1
|
Novoveská L, Nielsen SL, Eroldoğan OT, Haznedaroglu BZ, Rinkevich B, Fazi S, Robbens J, Vasquez M, Einarsson H. Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria. Mar Drugs 2023; 21:445. [PMID: 37623726 PMCID: PMC10455696 DOI: 10.3390/md21080445] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Microalgae and cyanobacteria are diverse groups of organisms with great potential to benefit societies across the world. These organisms are currently used in food, feed, pharmaceutical and cosmetic industries. In addition, a variety of novel compounds are being isolated. Commercial production of photosynthetic microalgae and cyanobacteria requires cultivation on a large scale with high throughput. However, scaling up production from lab-based systems to large-scale systems is a complex and potentially costly endeavor. In this review, we summarise all aspects of large-scale cultivation, including aims of cultivation, species selection, types of cultivation (ponds, photobioreactors, and biofilms), water and nutrient sources, temperature, light and mixing, monitoring, contamination, harvesting strategies, and potential environmental risks. Importantly, we also present practical recommendations and discuss challenges of profitable large-scale systems associated with economical design, effective operation and maintenance, automation, and shortage of experienced phycologists.
Collapse
Affiliation(s)
| | | | - Orhan Tufan Eroldoğan
- Department of Aquaculture, Faculty of Fisheries, Cukurova University, 01330 Adana, Türkiye
| | | | | | - Stefano Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), 00015 Roma, Italy
| | - Johan Robbens
- Flanders Research Institute for Agriculture, Fisheries and Food, 9820 Merelbeke, Belgium
| | - Marlen Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Hjörleifur Einarsson
- Faculty of Natural Resource Sciences, University of Akureyri, 600 Akureyri, Iceland
| |
Collapse
|
2
|
Goli A, Shamiri A, Talaiekhozani A, Eshtiaghi N, Aghamohammadi N, Aroua MK. An overview of biological processes and their potential for CO2 capture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 183:41-58. [PMID: 27576148 DOI: 10.1016/j.jenvman.2016.08.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/09/2016] [Accepted: 08/21/2016] [Indexed: 06/06/2023]
Abstract
The extensive amount of available information on global warming suggests that this issue has become prevalent worldwide. Majority of countries have issued laws and policies in response to this concern by requiring their industrial sectors to reduce greenhouse gas emissions, such as CO2. Thus, introducing new and more effective treatment methods, such as biological techniques, is crucial to control the emission of greenhouse gases. Many studies have demonstrated CO2 fixation using photo-bioreactors and raceway ponds, but a comprehensive review is yet to be published on biological CO2 fixation. A comprehensive review of CO2 fixation through biological process is presented in this paper as biological processes are ideal to control both organic and inorganic pollutants. This process can also cover the classification of methods, functional mechanisms, designs, and their operational parameters, which are crucial for efficient CO2 fixation. This review also suggests the bio-trickling filter process as an appropriate approach in CO2 fixation to assist in creating a pollution-free environment. Finally, this paper introduces optimum designs, growth rate models, and CO2 fixation of microalgae, functions, and operations in biological CO2 fixation.
Collapse
Affiliation(s)
- Amin Goli
- Jami Institute of Technology, Mechanical Engineering Department, Isfahan, Iran
| | - Ahmad Shamiri
- Chemical & Petroleum Engineering Department, Faculty of Engineering, Technology & Built Environment, UCSI University, 56000 Kuala Lumpur, Malaysia; Process System Engineering Center, Faculty of Engineering, Technology & Built Environment, UCSI University, 56000 Kuala Lumpur, Malaysia.
| | | | - Nicky Eshtiaghi
- Chemical and Environmental Engineering Discipline, School of Engineering, RMIT University, Victoria, Australia
| | - Nasrin Aghamohammadi
- Centre for Occupational and Environmental Health, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | |
Collapse
|
3
|
Lee E, Zhang Q. Integrated co-limitation kinetic model for microalgae growth in anaerobically digested municipal sludge centrate. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Krujatz F, Fehse K, Jahnel M, Gommel C, Schurig C, Lindner F, Bley T, Weber J, Steingroewer J. MicrOLED-photobioreactor: Design and characterization of a milliliter-scale Flat-Panel-Airlift-photobioreactor with optical process monitoring. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Moheimani NR, Parlevliet D, McHenry MP, Bahri PA, de Boer K. Past, Present and Future of Microalgae Cultivation Developments. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2015. [DOI: 10.1007/978-3-319-16640-7_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Pereira DA, Rodrigues VO, Gómez SV, Sales EA, Jorquera O. Parametric sensitivity analysis for temperature control in outdoor photobioreactors. BIORESOURCE TECHNOLOGY 2013; 144:548-553. [PMID: 23886645 DOI: 10.1016/j.biortech.2013.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/30/2013] [Accepted: 07/03/2013] [Indexed: 06/02/2023]
Abstract
In this study a critical analysis of input parameters on a model to describe the broth temperature in flat plate photobioreactors throughout the day is carried out in order to assess the effect of these parameters on the model. Using the design of experiment approach, variation of selected parameters was introduced and the influence of each parameter on the broth temperature was evaluated by a parametric sensitivity analysis. The results show that the major influence on the broth temperature is that from the reactor wall and the shading factor, both related to the direct and reflected solar irradiation. Other parameter which play an important role on the temperature is the distance between plates. This study provides information to improve the design and establish the most appropriate operating conditions for the cultivation of microalgae in outdoor systems.
Collapse
Affiliation(s)
- Darlan A Pereira
- Polytechnic Institute, Federal University of Bahia, Bahia, Brazil.
| | | | | | | | | |
Collapse
|
7
|
Fernandes BD, Dragone GM, Teixeira JA, Vicente AA. Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content. Appl Biochem Biotechnol 2010; 161:218-26. [PMID: 20221863 DOI: 10.1007/s12010-009-8783-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 09/15/2009] [Indexed: 12/01/2022]
Abstract
The slow development of microalgal biotechnology is due to the failure in the design of large-scale photobioreactors (PBRs) where light energy is efficiently utilized. In this work, both the quality and the amount of light reaching a given point of the PBR were determined and correlated with cell density, light path length, and PBR geometry. This was made for two different geometries of the downcomer of an airlift PBR using optical fiber technology that allows to obtain information about quantitative and qualitative aspects of light patterns. This is important since the ability of microalgae to use the energy of photons is different, depending on the wavelength of the radiation. The results show that the circular geometry allows a more efficient light penetration, especially in the locations with a higher radial coordinate (r) when compared to the plane geometry; these observations were confirmed by the occurrence of a higher fraction of illuminated volume of the PBR for this geometry. An equation is proposed to correlate the relative light intensity with the penetration distance for both geometries and different microalgae cell concentrations. It was shown that the attenuation of light intensity is dependent on its wavelength, cell concentration, geometry of PBR, and the penetration distance of light.
Collapse
Affiliation(s)
- Bruno D Fernandes
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710057 Braga, Portugal
| | | | | | | |
Collapse
|
8
|
de-Bashan LE, Trejo A, Huss VAR, Hernandez JP, Bashan Y. Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. BIORESOURCE TECHNOLOGY 2008; 99:4980-9. [PMID: 18024023 DOI: 10.1016/j.biortech.2007.09.065] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 08/31/2007] [Accepted: 09/09/2007] [Indexed: 05/07/2023]
Abstract
In the summer of 2003, a microalga strain was isolated from a massive green microalgae bloom in wastewater stabilization ponds at the treatment facility of La Paz, B.C.S., Mexico. Prevailing environmental conditions were air temperatures over 40 degrees C, water temperature of 37 degrees C, and insolation of up to 2400 micromol m2 s(-1) at midday for several hours at the water surface for four months. The microalga was identified as Chlorella sorokiniana Shih. et Krauss, based on sequencing its entire 18S rRNA gene. In a controlled photo-bioreactor, this strain can grow to high population densities in synthetic wastewater at temperatures of 40-42 degrees C and light intensity of 2500 micromol m2 s(-1) for 5h daily and efficiently remove ammonium from the wastewater under these conditions better than under normal lower temperature (28 degrees C) and lower light intensity (60 micromol m2 s(-1)). When co-immobilized with the bacterium Azospirillum brasilense that promotes growth of microalgae, the population of microalga grew faster and removed even more ammonium. Under exposure to extreme growth conditions, the quantity of four photosynthetic pigments increased in the co-immobilized cultures. This strain of microalga has potential as a wastewater treatment agent under extreme conditions of temperature and light intensity.
Collapse
Affiliation(s)
- Luz E de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research, Mar Bermejo 195, Colonia Palo de Santa Rita, La Paz 23090, BCS, Mexico
| | | | | | | | | |
Collapse
|
9
|
Abstract
Global warming can be slowed, and perhaps reversed, only when society replaces fossil fuels with renewable, carbon-neutral alternatives. The best option is bioenergy: the sun's energy is captured in biomass and converted to energy forms useful to modern society. To make a dent in global warming, bioenergy must be generated at a very high rate, since the world today uses approximately 10 TW of fossil-fuel energy. And, it must do so without inflicting serious damage on the environment or disrupting our food supply. While most bioenergy options fail on both counts, several microorganism-based options have the potential to produce large amounts of renewable energy without disruptions. In one approach, microbial communities convert the energy value of various biomass residuals to socially useful energy. Biomass residuals come from agricultural, animal, and a variety of industrial operations, as well as from human wastes. Microorganisms can convert almost all of the energy in these wastes to methane, hydrogen, and electricity. In a second approach, photosynthetic microorganisms convert sunlight into biodiesel. Certain algae (eukaryotes) or cyanobacteria (prokaryotes) have high lipid contents. Under proper conditions, these photosynthetic microorganisms can produce lipids for biodiesel with yields per unit area 100 times or more than possible with any plant system. In addition, the non-lipid biomass can be converted to methane, hydrogen, or electricity. Photosynthetic microorganisms do not require arable land, an advantage because our arable land must be used to produce food. Algae or cyanobacteria may be the best option to produce bioenergy at rates high enough to replace a substantial fraction of our society's use of fossil fuels.
Collapse
Affiliation(s)
- Bruce E Rittmann
- Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287-5701, USA.
| |
Collapse
|
10
|
Cheng L, Zhang L, Chen H, Gao C. Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 2006. [DOI: 10.1016/j.seppur.2005.12.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
|
12
|
Morita M, Watanabe Y, Saiki H. Instruction of Microalgal Biomass Production for Practically Higher Photosynthetic Performance Using a Photobioreactor. FOOD AND BIOPRODUCTS PROCESSING 2001. [DOI: 10.1205/096030801750425271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|