: 05/03/2013] [Indexed: 12/07/2022]
|
44
|
Hebel D, Huber S, Stanislawski B, Hekmat D. Stirred batch crystallization of a therapeutic antibody fragment. J Biotechnol 2013; 166:206-11. [DOI: 10.1016/j.jbiotec.2013.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 11/29/2022]
|
45
|
Smejkal B, Agrawal NJ, Helk B, Schulz H, Giffard M, Mechelke M, Ortner F, Heckmeier P, Trout BL, Hekmat D. Fast and scalable purification of a therapeutic full‐length antibody based on process crystallization. Biotechnol Bioeng 2013; 110:2452-61. [DOI: 10.1002/bit.24908] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/27/2013] [Accepted: 03/15/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Benjamin Smejkal
- Institute of Biochemical EngineeringTechnische Universität MünchenBoltzmannstr. 1585748GarchingGermany
| | - Neeraj J. Agrawal
- Chemical EngineeringMassachusetts Institute of TechnologyCambridge, Massachusetts
| | | | | | | | - Matthias Mechelke
- Institute of Biochemical EngineeringTechnische Universität MünchenBoltzmannstr. 1585748GarchingGermany
| | - Franziska Ortner
- Institute of Biochemical EngineeringTechnische Universität MünchenBoltzmannstr. 1585748GarchingGermany
| | - Philipp Heckmeier
- Institute of Biochemical EngineeringTechnische Universität MünchenBoltzmannstr. 1585748GarchingGermany
| | - Bernhardt L. Trout
- Chemical EngineeringMassachusetts Institute of TechnologyCambridge, Massachusetts
| | - Dariusch Hekmat
- Institute of Biochemical EngineeringTechnische Universität MünchenBoltzmannstr. 1585748GarchingGermany
| |
Collapse
|
46
|
Farah S, Khan W, Domb AJ. Crystalline coating of rapamycin onto a stent: Process development and characterization. Int J Pharm 2013; 445:20-8. [DOI: 10.1016/j.ijpharm.2013.01.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 11/30/2022]
|
47
|
Smejkal B, Helk B, Rondeau JM, Anton S, Wilke A, Scheyerer P, Fries J, Hekmat D, Weuster-Botz D. Protein crystallization in stirred systems--scale-up via the maximum local energy dissipation. Biotechnol Bioeng 2013; 110:1956-63. [PMID: 23335375 DOI: 10.1002/bit.24845] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/21/2012] [Accepted: 01/07/2013] [Indexed: 11/06/2022]
Abstract
Macromolecular bioproducts like therapeutic proteins have usually been crystallized with µL-scale vapor diffusion experiments for structure determination by X-ray diffraction. Little systematic know-how exists for technical-scale protein crystallization in stirred vessels. In this study, the Fab-fragment of the therapeutic antibody Canakinumab was successfully crystallized in a stirred-tank reactor on a 6 mL-scale. A four times faster onset of crystallization of the Fab-fragment was observed compared to the non-agitated 10 µL-scale. Further studies on a liter-scale with lysozyme confirmed this effect. A 10 times faster onset of crystallization was observed in this case at an optimum stirrer speed. Commonly suggested scale-up criteria (i.e., minimum stirrer speed to keep the protein crystals in suspension or constant impeller tip speed) were shown not to be successful. Therefore, the criterion of constant maximum local energy dissipation was applied for scale-up of the stirred crystallization process for the first time. The maximum local energy dissipation was estimated by measuring the drop size distribution of an oil/surfactant/water emulsion in stirred-tank reactors on a 6 mL-, 100 mL-, and 1 L-scale. A comparable crystallization behavior was achieved in all stirred-tank reactors when the maximum local energy dissipation was kept constant for scale-up. A maximum local energy dissipation of 2.2 W kg(-1) was identified to be the optimum for lysozyme crystallization at all scales under study.
Collapse
Affiliation(s)
- Benjamin Smejkal
- Institute of Biochemical Engineering, Technische Universität München, Boltzmannstr. 15, 85748 Garching, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Miller MA, Khan TA, Kaczorowski KJ, Wilson BK, Dinin AK, Borwankar AU, Rodrigues MA, Truskett TM, Johnston KP, Maynard JA. Antibody nanoparticle dispersions formed with mixtures of crowding molecules retain activity and in vivo bioavailability. J Pharm Sci 2012; 101:3763-78. [PMID: 22777686 DOI: 10.1002/jps.23256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/01/2012] [Accepted: 06/14/2012] [Indexed: 01/07/2023]
Abstract
Monoclonal antibodies continue to command a large market for treatment of a variety of diseases. In many cases, the doses required for therapeutic efficacy are large, limiting options for antibody delivery and administration. We report a novel formulation strategy based on dispersions of antibody nanoclusters that allows for subcutaneous injection of highly concentrated antibody (≈ 190 mg/mL). A solution of monoclonal antibody 1B7 was rapidly frozen and lyophilized using a novel spiral-wound in-situ freezing technology to generate amorphous particles. Upon gentle stirring, a translucent dispersion of approximately 430 nm protein clusters with low apparent viscosity (≈ 24 cp) formed rapidly in buffer containing the pharmaceutically acceptable crowding agents such as trehalose, polyethylene glycol, and n-methyl-2-pyrrolidone. Upon in vitro dilution of the dispersion, the nanoclusters rapidly reverted to monomeric protein with full activity, as monitored by dynamic light scattering and antigen binding. When administered to mice as an intravenous solution, subcutaneous solution, or subcutaneous dispersion at similar (4.6-7.3 mg/kg) or ultra-high dosages (51.6 mg/kg), the distribution and elimination kinetics were within error and the protein retained full activity. Overall, this method of generating high-concentration, low-viscosity dispersions of antibody nanoclusters could lead to improved administration and patient compliance, providing new opportunities for the biotechnology industry.
Collapse
Affiliation(s)
- Maria A Miller
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Levy Y, Khan W, Farah S, Domb AJ. Surface crystallization of rapamycin on stents using a temperature induced process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6207-10. [PMID: 22462404 DOI: 10.1021/la300364y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Metallic drug eluting stents (DES) are usually prepared by coating with a drug-polymer matrix as a rate controlling diffusion barrier. However, coating materials may display numerous problems, thus carrier-free DES are desired, yet releasing drug over long period of time. For this, we are reporting a novel temperature induced (TI) crystallization process for coating rapamycin on stents. Rapamycin crystals with a defined morphology and target drug load were applied from supersaturated solution. This method enables fabrication of controllable and homogeneous crystalline coatings on stent scaffolds and allowing the drug to release for several weeks.
Collapse
Affiliation(s)
- Yair Levy
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel, 91120
| | | | | | | |
Collapse
|
50
|
König C, Bechtold-Peters K, Baum V, Schultz-Fademrecht T, Bassarab S, Steffens KJ. Development of a pilot-scale manufacturing process for protein-coated microcrystals (PCMC): Mixing and precipitation – Part I. Eur J Pharm Biopharm 2012; 80:490-8. [DOI: 10.1016/j.ejpb.2011.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 10/15/2022]
|