1
|
De Baets J, De Paepe B, De Mey M. Delaying production with prokaryotic inducible expression systems. Microb Cell Fact 2024; 23:249. [PMID: 39272067 PMCID: PMC11401332 DOI: 10.1186/s12934-024-02523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Engineering bacteria with the purpose of optimizing the production of interesting molecules often leads to a decrease in growth due to metabolic burden or toxicity. By delaying the production in time, these negative effects on the growth can be avoided in a process called a two-stage fermentation. MAIN TEXT During this two-stage fermentation process, the production stage is only activated once sufficient cell mass is obtained. Besides the possibility of using external triggers, such as chemical molecules or changing fermentation parameters to induce the production stage, there is a renewed interest towards autoinducible systems. These systems, such as quorum sensing, do not require the extra interference with the fermentation broth to start the induction. In this review, we discuss the different possibilities of both external and autoinduction methods to obtain a two-stage fermentation. Additionally, an overview is given of the tuning methods that can be applied to optimize the induction process. Finally, future challenges and prospects of (auto)inducible expression systems are discussed. CONCLUSION There are numerous methods to obtain a two-stage fermentation process each with their own advantages and disadvantages. Even though chemically inducible expression systems are well-established, an increasing interest is going towards autoinducible expression systems, such as quorum sensing. Although these newer techniques cannot rely on the decades of characterization and applications as is the case for chemically inducible promoters, their advantages might lead to a shift in future inducible expression systems.
Collapse
Affiliation(s)
- Jasmine De Baets
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
2
|
Ferrari E, Di Benedetto G, Firrincieli A, Presentato A, Frascari D, Cappelletti M. Unravelling the role of the group 6 soluble di-iron monooxygenase (SDIMO) SmoABCD in alkane metabolism and chlorinated alkane degradation. Microb Biotechnol 2024; 17:e14453. [PMID: 38683670 PMCID: PMC11057499 DOI: 10.1111/1751-7915.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 05/02/2024] Open
Abstract
Soluble di-iron monooxygenases (SDIMOs) are multi-component enzymes catalysing the oxidation of various substrates. These enzymes are characterized by high sequence and functional diversity that is still not well understood despite their key role in biotechnological processes including contaminant biodegradation. In this study, we analysed a mutant of Rhodoccocus aetherivorans BCP1 (BCP1-2.10) characterized by a transposon insertion in the gene smoA encoding the alpha subunit of the plasmid-located SDIMO SmoABCD. The mutant BCP1-2.10 showed a reduced capacity to grow on propane, lost the ability to grow on butane, pentane and n-hexane and was heavily impaired in the capacity to degrade chloroform and trichloroethane. The expression of the additional SDIMO prmABCD in BCP1-2.10 probably allowed the mutant to partially grow on propane and to degrade it, to some extent, together with the other short-chain n-alkanes. The complementation of the mutant, conducted by introducing smoABCD in the genome as a single copy under a constitutive promoter or within a plasmid under a thiostreptone-inducible promoter, allowed the recovery of the alkanotrophic phenotype as well as the capacity to degrade chlorinated n-alkanes. The heterologous expression of smoABCD allowed a non-alkanotrophic Rhodococcus strain to grow on pentane and n-hexane when the gene cluster was introduced together with the downstream genes encoding alcohol and aldehyde dehydrogenases and a GroEL chaperon. BCP1 smoA gene was shown to belong to the group 6 SDIMOs, which is a rare group of monooxygenases mostly present in Mycobacterium genus and in a few Rhodococcus strains. SmoABCD originally evolved in Mycobacterium and was then acquired by Rhodococcus through horizontal gene transfer events. This work extends the knowledge of the biotechnologically relevant SDIMOs by providing functional and evolutionary insights into a group 6 SDIMO in Rhodococcus and demonstrating its key role in the metabolism of short-chain alkanes and degradation of chlorinated n-alkanes.
Collapse
Affiliation(s)
- Eleonora Ferrari
- Department of Pharmacy and Biotechnology (FaBit)University of BolognaBolognaItaly
| | - Giulio Di Benedetto
- Department of Pharmacy and Biotechnology (FaBit)University of BolognaBolognaItaly
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro‐Food and Forest SystemsUniversity of TusciaViterboItaly
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Dario Frascari
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM)University of BolognaBolognaItaly
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology (FaBit)University of BolognaBolognaItaly
| |
Collapse
|
3
|
Grechishnikova EG, Shemyakina AO, Novikov AD, Lavrov KV, Yanenko AS. Rhodococcus: sequences of genetic parts, analysis of their functionality, and development prospects as a molecular biology platform. Crit Rev Biotechnol 2023; 43:835-850. [PMID: 35786136 DOI: 10.1080/07388551.2022.2091976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/19/2022] [Accepted: 05/12/2022] [Indexed: 12/19/2022]
Abstract
Rhodococcus bacteria are a fast-growing platform for biocatalysis, biodegradation, and biosynthesis, but not a platform for molecular biology. That is, Rhodococcus are not convenient for genetic engineering. One major issue for the engineering of Rhodococcus is the absence of a publicly available, curated, and commented collection of sequences of genetic parts that are functional in biotechnologically relevant species of Rhodococcus (R. erythropolis, R. rhodochrous, R. ruber, and R. jostii). Here, we present a collection of genetic parts for Rhodococcus (vector replicons, promoter regions, regulators, markers, and reporters) supported by a thorough analysis of their functionality. We also highlight and discuss the gaps in Rhodococcus-related genetic parts and techniques, which should be filled in order to make these bacteria a full-fledged molecular biology platform independent of Escherichia coli. We conclude that all major types of required genetic parts for Rhodococcus are available now, except multicopy replicons. As for model Rhodococcus strains, there is a particular shortage of strains with high electrocompetence levels and strains designed for solving specific genetic engineering tasks. We suggest that these obstacles are surmountable in the near future due to an intensification of research work in the field of genetic techniques for non-conventional bacteria.
Collapse
Affiliation(s)
- Elena G Grechishnikova
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Anna O Shemyakina
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Andrey D Novikov
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Konstantin V Lavrov
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Alexander S Yanenko
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
4
|
Advancing Desulfurization in the Model Biocatalyst Rhodococcus qingshengii IGTS8 via an In Locus Combinatorial Approach. Appl Environ Microbiol 2023; 89:e0197022. [PMID: 36688659 PMCID: PMC9973023 DOI: 10.1128/aem.01970-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Biodesulfurization poses as an ideal replacement to the high cost hydrodesulfurization of the recalcitrant heterocyclic sulfur compounds, such as dibenzothiophene (DBT) and its derivatives. The increasingly stringent limits on fuel sulfur content intensify the need for improved desulfurization biocatalysts, without sacrificing the calorific value of the fuel. Selective sulfur removal in a wide range of biodesulfurization strains, as well as in the model biocatalyst Rhodococcus qingshengii IGTS8, occurs via the 4S metabolic pathway that involves the dszABC operon, which encodes enzymes that catalyze the generation of 2-hydroxybiphenyl and sulfite from DBT. Here, using a homologous recombination process, we generate two recombinant IGTS8 biocatalysts, harboring native or rearranged, nonrepressible desulfurization operons, within the native dsz locus. The alleviation of sulfate-, methionine-, and cysteine-mediated dsz repression is achieved through the exchange of the native promoter Pdsz, with the nonrepressible Pkap1 promoter. The Dsz-mediated desulfurization from DBT was monitored at three growth phases, through HPLC analysis of end product levels. Notably, an 86-fold enhancement of desulfurization activity was documented in the presence of selected repressive sulfur sources for the recombinant biocatalyst harboring a combination of three targeted genetic modifications, namely, a dsz operon rearrangement, a native promoter exchange, and a dszA-dszB overlap removal. In addition, transcript level comparison highlighted the diverse effects of our genetic engineering approaches on dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. IMPORTANCE Rhodococcus is perhaps the most promising biodesulfurization genus and is able to withstand the harsh process conditions of a biphasic biodesulfurization process. In the present work, we constructed an advanced biocatalyst harboring a combination of three genetic modifications, namely, an operon rearrangement, a promoter exchange, and a gene overlap removal. Our homologous recombination approach generated stable biocatalysts that do not require antibiotic addition, while harboring nonrepressible desulfurization operons that present very high biodesulfurization activities and are produced in simple and low-cost media. In addition, transcript level quantification validated the effects of our genetic engineering approaches on recombinant strains' dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. Based on these findings, the present work can pave the way for further strain and process optimization studies that could eventually lead to an economically viable biodesulfurization process.
Collapse
|
5
|
Kitagawa W, Hata M. Development of Efficient Genome-Reduction Tool Based on Cre/ loxP System in Rhodococcus erythropolis. Microorganisms 2023; 11:microorganisms11020268. [PMID: 36838232 PMCID: PMC9959502 DOI: 10.3390/microorganisms11020268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Rhodococcus has been extensively studied for its excellent ability to degrade artificial chemicals and its capability to synthesize biosurfactants and antibiotics. In recent years, studies have attempted to use Rhodococcus as a gene expression host. Various genetic tools, such as plasmid vectors, transposon mutagenesis, and gene disruption methods have been developed for use in Rhodococcus; however, no effective method has been reported for performing large-size genome reduction. Therefore, the present study developed an effective plasmid-curing method using the levansucrase-encoding sacB gene and a simple two-step genome-reduction method using a modified Cre/loxP system. For the results, R. erythropolis JCM 2895 was used as the model; a mutant strain that cured all four plasmids and deleted seven chromosomal regions was successfully obtained in this study. The total DNA deletion size was >600 kb, which corresponds mostly to 10% of the genome size. Using this method, a genome-structure-stabilized and unfavorable gene/function-lacking host strain can be created in Rhodococcus. This genetic tool will help develop and improve Rhodococcus strains for various industrial and environmental applications.
Collapse
Affiliation(s)
- Wataru Kitagawa
- Bioproduction Research Institute, National Institute of Advanced Industrial and Technology (AIST), Sapporo 062-8517, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Correspondence:
| | - Miyako Hata
- Bioproduction Research Institute, National Institute of Advanced Industrial and Technology (AIST), Sapporo 062-8517, Japan
| |
Collapse
|
6
|
Wanarska M, Krajewska-Przybyszewska E, Wicka-Grochocka M, Cieśliński H, Pawlak-Szukalska A, Białkowska AM, Turkiewicz M, Florczak T, Gromek E, Krysiak J, Filipowicz N. A New Expression System Based on Psychrotolerant Debaryomyces macquariensis Yeast and Its Application to the Production of Cold-Active β-d-Galactosidase from Paracoccus sp. 32d. Int J Mol Sci 2022; 23:ijms231911691. [PMID: 36232994 PMCID: PMC9569826 DOI: 10.3390/ijms231911691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Yeasts provide attractive host/vector systems for heterologous gene expression. The currently used yeast-based expression platforms include mesophilic and thermotolerant species. A eukaryotic expression system working at low temperatures could be particularly useful for the production of thermolabile proteins and proteins that tend to form insoluble aggregates. For this purpose, an expression system based on an Antarctic psychrotolerant yeast Debaryomyces macquariensis strain D50 that is capable of growing at temperatures ranging from 0 to 30 °C has been developed. The optimal physical culture conditions for D. macquariensis D50 in a fermenter are as follows: temperature 20 °C, pH 5.5, aeration rate of 1.5 vvm, and a stirring speed of 300 rpm. Four integrative plasmid vectors equipped with an expression cassette containing the constitutive GAP promoter and CYC1 transcriptional terminator from D. macquariensis D50 were constructed and used to clone and express a gene-encoding cold-active β-d-galactosidase of Paracoccus sp. 32d. The yield was 1150 U/L of recombinant yeast culture. Recombinant D. macquariensis D50 strains were mitotically stable under both selective and non-selective conditions. The D. macquariensis D50 host/vector system has been successfully utilized for the synthesis of heterologous thermolabile protein, and it can be an alternative to other microbial expression systems.
Collapse
Affiliation(s)
- Marta Wanarska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
- Correspondence:
| | - Ewelina Krajewska-Przybyszewska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Monika Wicka-Grochocka
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Hubert Cieśliński
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Anna Pawlak-Szukalska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Marianna Turkiewicz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Tomasz Florczak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Ewa Gromek
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Joanna Krysiak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Natalia Filipowicz
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
7
|
Purification and Characterization of the Isoprene Monooxygenase from Rhodococcus sp. Strain AD45. Appl Environ Microbiol 2022; 88:e0002922. [PMID: 35285709 PMCID: PMC9004368 DOI: 10.1128/aem.00029-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isoprene (2-methyl-1,3-butadiene) is a climate-active gas released to the atmosphere in large quantities, comparable to methane in magnitude. Several bacteria have been isolated which can grow on isoprene as a sole carbon and energy source, but very little information is available about the degradation of isoprene by these bacteria at the biochemical level. Isoprene utilization is dependent on a multistep pathway, with the first step being the oxidation of isoprene to epoxy-isoprene. This is catalyzed by a four-component soluble diiron monooxygenase, isoprene monooxygenase (IsoMO). IsoMO is a six-protein complex comprising an oxygenase (IsoABE), containing the di-iron active site, a Rieske-type ferredoxin (IsoC), a NADH reductase (IsoF), and a coupling/effector protein (IsoD), homologous to the soluble methane monooxygenase and alkene/aromatic monooxygenases. Here, we describe the purification of the IsoMO components from Rhodococcus sp. AD45 and reconstitution of isoprene-oxidation activity in vitro. Some IsoMO components were expressed and purified from the homologous host Rhodococcus sp. AD45-ID, a Rhodococcus sp. AD45 strain lacking the megaplasmid which contains the isoprene metabolic gene cluster. Others were expressed in Escherichia coli and purified as fusion proteins. We describe the characterization of these purified components and demonstrate their activity when combined with Rhodococcus sp. AD45 cell lysate. Demonstration of IsoMO activity in vitro provides a platform for further biochemical and biophysical characterization of this novel soluble diiron center monooxygenase, facilitating new insights into the enzymatic basis for the bacterial degradation of isoprene. IMPORTANCE Isoprene is a highly abundant climate-active gas and a carbon source for some bacteria. Analyses of the genes encoding isoprene monooxygenase (IsoMO) indicate this enzyme is a soluble diiron center monooxygenase in the same family of oxygenases as soluble methane monooxygenase, alkene monooxygenase, and toluene monooxygenase. We report the initial biochemical characterization of IsoMO from Rhodococcus, the first from any bacterium, describing the challenging purification and reconstitution of in vitro activity of its four components. This study lays the foundation for future detailed mechanistic studies of IsoMO, a key enzyme in the global isoprene cycle.
Collapse
|
8
|
Novel (S)-Selective Hydrolase from Arthrobacter sp. K5 for Kinetic Resolution of Cyclic Amines. Catalysts 2021. [DOI: 10.3390/catal11070809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chiral 2-methylpiperidine (2-MPI) is an important building block that has potential for applications in pharmaceuticals and pesticides. In this study, we observed that the hydrolase in Arthrobacter sp. K5 exhibits high (S)-selectivity toward rac-N-pivaloyl-2-MPI to yield (S)-2-MPI with 80.2% enantiomeric excess (ee) in a 38.2% conversion. The hydrolase, which was identified by analyses of partial amino acid sequences of the purified enzyme and genome sequence of Arthrobacter sp. K5, exhibited moderate homology with amidohydrolases up to 67% (molinate hydrolase from Gulosibacter molinativorax). The hydrolase gene was overexpressed in Rhodococcus erythropolis. The recombinant cells produced (S)-2-MPI with 83.5% ee in a 48.4% conversion (E = 26.3) from 100 mM rac-N-pivaloyl-2-MPI. These results suggest the possibility of an efficient preparation of chiral 2-MPI in kinetic resolution.
Collapse
|
9
|
Liang Y, Yu H. Genetic toolkits for engineering Rhodococcus species with versatile applications. Biotechnol Adv 2021; 49:107748. [PMID: 33823269 DOI: 10.1016/j.biotechadv.2021.107748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 02/09/2023]
Abstract
Rhodococcus spp. are a group of non-model gram-positive bacteria with diverse catabolic activities and strong adaptive capabilities, which enable their wide application in whole-cell biocatalysis, environmental bioremediation, and lignocellulosic biomass conversion. Compared with model microorganisms, the engineering of Rhodococcus is challenging because of the lack of universal molecular tools, high genome GC content (61% ~ 71%), and low transformation and recombination efficiencies. Nevertheless, because of the high interest in Rhodococcus species for bioproduction, various genetic elements and engineering tools have been recently developed for Rhodococcus spp., including R. opacus, R. jostii, R. ruber, and R. erythropolis, leading to the expansion of the genetic toolkits for Rhodococcus engineering. In this article, we provide a comprehensive review of the important developed genetic elements for Rhodococcus, including shuttle vectors, promoters, antibiotic markers, ribosome binding sites, and reporter genes. In addition, we also summarize gene transfer techniques and strategies to improve transformation efficiency, as well as random and precise genome editing tools available for Rhodococcus, including transposition, homologous recombination, recombineering, and CRISPR/Cas9. We conclude by discussing future trends in Rhodococcus engineering. We expect that more synthetic and systems biology tools (such as multiplex genome editing, dynamic regulation, and genome-scale metabolic models) will be adapted and optimized for Rhodococcus.
Collapse
Affiliation(s)
- Youxiang Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Nassar HN, Abu Amr SS, El-Gendy NS. Biodesulfurization of refractory sulfur compounds in petro-diesel by a novel hydrocarbon tolerable strain Paenibacillus glucanolyticus HN4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8102-8116. [PMID: 33048293 DOI: 10.1007/s11356-020-11090-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
One of the main precursors of air pollution and acid rains is the presence of the recalcitrant thiophenic compounds, for example dibenzothiophene (DBT) and its derivatives in transportation fuels. In an attempt to achieve the worldwide regulations of ultra-low sulfur transportation fuels without affecting its hydrocarbon skeleton, a biphasic medium containing 100 mg/L DBT dissolved in n-hexadecane (1/4 oil/water v/v) used for enrichment and isolation of selective biodesulfurizing bacterium from an oil-polluted sediment sample collected from Egyptian Red Sea shoreline. The isolated bacterium is facultative anaerobe, motile, spore-former, and mesophile. It is genetically identified as Paenibacillus glucanolyticus strain HN4 (NCBI Gene Bank Accession No. MT645230). HN4 desulfurized DBT as a model of the recalcitrant thiophenic compounds without affecting its hydrocarbon skeleton via the 4S-pathway producing 2-hydroxybiphenyl (2-HBP) as a dead end product. HN4 substantiated to be a hydrocarbon tolerant, biosurfactants(s) producer, and endorsed unique enzymatic system capable of desulfurizing broad range of thiophenic compounds and expressed an efficient desulfurization activity against the recalcitrant alkylated DBTs. As far our knowledge, it is the first reported BDS study using P. glucanolyticus. Statistical optimization based on One-Factor-At-A-Time (OFAT) technique and response surface methodology (RSM) applied for elucidation of mathematical model correlations describing and optimizing the effect of different physicochemical parameters on batch biphasic BDS process. That illustrated an approximate increase in BDS efficiency by 1.34 fold and recorded 94% sulfur removal in biphasic batch process at optimum operation conditions of 120 h, 0.14 wt% S-content model oil (DBT dissolved in n-hexadecane), 33.5 °C, pH7 and 1/1 oil/water phase ratio, and 147 rpm. Resting cells of HN4 in a biphasic reactor (1/1 v/v) decreased the sulfur content of a refractory thiophenic model oil (thiophene, benzothiophene, DBT, and alkylated DBT dissolved in n-hexadecane) from 0.14 to 0.027 wt%, and petro-diesel from 0.2 to 0.04 wt%, within 120 h, keeping the calorific value of the treated fuel intact. Consequently, that novel strain could be recommended as a promising candidate for BDS as complementary to hydrodesulfurization process in oil refinery.
Collapse
Affiliation(s)
- Hussein N Nassar
- Petroleum Biotechnology Lab., Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
- Department of Microbiology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, 12566, Egypt
- Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, 12588, Egypt
| | - Salem S Abu Amr
- Faculty of Engineering, Karabuk University, Demir Campus, 78050 Karabuk, Turkey
| | - Nour Sh El-Gendy
- Petroleum Biotechnology Lab., Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt.
- Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, 12588, Egypt.
- Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, 12566, Egypt.
| |
Collapse
|
11
|
Saito Y, Kitagawa W, Kumagai T, Tajima N, Nishimiya Y, Tamano K, Yasutake Y, Tamura T, Kameda T. Developing a codon optimization method for improved expression of recombinant proteins in actinobacteria. Sci Rep 2019; 9:8338. [PMID: 31171855 PMCID: PMC6554278 DOI: 10.1038/s41598-019-44500-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/03/2019] [Indexed: 02/05/2023] Open
Abstract
Codon optimization by synonymous substitution is widely used for recombinant protein expression. Recent studies have investigated sequence features for codon optimization based on large-scale expression analyses. However, these studies have been limited to common host organisms such as Escherichia coli. Here, we develop a codon optimization method for Rhodococcus erythropolis, a gram-positive GC-rich actinobacterium attracting attention as an alternative host organism. We evaluate the recombinant protein expression of 204 genes in R. erythropolis with the same plasmid vector. The statistical analysis of these expression data reveals that the mRNA folding energy at 5’ regions as well as the codon frequency are important sequence features for codon optimization. Intriguingly, other sequence features such as the codon repetition rate show a different tendency from the previous study on E. coli. We optimize the coding sequences of 12 genes regarding these sequence features, and confirm that 9 of them (75%) achieve increased expression levels compared with wild-type sequences. Especially, for 5 genes whose expression levels for wild-type sequences are small or not detectable, all of them are improved by optimized sequences. These results demonstrate the effectiveness of our codon optimization method in R. erythropolis, and possibly in other actinobacteria.
Collapse
Affiliation(s)
- Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Wataru Kitagawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan.,Graduate School of Agriculture, Hokkaido University, Kita 9-Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | | | - Naoyuki Tajima
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Yoshiyuki Nishimiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | - Koichi Tamano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | - Tomohiro Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan. .,Graduate School of Agriculture, Hokkaido University, Kita 9-Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
| |
Collapse
|
12
|
Abstract
Rhodococcus erythropolis JCM 3201 can express several recombinant proteins that are difficult to express in Escherichia coli. It is used as one of the hosts for protein expression and bioconversion. Rhodococcus erythropolis JCM 3201 can express several recombinant proteins that are difficult to express in Escherichia coli. It is used as one of the hosts for protein expression and bioconversion. Here, we report the draft genome sequence of R. erythropolis JCM 3201.
Collapse
|
13
|
Časaitė V, Sadauskas M, Vaitekūnas J, Gasparavičiūtė R, Meškienė R, Skikaitė I, Sakalauskas M, Jakubovska J, Tauraitė D, Meškys R. Engineering of a chromogenic enzyme screening system based on an auxiliary indole-3-carboxylic acid monooxygenase. Microbiologyopen 2019; 8:e00795. [PMID: 30666828 PMCID: PMC6692525 DOI: 10.1002/mbo3.795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/24/2022] Open
Abstract
Here, we present a proof‐of‐principle for a new high‐throughput functional screening of metagenomic libraries for the selection of enzymes with different activities, predetermined by the substrate being used. By this approach, a total of 21 enzyme‐coding genes were selected, including members of xanthine dehydrogenase, aldehyde dehydrogenase (ALDH), and amidohydrolase families. The screening system is based on a pro‐chromogenic substrate, which is transformed by the target enzyme to indole‐3‐carboxylic acid. The later compound is converted to indoxyl by a newly identified indole‐3‐carboxylate monooxygenase (Icm). Due to the spontaneous oxidation of indoxyl to indigo, the target enzyme‐producing colonies turn blue. Two types of pro‐chromogenic substrates have been tested. Indole‐3‐carboxaldehydes and the amides of indole‐3‐carboxylic acid have been applied as substrates for screening of the ALDHs and amidohydrolases, respectively. Both plate assays described here are rapid, convenient, easy to perform, and adaptable for the screening of a large number of samples both in Escherichia coli and Rhodococcus sp. In addition, the fine‐tuning of the pro‐chromogenic substrate allows screening enzymes with the desired substrate specificity.
Collapse
Affiliation(s)
- Vida Časaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mikas Sadauskas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renata Gasparavičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rita Meškienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Izabelė Skikaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Sakalauskas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jevgenija Jakubovska
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daiva Tauraitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
14
|
Anthony WE, Carr RR, DeLorenzo DM, Campbell TP, Shang Z, Foston M, Moon TS, Dantas G. Development of Rhodococcus opacus as a chassis for lignin valorization and bioproduction of high-value compounds. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:192. [PMID: 31404385 PMCID: PMC6683499 DOI: 10.1186/s13068-019-1535-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/24/2019] [Indexed: 05/09/2023]
Abstract
The current extraction and use of fossil fuels has been linked to extensive negative health and environmental outcomes. Lignocellulosic biomass-derived biofuels and bioproducts are being actively considered as renewable alternatives to the fuels, chemicals, and materials produced from fossil fuels. A major challenge limiting large-scale, economic deployment of second-generation biorefineries is the insufficient product yield, diversity, and value that current conversion technologies can extract from lignocellulose, in particular from the underutilized lignin fraction. Rhodococcus opacus PD630 is an oleaginous gram-positive bacterium with innate catabolic pathways and tolerance mechanisms for the inhibitory aromatic compounds found in depolymerized lignin, as well as native or engineered pathways for hexose and pentose sugars found in the carbohydrate fractions of biomass. As a result, R. opacus holds potential as a biological chassis for the conversion of lignocellulosic biomass into biodiesel precursors and other value-added products. This review begins by examining the important role that lignin utilization will play in the future of biorefineries and by providing a concise survey of the current lignin conversion technologies. The genetic machinery and capabilities of R. opacus that allow the bacterium to tolerate and metabolize aromatic compounds and depolymerized lignin are also discussed, along with a synopsis of the genetic toolbox and synthetic biology methods now available for engineering this organism. Finally, we summarize the different feedstocks that R. opacus has been demonstrated to consume, and the high-value products that it has been shown to produce. Engineered R. opacus will enable lignin valorization over the coming years, leading to cost-effective conversion of lignocellulose into fuels, chemicals, and materials.
Collapse
Affiliation(s)
- Winston E. Anthony
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Rhiannon R. Carr
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Drew M. DeLorenzo
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Tayte P. Campbell
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Zeyu Shang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Marcus Foston
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108 USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108 USA
| |
Collapse
|
15
|
Di Canito A, Zampolli J, Orro A, D’Ursi P, Milanesi L, Sello G, Steinbüchel A, Di Gennaro P. Genome-based analysis for the identification of genes involved in o-xylene degradation in Rhodococcus opacus R7. BMC Genomics 2018; 19:587. [PMID: 30081830 PMCID: PMC6080516 DOI: 10.1186/s12864-018-4965-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/30/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bacteria belonging to the Rhodococcus genus play an important role in the degradation of many contaminants, including methylbenzenes. These bacteria, widely distributed in the environment, are known to be a powerhouse of numerous degradation functions, due to their ability to metabolize a wide range of organic molecules including aliphatic, aromatic, polycyclic aromatic compounds (PAHs), phenols, and nitriles. In accordance with their immense catabolic diversity, Rhodococcus spp. possess large and complex genomes, which contain a multiplicity of catabolic genes, a high genetic redundancy of biosynthetic pathways and a sophisticated regulatory network. The present study aimed to identify genes involved in the o-xylene degradation in R. opacus strain R7 through a genome-based approach. RESULTS Using genome-based analysis we identified all the sequences in the R7 genome annotated as dioxygenases or monooxygenases/hydroxylases and clustered them into two different trees. The akb, phe and prm sequences were selected as genes encoding respectively for dioxygenases, phenol hydroxylases and monooxygenases and their putative involvement in o-xylene oxidation was evaluated. The involvement of the akb genes in o-xylene oxidation was demonstrated by RT-PCR/qPCR experiments after growth on o-xylene and by the selection of the R7-50 leaky mutant. Although the akb genes are specifically activated for o-xylene degradation, metabolic intermediates of the pathway suggested potential alternative oxidation steps, possibly through monooxygenation. This led us to further investigate the role of the prm and the phe genes. Results showed that these genes were transcribed in a constitutive manner, and that the activity of the Prm monooxygenase was able to transform o-xylene slowly in intermediates as 3,4-dimethylphenol and 2-methylbenzylalcohol. Moreover, the expression level of phe genes, homologous to the phe genes of Rhodococcus spp. 1CP and UPV-1 with a 90% identity, could explain their role in the further oxidation of o-xylene and R7 growth on dimethylphenols. CONCLUSIONS These results suggest that R7 strain is able to degrade o-xylene by the Akb dioxygenase system leading to the production of the corresponding dihydrodiol. Likewise, the redundancy of sequences encoding for several monooxygenases/phenol hydroxylases, supports the involvement of other oxygenases converging in the o-xylene degradation pathway in R7 strain.
Collapse
Affiliation(s)
- Alessandra Di Canito
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Alessandro Orro
- ITB, CNR, via Fratelli Cervi 19, 20133 Segrate, Milan, Italy
| | | | | | - Guido Sello
- Department of Chemistry, University of Milano, via Golgi 19, 20133 Milan, Italy
| | - Alexander Steinbüchel
- Department of Molecular Microbiology and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
16
|
Kitagawa W, Mitsuhashi S, Hata M, Tamura T. Identification of a novel bacteriocin-like protein and structural gene from Rhodococcus erythropolis JCM 2895, using suppression-subtractive hybridization. J Antibiot (Tokyo) 2018; 71:872-879. [PMID: 29980745 DOI: 10.1038/s41429-018-0078-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/10/2018] [Accepted: 06/14/2018] [Indexed: 11/09/2022]
Abstract
A novel bacteriocin-like protein and its structural gene (rap) were identified from Rhodococcus erythropolis JCM 2895. The rapA and B genes are located on a 5.4-kb circular plasmid, and were obtained using a modified suppression-subtractive hybridization method. The rapA and B genes were heterologously expressed in Rhodococcus sp. or Escherichia coli, and then characterized. The results indicated that RapA is a small, water-soluble, heat-stable antimicrobial protein, and that RapB is an immunity protein against RapA, estimated to be located on the cell membrane. RapA showed antimicrobial activity particularly against R. erythropolis, and the activity persisted even after SDS-PAGE analysis. For the heterologous expressed RapA protein, N-terminal amino acid sequence was also confirmed. This is the first report of a bacteriocin-like substance obtained from the genus Rhodococcus.
Collapse
Affiliation(s)
- Wataru Kitagawa
- National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan. .,Graduate School of Agriculture, Hokkaido University, Kita 9-Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| | - Shinya Mitsuhashi
- Graduate School of Agriculture, Hokkaido University, Kita 9-Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.,Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX, 75708-3154, USA
| | - Miyako Hata
- National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | - Tomohiro Tamura
- National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| |
Collapse
|
17
|
Isolation of two plasmids, pRET1100 and pRET1200, from Rhodococcus erythropolis IAM1400 and construction of a Rhodococcus–Escherichia coli shuttle vector. J Biosci Bioeng 2018; 125:625-631. [DOI: 10.1016/j.jbiosc.2018.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/14/2017] [Accepted: 01/01/2018] [Indexed: 11/17/2022]
|
18
|
Koppel N, Bisanz JE, Pandelia ME, Turnbaugh PJ, Balskus EP. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. eLife 2018; 7:33953. [PMID: 29761785 PMCID: PMC5953540 DOI: 10.7554/elife.33953] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/11/2018] [Indexed: 12/21/2022] Open
Abstract
Although the human gut microbiome plays a prominent role in xenobiotic transformation, most of the genes and enzymes responsible for this metabolism are unknown. Recently, we linked the two-gene 'cardiac glycoside reductase' (cgr) operon encoded by the gut Actinobacterium Eggerthella lenta to inactivation of the cardiac medication and plant natural product digoxin. Here, we compared the genomes of 25 E. lenta strains and close relatives, revealing an expanded 8-gene cgr-associated gene cluster present in all digoxin metabolizers and absent in non-metabolizers. Using heterologous expression and in vitro biochemical characterization, we discovered that a single flavin- and [4Fe-4S] cluster-dependent reductase, Cgr2, is sufficient for digoxin inactivation. Unexpectedly, Cgr2 displayed strict specificity for digoxin and other cardenolides. Quantification of cgr2 in gut microbiomes revealed that this gene is widespread and conserved in the human population. Together, these results demonstrate that human-associated gut bacteria maintain specialized enzymes that protect against ingested plant toxins.
Collapse
Affiliation(s)
- Nitzan Koppel
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Jordan E Bisanz
- Department of Microbiology & Immunology, University of California, San Francisco, United States
| | | | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States.,Broad Institute, Cambridge, United States
| |
Collapse
|
19
|
Ellinger J, Schmidt-Dannert C. Construction of a BioBrick™ compatible vector system for Rhodococcus. Plasmid 2017; 90:1-4. [DOI: 10.1016/j.plasmid.2017.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/21/2022]
|
20
|
Kasuga K, Sasaki A, Matsuo T, Yamamoto C, Minato Y, Kuwahara N, Fujii C, Kobayashi M, Agematu H, Tamura T, Komatsu M, Ishikawa J, Ikeda H, Kojima I. Heterologous production of kasugamycin, an aminoglycoside antibiotic from Streptomyces kasugaensis, in Streptomyces lividans and Rhodococcus erythropolis L-88 by constitutive expression of the biosynthetic gene cluster. Appl Microbiol Biotechnol 2017; 101:4259-4268. [PMID: 28243709 DOI: 10.1007/s00253-017-8189-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/05/2017] [Accepted: 02/12/2017] [Indexed: 11/28/2022]
Abstract
Kasugamycin (KSM), an aminoglycoside antibiotic isolated from Streptomyces kasugaensis cultures, has been used against rice blast disease for more than 50 years. We cloned the KSM biosynthetic gene (KBG) cluster from S. kasugaensis MB273-C4 and constructed three KBG cassettes (i.e., cassettes I-III) to enable heterologous production of KSM in many actinomycetes by constitutive expression of KBGs. Cassette I comprised all putative transcriptional units in the cluster, but it was placed under the control of the P neo promoter from Tn5. It was not maintained stably in Streptomyces lividans and did not transform Rhodococcus erythropolis. Cassette II retained the original arrangement of KBGs, except that the promoter of kasT, the specific activator gene for KBG, was replaced with P rpsJ , the constitutive promoter of rpsJ from Streptomyces avermitilis. To enhance the intracellular concentration of myo-inositol, an expression cassette of ino1 encoding the inositol-1-phosphate synthase from S. avermitilis was inserted into cassette II to generate cassette III. These two cassettes showed stable maintenance in S. lividans and R. erythropolis to produce KSM. Particularly, the transformants of S. lividans induced KSM production up to the same levels as those produced by S. kasugaensis. Furthermore, cassette III induced more KSM accumulation than cassette II in R. erythropolis, suggesting an exogenous supply of myo-inositol by the ino1 expression in the host. Cassettes II and III appear to be useful for heterologous KSM production in actinomycetes. Rhodococcus exhibiting a spherical form in liquid cultivation is also a promising heterologous host for antibiotic fermentation.
Collapse
Affiliation(s)
- Kano Kasuga
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan.
| | - Akira Sasaki
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| | - Takashi Matsuo
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| | - Chika Yamamoto
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| | - Yuiko Minato
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| | - Naoya Kuwahara
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| | - Chikako Fujii
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| | - Masayuki Kobayashi
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| | - Hitosi Agematu
- Department of Applied Chemistry, National Institute of Technology, Akita College, Akita, 011-8511, Japan
| | - Tomohiro Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Mamoru Komatsu
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Jun Ishikawa
- Department of Bioactive Molecules, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Haruo Ikeda
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ikuo Kojima
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| |
Collapse
|
21
|
Vallecillo AJ, Parada C, Morales P, Espitia C. Rhodococcus erythropolis as a host for expression, secretion and glycosylation of Mycobacterium tuberculosis proteins. Microb Cell Fact 2017; 16:12. [PMID: 28103877 PMCID: PMC5248525 DOI: 10.1186/s12934-017-0628-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/10/2017] [Indexed: 11/17/2022] Open
Abstract
Background Glycosylation is one of the most abundant posttranslational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. There is growing evidence about the importance of these modifications in host bacteria interactions in tuberculosis. It is known, that the sugars present in some Mycobacterium tuberculosis glycoproteins play an important role in both humoral and cellular immune response against the pathogen. Since this modification is lost in the recombinant proteins expressed in Escherichia coli, it is fundamental to search for host bacteria with the capacity to modify the foreign proteins. Amongst the bacteria that are likely to have this possibility are some members of Rhodococcus genus which are Gram-positive bacteria, with high GC-content and genetically very close related to M. tuberculosis. Results In this work, apa, pstS1 and lprG genes that coding for M. tuberculosis glycoproteins were cloned and expressed in Rhodococcus erythropolis. All recombinant proteins were mannosylated as demonstrated by their interaction with mannose binding lectin Concanavalin A. In addition, as native proteins recombinants Apa and PstS1 were secreted to the culture medium in contrast with LprG that was retained in the cell wall. Conclusions Together these results, point out R. erythropolis, as a new host for expression of M. tuberculosis glycoproteins.
Collapse
Affiliation(s)
- Antonio J Vallecillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico.,Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, C.P. 010220, Cuenca, Azu., Ecuador
| | - Cristina Parada
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico
| | - Pedro Morales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico.
| |
Collapse
|
22
|
Kilbane JJ. Biodesulfurization: How to Make it Work? ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/s13369-016-2269-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Puspita ID, Kitagawa W, Kamagata Y, Tanaka M, Nakatsu CH. Increase in Bacterial Colony Formation from a Permafrost Ice Wedge Dosed with a Tomitella biformata Recombinant Resuscitation-Promoting Factor Protein. Microbes Environ 2015; 30:151-6. [PMID: 25843055 PMCID: PMC4462925 DOI: 10.1264/jsme2.me14119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Resuscitation-promoting factor (Rpf) is a protein that has been found in a number of different Actinobacteria species and has been shown to promote the growth of active cells and resuscitate dormant (non-dividing) cells. We previously reported the biological activity of an Rpf protein in Tomitella biformata AHU 1821T, an Actinobacteria isolated from a permafrost ice wedge. This protein is excreted outside the cell; however, few studies have investigated its contribution in environmental samples to the growth or resuscitation of bacteria other than the original host. Therefore, the aim of the present study was to determine whether Rpf from T. biformata impacted the cultivation of other bacteria from the permafrost ice wedge from which it was originally isolated. All experiments used recombinant Rpf proteins produced using a Rhodococcus erythropolis expression system. Dilutions of melted surface sterilized ice wedge samples mixed with different doses of the purified recombinant Rpf (rRpf) protein indicated that the highest concentration tested, 1250 pM, had a significantly (p <0.05) higher number of CFUs on agar plates after 8 d, approximately 14-fold higher than that on control plates without rRpf. 16S rRNA gene sequences revealed that all the colonies on plates were mainly related to Brevibacterium antiquum strain VKM Ac-2118 (AY243344), with 98–99% sequence identity. This species is also a member of the phylum Actinobacteria and was originally isolated from Siberian permafrost sediments. The results of the present study demonstrated that rRpf not only promoted the growth of T. biformata from which it was isolated, but also enhanced colony formation by another Actinobacteria in an environmental sample.
Collapse
|
24
|
Structural insights into the substrate stereospecificity of D-threo-3-hydroxyaspartate dehydratase from Delftia sp. HT23: a useful enzyme for the synthesis of optically pure L-threo- and D-erythro-3-hydroxyaspartate. Appl Microbiol Biotechnol 2015; 99:7137-50. [PMID: 25715785 DOI: 10.1007/s00253-015-6479-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/28/2015] [Accepted: 02/12/2015] [Indexed: 12/22/2022]
Abstract
D-threo-3-Hydroxyaspartate dehydratase (D-THA DH) is a fold-type III pyridoxal 5'-phosphate-dependent enzyme, isolated from a soil bacterium of Delftia sp. HT23. It catalyzes the dehydration of D-threo-3-hydroxyaspartate (D-THA) and L-erythro-3-hydroxyaspartate (L-EHA). To elucidate the mechanism of substrate stereospecificity, crystal structures of D-THA DH were determined in complex with various ligands, such as an inhibitor (D-erythro-3-hydroxyaspartate (D-EHA)), a substrate (L-EHA), and the reaction intermediate (2-amino maleic acid). The C (β) -OH of L-EHA occupied a position close to the active-site Mg(2+), clearly indicating a possibility of metal-assisted C (β) -OH elimination from the substrate. In contrast, the C (β) -OH of an inhibitor was bound far from the active-site Mg(2+). This suggests that the substrate specificity of D-THA DH is determined by the orientation of the C (β) -OH at the active site, whose spatial arrangement is compatible with the 3R configuration of 3-hydroxyaspartate. We also report an optically pure synthesis of L-threo-3-hydroxyaspartate (L-THA) and D-EHA, promising intermediates for the synthesis of β-benzyloxyaspartate, by using a purified D-THA DH as a biocatalyst for the resolution of racemic DL-threo-3-hydroxyaspartate (DL-THA) and DL-erythro-3-hydroxyaspartate (DL-EHA). Considering 50 % of the theoretical maximum, efficient yields of L-THA (38.9 %) and D-EHA (48.9 %) as isolated crystals were achieved with >99 % enantiomeric excess (e.e.). The results of nuclear magnetic resonance signals verified the chemical purity of the products. We were directly able to isolate analytically pure compounds by the recrystallization of acidified reaction mixtures (pH 2.0) and thus avoiding the use of environmentally harmful organic solvents for the chromatographic purification.
Collapse
|
25
|
Zampolli J, Collina E, Lasagni M, Di Gennaro P. Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism. AMB Express 2014; 4:73. [PMID: 25401074 PMCID: PMC4230829 DOI: 10.1186/s13568-014-0073-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 01/31/2023] Open
Abstract
Rhodococcus opacus R7 is a Gram-positive bacterium isolated from a polycyclic aromatic hydrocarbon contaminated soil for its versatile metabolism; indeed the strain is able to grow on naphthalene, o-xylene, and several long- and medium-chain n-alkanes. In this work we determined the degradation of n-alkanes in Rhodococcus opacus R7 in presence of n-dodecane (C12), n-hexadecane (C16), n-eicosane (C20), n-tetracosane (C24) and the metabolic pathway in presence of C12. The consumption rate of C12 was 88%, of C16 was 69%, of C20 was 51% and of C24 it was 78%. The decrement of the degradation rate seems to be correlated to the length of the aliphatic chain of these hydrocarbons. On the basis of the metabolic intermediates determined by the R7 growth on C12, our data indicated that R. opacus R7 metabolizes medium-chain n-alkanes by the primary alcohol formation. This represents a difference in comparison with other Rhodococcus strains, in which a mixture of the two alcohols was observed. By GC-MSD analysis we also identified the monocarboxylic acid, confirming the terminal oxidation. Moreover, the alkB gene cluster from R. opacus R7 was isolated and its involvement in the n-alkane degradation system was investigated by the cloning of this genomic region into a shuttle-vector E. coli-Rhodococcus to evaluate the alkane hydroxylase activity. Our results showed an increased biodegradation of C12 in the recombinant strain R. erythropolis AP (pTipQT1-alkR7) in comparison with the wild type strain R. erythropolis AP. These data supported the involvement of the alkB gene cluster in the n-alkane degradation in the R7 strain.
Collapse
|
26
|
Kim WS, Shimazaki KI, Tamura T. Expression of Bovine Lactoferrin C-lobe inRhodococcus erythropolisand Its Purification and Characterization. Biosci Biotechnol Biochem 2014; 70:2641-5. [PMID: 17090917 DOI: 10.1271/bbb.60245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A Rhodococcus erythropolis expression system for the bovine lactoferrin C-lobe was constructed. The DNA fragments encoding the BLF C-lobe were amplified and cloned into vector pTip LCH1.2. R. erythropolis carrying the pTip-C-lobe was cultured at 30 degrees C with shaking, and expression of the rBLF C-lobe was induced by adding 1 microg/ml (final concentration) thiostrepton. The rBLF C-lobe was isolated in native and denatured (8 M urea) form by Ni-NTA affinity chromatography. To obtain a bioactive rBLF C-lobe, the protein isolated in the denatured form was refolded by stepwise dialysis against refolding buffers. The antibacterial activity of the rBLF C-lobe was tested by the filter-disc plate assay method. The refolded rBLF C-lobe demonstrated antibacterial activity against selected strains of Escherichia coli.
Collapse
Affiliation(s)
- Woan-Sub Kim
- Dairy Science Laboratory, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| | | | | |
Collapse
|
27
|
Anné J, Vrancken K, Van Mellaert L, Van Impe J, Bernaerts K. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1750-61. [PMID: 24412306 DOI: 10.1016/j.bbamcr.2013.12.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/26/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023]
Abstract
Proteins secreted by Gram-positive bacteria are released into the culture medium with the obvious benefit that they usually retain their native conformation. This property makes these host cells potentially interesting for the production of recombinant proteins, as one can take full profit of established protocols for the purification of active proteins. Several state-of-the-art strategies to increase the yield of the secreted proteins will be discussed, using Streptomyces lividans as an example and compared with approaches used in some other host cells. It will be shown that approaches such as increasing expression and translation levels, choice of secretion pathway and modulation of proteins thereof, avoiding stress responses by changing expression levels of specific (stress) proteins, can be helpful to boost production yield. In addition, the potential of multi-omics approaches as a tool to understand the genetic background and metabolic fluxes in the host cell and to seek for new targets for strain and protein secretion improvement is discussed. It will be shown that S. lividans, along with other Gram-positive host cells, certainly plays a role as a production host for recombinant proteins in an economically viable way. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Jozef Anné
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Kristof Vrancken
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Lieve Van Mellaert
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Jan Van Impe
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| | - Kristel Bernaerts
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| |
Collapse
|
28
|
Matsumoto Y, Yasutake Y, Takeda Y, Tamura T, Yokota A, Wada M. Crystallization and preliminary X-ray diffraction studies of D-threo-3-hydroxyaspartate dehydratase isolated from Delftia sp. HT23. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1131-4. [PMID: 24100565 PMCID: PMC3792673 DOI: 10.1107/s1744309113023956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/26/2013] [Indexed: 11/10/2022]
Abstract
D-threo-3-Hydroxyaspartate dehydratase (D-THA DH) isolated from the soil bacterium Delftia sp. HT23 is a novel enzyme consisting of 380 amino-acid residues which catalyzes the conversion of D-threo-3-hydroxyaspartate to oxaloacetate and ammonia. D-THA DH also catalyzes the dehydration of L-threo-3-hydroxyaspartate, L-erythro-3-hydroxyaspartate and D-serine. The amino-acid sequence of D-THA DH shows significant similarity to that of two eukaryotic D-serine dehydratases derived from Saccharomyces cerevisiae and chicken kidney. D-THA DH is classified into the fold-type III group of pyridoxal enzymes and is the first example of a fold-type III dehydratase derived from a prokaryote. Overexpression of recombinant D-THA DH was carried out using a Rhodococcus erythropolis expression system and the obtained protein was subsequently purified and crystallized. The crystals of D-THA DH belonged to space group I4₁22, with unit-cell parameters a=b=157.3, c=157.9 Å. Single-wavelength anomalous diffraction data were collected to a resolution of 2.0 Å using synchrotron radiation at the wavelength of the Br K absorption edge.
Collapse
Affiliation(s)
- Yu Matsumoto
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Yuki Takeda
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Tomohiro Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
- Laboratory of Molecular Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Masaru Wada
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| |
Collapse
|
29
|
Hayashi T, Tanaka Y, Sakai N, Okada U, Yao M, Watanabe N, Tamura T, Tanaka I. SCO4008, a putative TetR transcriptional repressor from Streptomyces coelicolor A3(2), regulates transcription of sco4007 by multidrug recognition. J Mol Biol 2013; 425:3289-300. [PMID: 23831227 DOI: 10.1016/j.jmb.2013.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
Abstract
SCO4008 from Streptomyces coelicolor A3(2) is a member of the TetR family. However, its precise function is not yet clear. In this study, the crystal structure of SCO4008 was determined at a resolution of 2.3Å, and its DNA-binding properties were analyzed. Crystal structure analysis showed that SCO4008 forms an Ω-shaped homodimer in which the monomer is composed of an N-terminal DNA-binding domain containing a helix-turn-helix and a C-terminal dimerization and regulatory domain possessing a ligand-binding cavity. The genomic systematic evolution of ligands by exponential enrichment and electrophoretic mobility shift assay revealed that four SCO4008 dimers bind to the two operator regions located between sco4008 and sco4007, a secondary transporter belonging to the major facilitator superfamily. Ligand screening analysis showed that SCO4008 recognizes a wide range of structurally dissimilar cationic and hydrophobic compounds. These results suggested that SCO4008 is a transcriptional repressor of sco4007 responsible for the multidrug resistance system in S. coelicolor A3(2).
Collapse
Affiliation(s)
- Takeshi Hayashi
- Department of Food and Fermentation Science, Faculty of Food and Nutrition, Beppu University, Beppu, Oita 874-8501, Japan; Food Science and Nutrition, Graduate School of Food Science and Nutrition, Beppu University, Beppu, Oita 874-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kitagawa W, Ozaki T, Nishioka T, Yasutake Y, Hata M, Nishiyama M, Kuzuyama T, Tamura T. Cloning and Heterologous Expression of the Aurachin RE Biosynthesis Gene Cluster Afford a New Cytochrome P450 for Quinoline N-Hydroxylation. Chembiochem 2013; 14:1085-93. [DOI: 10.1002/cbic.201300167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Indexed: 11/10/2022]
|
31
|
Hayashi T, Tanaka Y, Sakai N, Watanabe N, Tamura T, Tanaka I, Yao M. Structural and genomic DNA analysis of a putative transcription factor SCO5550 from Streptomyces coelicolor A3(2): regulating the expression of gene sco5551 as a transcriptional activator with a novel dimer shape. Biochem Biophys Res Commun 2013; 435:28-33. [PMID: 23618855 DOI: 10.1016/j.bbrc.2013.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
Abstract
SCO5550 from the model actinomycete Streptomyces coelicolor A3(2) was identified as a putative transcriptional regulator, and classified into the MerR family by sequence analysis. Recombined SCO5550 was successfully produced in Rhodococcus erythropolis, which can be used to stably express recombinant protein by optimizing the temperature over a wide range (4-35 °C). Crystal structure analysis showed that the dimerization domain (C-terminal domain) of SCO5550 has a novel fold and forms a new dimer shape, whereas the DNA-binding domain (N-terminal domain) is very similar to those of MerR family members. Such the new dimer form suggests that SCO5550 may define a new subfamily as a new member of the MerR family. Binding DNA sequence analysis of SCO5550 using the genomic systematic evolution of ligands by exponential enrichment (gSELEX) and electrophoretic mobility shift assay (EMSA) indicated that SCO5550 regulates the expression of the immediately upstream gene sco5551 encoding a putative protein, probably as a transcriptional activator.
Collapse
Affiliation(s)
- Takeshi Hayashi
- Department of Food and Fermentation Science, Faculty of Food and Nutrition, Beppu University, Beppu 874-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Dewi Puspita I, Uehara M, Katayama T, Kikuchi Y, Kitagawa W, Kamagata Y, Asano K, Nakatsu CH, Tanaka M. Resuscitation promoting factor (Rpf) from Tomitella biformata AHU 1821(T) promotes growth and resuscitates non-dividing cells. Microbes Environ 2012; 28:58-64. [PMID: 23100022 PMCID: PMC4070687 DOI: 10.1264/jsme2.me12122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Functional variation of Rpf, a growth factor found exclusively in Actinobacteria, is differentiated by its source and amino acid sequences. Only purified Rpf proteins from three species have been studied so far. To seek new Rpfs for use in future studies to understand their role in Actinobacteria, the objective of this study was to identify rpf gene homologs in Tomitella biformata AHU 1821T, a novel Actinobacteria isolated from permafrost ice wedge. Amplification using degenerate primers targeting the essential Rpf domain led to the discovery of a new rpf gene in T. biformata. Gene structure and the deduced Rpf domain amino acid sequence indicated that this rpf gene was not identical to previously studied Rpf. Phylogenetic analysis placed T. biformata Rpf in a monophyletic branch in the RpfB subfamily. The deduced amino acid sequence was 44.9% identical to RpfB in Mycobacterium tuberculosis, the closest functionally tested Rpf. The gene was cloned and expressed in Escherichia coli; the recombinant Rpf protein (rRpf) promoted the growth of dividing cells and resuscitated non-dividing cells of T. biformata. Compared to other studies, this Rpf was required at higher concentrations to promote its growth and to resuscitate itself from a non-dividing state. The resuscitation function was likely due to the highly conserved Rpf domain. This study provides evidence that a genetically unique but functional Rpf can be found in novel members of Actinobacteria and can lead to a better understanding of bacterial cytokines in this phylum.
Collapse
|
33
|
Kitagawa W, Tamura T. Three Types of Antibiotics Produced from Rhodococcus erythropolis Strains. Microbes Environ 2012; 23:167-71. [PMID: 21558704 DOI: 10.1264/jsme2.23.167] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A total of 15 Rhodococcus erythropolis strains were characterized as antibiotic producers and classified into three groups according to their antibiotic spectrum and growth compatibility (strains within a group did not inhibit each other's growth). Each of the antibiotic groups exhibited antibiotic activity against a taxonomically different breadth of bacteria: Group I exhibited antibiotic activity against a broad range of Gram-positives; Group II, mainly against the genus Rhodococcus and some other Gram-positives; and Group III, particularly against R. erythropolis. The antibiotic compounds of the strains belonging to Groups I and II were partially purified from liquid culture media. It was found that each group produces distinct antibiotics. In contrast to the diversity of antibiotic activity, the sequence of the 16S rRNA gene in the analyzed 1,440-nt region was found to be identical in all these 15 Rhodococcus strains. In addition to the antibiotic diversity in R. erythropolis strains, we elucidated the diversity in antibiotic-producing species of the genus Rhodococcus. Thus far, only a few antibiotic-producing strains have been reported in Rhodococcus; however, our results demonstrated that the genus comprises diverse antibiotic producers, and is a good source of new antibiotics.
Collapse
Affiliation(s)
- Wataru Kitagawa
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST)
| | | |
Collapse
|
34
|
Ishibashi Y, Kobayashi U, Hijikata A, Sakaguchi K, Goda HM, Tamura T, Okino N, Ito M. Preparation and characterization of EGCase I, applicable to the comprehensive analysis of GSLs, using a rhodococcal expression system. J Lipid Res 2012; 53:2242-2251. [PMID: 22798689 DOI: 10.1194/jlr.d028951] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endoglycoceramidase (EGCase) is a glycosidase capable of hydrolyzing the β -glycosidic linkage between the oligosaccharides and ceramides of glycosphingolipids (GSLs). Three molecular species of EGCase differing in specificity were found in the culture fluid of Rhodococcus equi (formerly Rhodococcus sp. M-750) and designated EGCase I, II, and III. This study describes the molecular cloning of EGCase I and characterization of the recombinant enzyme, which was highly expressed in a rhodococcal expression system using Rhodococcus erythropolis. Kinetic analysis revealed the turnover number (k(cat)) (k(cat)) of the recombinant EGCase I to be 22- and 1,200-fold higher than that of EGCase II toward GM1a and Gb3Cer, respectively, although the K(m) of both enzymes was almost the same for these substrates. Comparison of the three-dimensional structure of EGCase I (model) and EGCase II (crystal) indicated that a flexible loop hangs over the catalytic cleft of EGCase II but not EGCase I. Deletion of the loop from EGCase II increased the k(cat) of the mutant enzyme, suggesting that the loop is a critical factor affecting the turnover of substrates and products in the catalytic region. Recombinant EGCase I exhibited broad specificity and good reaction efficiency compared with EGCase II, making EGCase I well-suited to a comprehensive analysis of GSLs.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Utaro Kobayashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Atsushi Hijikata
- Laboratory for Immunogenomics, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; and
| | - Keishi Sakaguchi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hatsumi M Goda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Tomohiro Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
35
|
Sogabe T, Ota H, Iwasaki M, Sakasegawa SI, Tamura T. Sphingomyelinase C from Streptomyces sp. A9107: unusual primary structure for bacterial sphingomyelinase C. J Biosci Bioeng 2012; 114:398-401. [PMID: 22664344 DOI: 10.1016/j.jbiosc.2012.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
Abstract
A sphingomyelinase C (SMase) was identified in the culture supernatant of Streptomyces sp. A9107 (S-SMase). Although S-SMase seems to be a typical bacterial SMase, the primary structure of S-SMase was unusual for known bacterial SMase. The gene was functionally overexpressed in the culture medium of recombinant Rhodococcus erythropolis.
Collapse
Affiliation(s)
- Takayuki Sogabe
- Asahi Kasei Pharma Corporation, Diagnostics R&D, 632-1 Mifuku, Izunokuni-shi, Shizuoka 410-2321, Japan
| | | | | | | | | |
Collapse
|
36
|
Kagawa Y, Mitani Y, Yun HY, Nakashima N, Tamura N, Tamura T. Identification of a methanol-inducible promoter from Rhodococcus erythropolis PR4 and its use as an expression vector. J Biosci Bioeng 2012; 113:596-603. [DOI: 10.1016/j.jbiosc.2011.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/26/2011] [Accepted: 12/27/2011] [Indexed: 11/26/2022]
|
37
|
The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc Natl Acad Sci U S A 2011; 109:149-54. [PMID: 22187461 DOI: 10.1073/pnas.1117648108] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteasomes execute the degradation of most cellular proteins. Although the 20S core particle (CP) has been studied in great detail, the structure of the 19S regulatory particle (RP), which prepares ubiquitylated substrates for degradation, has remained elusive. Here, we report the crystal structure of one of the RP subunits, Rpn6, and we describe its integration into the cryo-EM density map of the 26S holocomplex at 9.1 Å resolution. Rpn6 consists of an α-solenoid-like fold and a proteasome COP9/signalosome eIF3 (PCI) module in a right-handed suprahelical configuration. Highly conserved surface areas of Rpn6 interact with the conserved surfaces of the Pre8 (alpha2) and Rpt6 subunits from the alpha and ATPase rings, respectively. The structure suggests that Rpn6 has a pivotal role in stabilizing the otherwise weak interaction between the CP and the RP.
Collapse
|
38
|
Yasutake Y, Ota H, Hino E, Sakasegawa SI, Tamura T. Structures of Burkholderia thailandensis nucleoside kinase: implications for the catalytic mechanism and nucleoside selectivity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:945-56. [PMID: 22101821 DOI: 10.1107/s0907444911038777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/21/2011] [Indexed: 11/10/2022]
Abstract
The nucleoside kinase (NK) from the mesophilic Gram-negative bacterium Burkholderia thailandensis (BthNK) is a member of the phosphofructokinase B (Pfk-B) family and catalyzes the Mg(2+)- and ATP-dependent phosphorylation of a broad range of nucleosides such as inosine (INO), adenosine (ADO) and mizoribine (MZR). BthNK is currently used in clinical practice to measure serum MZR levels. Here, crystal structures of BthNK in a ligand-free form and in complexes with INO, INO-ADP, MZR-ADP and AMP-Mg(2+)-AMP are described. The typical homodimeric architecture of Pfk-B enzymes was detected in three distinct conformational states: an asymmetric dimer with one subunit in an open conformation and the other in a closed conformation (the ligand-free form), a closed conformation (the binary complex with INO) and a fully closed conformation (the other ternary and quaternary complexes). The previously unreported fully closed structures suggest the possibility that Mg(2+) might directly interact with the β- and γ-phosphates of ATP to maintain neutralization of the negative charge throughout the reaction. The nucleoside-complex structures also showed that the base moiety of the bound nucleoside is partly exposed to the solvent, thereby enabling the recognition of a wide range of nucleoside bases. Gly170 is responsible for the solvent accessibility of the base moiety and is assumed to be a key residue for the broad nucleoside recognition of BthNK. Remarkably, the G170Q mutation increases the specificity of BthNK for ADO. These findings provide insight into the conformational dynamics, catalytic mechanism and nucleoside selectivity of BthNK and related enzymes.
Collapse
Affiliation(s)
- Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Sapporo 062-8517, Japan
| | | | | | | | | |
Collapse
|
39
|
Fujitani N, Takegawa Y, Ishibashi Y, Araki K, Furukawa JI, Mitsutake S, Igarashi Y, Ito M, Shinohara Y. Qualitative and quantitative cellular glycomics of glycosphingolipids based on rhodococcal endoglycosylceramidase-assisted glycan cleavage, glycoblotting-assisted sample preparation, and matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry analysis. J Biol Chem 2011; 286:41669-41679. [PMID: 21965662 DOI: 10.1074/jbc.m111.301796] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosphingolipids (GSLs) are crucially important components of the cellular membrane, where they comprise microdomains with many critical biological functions. Despite this fact, qualitative and quantitative techniques for the analysis of GSLs still lag behind the needs of researchers. In this study, a reliable procedure for the elucidation of cellular GSL-glycomes was established based on (a) enzymatic glycan cleavage by endoglycosylceramidases derived from Rhodococcus sp. in combination with (b) glycoblotting-assisted sample preparation. The mixture of endoglycosylceramidase I and II was employed to maximize the release of glycan moieties from the major classes of GSLs (i.e. ganglio-, (neo)lacto- and globo-series GSLs). The glycoblotting technique enabled the quantitative detection of GSL-glycans using as few as 2 × 10(5) cells. Thirty-seven different kinds of cellular GSL glycans were successfully observed in 11 kinds of cells, including Chinese hamster ovary cells and their lectin-resistant mutants as well as murine and human embryonic carcinoma cells. Furthermore, in-depth structural clarification in terms of discrimination of isomers was achieved by MALDI-TOF/TOF mass spectrometry analysis and/or linkage-specific glycosidase digestion. These novel analytical techniques were shown to be capable of delineating cell-specific GSL-glycomes. Thus, they are anticipated to have a broad range of applications for the characterization, description, and comparison of various cellular/tissue samples in the fields of drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Naoki Fujitani
- Laboratory of Medical and Functional Glycomics, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuhiro Takegawa
- Laboratory of Medical and Functional Glycomics, Hokkaido University, Sapporo 001-0021, Japan
| | - Yohei Ishibashi
- Laboratory of Marine Resource Chemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Kayo Araki
- Laboratory of Medical and Functional Glycomics, Hokkaido University, Sapporo 001-0021, Japan
| | - Jun-Ichi Furukawa
- Laboratory of Medical and Functional Glycomics, Hokkaido University, Sapporo 001-0021, Japan
| | - Susumu Mitsutake
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuyuki Igarashi
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Makoto Ito
- Laboratory of Marine Resource Chemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics, Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
40
|
New vector system for random, single-step integration of multiple copies of DNA into the Rhodococcus genome. Appl Environ Microbiol 2010; 76:2531-9. [PMID: 20154109 DOI: 10.1128/aem.02131-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We designed a new vector system for creating a random mutant library with multiple integrations of DNA fragments into the Rhodococcus genome in a single step. For this, we cotransformed two vectors into Rhodococcus by electroporation: pTip-istAB-sacB regulates the expression of the transposase (IstA) and its helper protein (IstB) under the influence of a thiostrepton-inducible promoter, and pRTSK-sacB provides the transposable-marker DNA. Both are multicopy vectors that are stable in the host cells; transposition of the transposable-marker DNA occurs only after the induction of IstA/IstB expression. With the addition of thiostrepton, all cultured cells harboring the two vectors, irrespective of the volume, can be mutated by random insertion of the transposable-marker DNA into their genome. Among the generated mutants examined, 30% showed multiple (two to five) insertion copies. The multiple integrated DNA copies were stable in the genome for more than 80 generations of serial growth without the addition of any selective antibiotics. This system can also be used for integrating various copy numbers of stably maintained protein expression cassettes in the host cell genome to modulate the expression level of biologically active recombinant proteins. We successfully applied this system to integrate multiple copies of expression cassettes for proline iminopeptidase and vitamin D(3) hydroxylase into the Rhodococcus genome and verified that the clones containing double or multiple copies of the integrated cassettes produced higher levels and showed higher enzymatic activities of the target protein than clones with only a single copy of integration.
Collapse
|
41
|
Nakamura A, Sheppard K, Yamane J, Yao M, Söll D, Tanaka I. Two distinct regions in Staphylococcus aureus GatCAB guarantee accurate tRNA recognition. Nucleic Acids Res 2010; 38:672-82. [PMID: 19906721 PMCID: PMC2811023 DOI: 10.1093/nar/gkp955] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/06/2009] [Accepted: 10/10/2009] [Indexed: 01/07/2023] Open
Abstract
In many prokaryotes the biosynthesis of the amide aminoacyl-tRNAs, Gln-tRNA(Gln) and Asn-tRNA(Asn), proceeds by an indirect route in which mischarged Glu-tRNA(Gln) or Asp-tRNA(Asn) is amidated to the correct aminoacyl-tRNA catalyzed by a tRNA-dependent amidotransferase (AdT). Two types of AdTs exist: bacteria, archaea and organelles possess heterotrimeric GatCAB, while heterodimeric GatDE occurs exclusively in archaea. Bacterial GatCAB and GatDE recognize the first base pair of the acceptor stem and the D-loop of their tRNA substrates, while archaeal GatCAB recognizes the tertiary core of the tRNA, but not the first base pair. Here, we present the crystal structure of the full-length Staphylococcus aureus GatCAB. Its GatB tail domain possesses a conserved Lys rich motif that is situated close to the variable loop in a GatCAB:tRNA(Gln) docking model. This motif is also conserved in the tail domain of archaeal GatCAB, suggesting this basic region may recognize the tRNA variable loop to discriminate Asp-tRNA(Asn) from Asp-tRNA(Asp) in archaea. Furthermore, we identified a 3(10) turn in GatB that permits the bacterial GatCAB to distinguish a U1-A72 base pair from a G1-C72 pair; the absence of this element in archaeal GatCAB enables the latter enzyme to recognize aminoacyl-tRNAs with G1-C72 base pairs.
Collapse
Affiliation(s)
- Akiyoshi Nakamura
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA, Faculty of Advanced Life Science, Hokkaido University, kita-10, nishi-8, Sapporo, Hokkaido, 060-0810, Japan and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Kelly Sheppard
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA, Faculty of Advanced Life Science, Hokkaido University, kita-10, nishi-8, Sapporo, Hokkaido, 060-0810, Japan and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Junji Yamane
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA, Faculty of Advanced Life Science, Hokkaido University, kita-10, nishi-8, Sapporo, Hokkaido, 060-0810, Japan and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Min Yao
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA, Faculty of Advanced Life Science, Hokkaido University, kita-10, nishi-8, Sapporo, Hokkaido, 060-0810, Japan and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA, Faculty of Advanced Life Science, Hokkaido University, kita-10, nishi-8, Sapporo, Hokkaido, 060-0810, Japan and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Isao Tanaka
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA, Faculty of Advanced Life Science, Hokkaido University, kita-10, nishi-8, Sapporo, Hokkaido, 060-0810, Japan and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
42
|
Yasutake Y, Fujii Y, Cheon WK, Arisawa A, Tamura T. Crystallization and preliminary X-ray diffraction studies of vitamin D3 hydroxylase, a novel cytochrome P450 isolated from Pseudonocardia autotrophica. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:372-5. [PMID: 19342783 DOI: 10.1107/s1744309109007829] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 03/04/2009] [Indexed: 01/08/2023]
Abstract
Vitamin D(3) hydroxylase (Vdh) is a novel cytochrome P450 monooxygenase isolated from the actinomycete Pseudonocardia autotrophica and consisting of 403 amino-acid residues. Vdh catalyzes the activation of vitamin D(3) via sequential hydroxylation reactions: these reactions involve the conversion of vitamin D(3) (cholecalciferol or VD3) to 25-hydroxyvitamin D(3) [25(OH)VD3] and the subsequent conversion of 25(OH)VD3 to 1alpha,25-dihydroxyvitamin D(3) [calciferol or 1alpha,25(OH)(2)VD3]. Overexpression of recombinant Vdh was carried out using a Rhodococcus erythropolis expression system and the protein was subsequently purified and crystallized. Two different crystal forms were obtained by the hanging-drop vapour-diffusion method at 293 K using polyethylene glycol as a precipitant. The form I crystal belonged to the trigonal space group P3(1), with unit-cell parameters a = b = 61.7, c = 98.8 A. There is one Vdh molecule in the asymmetric unit, with a solvent content of 47.6%. The form II crystal was grown in the presence of 25(OH)VD3 and belonged to the orthorhombic system P2(1)2(1)2(1), with unit-cell parameters a = 63.4, b = 65.6 c = 102.2 A. There is one Vdh molecule in the asymmetric unit, with a solvent content of 46.7%. Native data sets were collected to resolutions of 1.75 and 3.05 A for form I and form II crystals, respectively, using synchrotron radiation. The structure solution was obtained by the molecular-replacement method and model refinement is in progress for the form I crystal.
Collapse
Affiliation(s)
- Yoshiaki Yasutake
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo 062-8517, Japan
| | | | | | | | | |
Collapse
|
43
|
Ota H, Sakasegawa SI, Yasuda Y, Imamura S, Tamura T. A novel nucleoside kinase from Burkholderia thailandensis: a member of the phosphofructokinase B-type family of enzymes. FEBS J 2009; 275:5865-72. [PMID: 19021762 DOI: 10.1111/j.1742-4658.2008.06716.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genome of the mesophilic Gram-negative bacterium Burkholderia thailandensis contains an open reading frame (i.e. the Bth_I1158 gene) that has been annotated as a putative ribokinase and PFK-B family member. Notably, although the deduced amino acid sequence of the gene showed only 29% similarity to the recently identified nucleoside kinase from hyperthermophilic archaea Methanocaldococcus jannaschii, 15 of 17 residues reportedly involved in the catalytic activity of M. jannaschii nucleoside kinase were conserved. The gene was cloned and functionally overexpressed in Rhodococcus erythropolis, and the purified enzyme was characterized biochemically. The substrate specificity of the enzyme was unusually broad for a bacterial PFK-B protein, and the specificity extended not only to purine and purine-analog nucleosides but also to uridine. Inosine was the most effective phosphoryl acceptor, with the highest k(cat)/K(m) value (80 s(-1).mm(-1)) being achieved when ATP served as the phosphoryl donor. By contrast, this enzyme exhibited no activity toward ribose, indicating that the recombinant enzyme was a nucleoside kinase rather than a ribokinase. To our knowledge, this is the first detailed analysis of a bacterial nucleoside kinase in the PFK-B family.
Collapse
Affiliation(s)
- Hiroko Ota
- Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | | | | | | | | |
Collapse
|
44
|
Mohn WW, van der Geize R, Stewart GR, Okamoto S, Liu J, Dijkhuizen L, Eltis LD. The actinobacterial mce4 locus encodes a steroid transporter. J Biol Chem 2008; 283:35368-74. [PMID: 18955493 PMCID: PMC5218832 DOI: 10.1074/jbc.m805496200] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bioinformatic analyses have suggested that Mce proteins in diverse actinobacteria are components of complex ATP-binding cassette transporter systems, comprising more than eight distinct proteins. In Mycobacterium tuberculosis, these proteins are implicated in interactions of this deadly pathogen with its human host. Here, we provide direct evidence that the Mce4 system of Rhodococcus jostii RHA1 is a steroid uptake system. Transcriptional analyses indicate that the system is encoded by an 11-gene operon, up-regulated 4.0-fold during growth on cholesterol versus on pyruvate. Growth of RHA1 on cholesterol and uptake of radiolabeled cholesterol both required expression of genes in the mce4 operon encoding two permeases plus eight additional proteins of unknown function. Cholesterol uptake was ATP-dependent and exhibited Michaelis-Menten kinetics with a K(m) of 0.6 +/- 0.1 microm. This uptake system was also essential for growth of RHA1 on beta-sitosterol, 5-alpha-cholestanol, and 5-alpha-cholestanone. Bioinformatic analysis revealed that all mce4 loci in sequenced genomes are linked to steroid metabolism genes. Thus, we predict that all Mce4 systems are steroid transporters. The transport function of the Mce4 system is consistent with proposed roles of cholesterol and its metabolism in the pathogenesis of M. tuberculosis.
Collapse
Affiliation(s)
- William W Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada.
| | | | | | | | | | | | | |
Collapse
|
45
|
Miteva V, Lantz S, Brenchley J. Characterization of a cryptic plasmid from a Greenland ice core Arthrobacter isolate and construction of a shuttle vector that replicates in psychrophilic high G+C Gram-positive recipients. Extremophiles 2008; 12:441-9. [DOI: 10.1007/s00792-008-0149-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
|
46
|
Honda K, Yamashita S, Nakagawa H, Sameshima Y, Omasa T, Kato J, Ohtake H. Stabilization of water-in-oil emulsion by Rhodococcus opacus B-4 and its application to biotransformation. Appl Microbiol Biotechnol 2008; 78:767-73. [PMID: 18270698 DOI: 10.1007/s00253-008-1378-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/18/2008] [Accepted: 01/19/2008] [Indexed: 10/22/2022]
Abstract
Rhodococcus opacus B-4, which has recently been isolated as an organic solvent-tolerant bacterium, stabilized water-in-oil (w/o) emulsions by inhibition of droplet coalescence when the cells were dispersed in 90% (v/v) organic solvents. Confocal microscopy revealed that many bacterial cells assembled at the interface between oil and water droplets, though free cells were also detectable at the inside of water droplets. Bacterial cells in the w/o emulsion were capable of utilizing both a water-soluble (glucose) and an oil-soluble substrate (oleic acid) as an energy source. Availability of the w/o emulsion as an immobilized cell system in organic solvents was demonstrated using production of indigo from indole and production of o-cresol from toluene as model conversions. When glucose and oleic acid were simultaneously supplied as energy sources, the w/o emulsion culture of R. opacus B-4 produced indigo and o-cresol at levels of 0.217 and 2.12 mg ml(-1), respectively, by 12 h.
Collapse
Affiliation(s)
- Kohsuke Honda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Yasutake Y, Imoto N, Fujii Y, Fujii T, Arisawa A, Tamura T. Crystal structure of cytochrome P450 MoxA from Nonomuraea recticatena (CYP105). Biochem Biophys Res Commun 2007; 361:876-82. [PMID: 17679139 DOI: 10.1016/j.bbrc.2007.07.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
Cytochrome P450 MoxA (P450moxA) from a rare actinomycete Nonomuraea recticatena belongs to the CYP105 family and exhibits remarkably broad substrate specificity. Here, we demonstrate that P450moxA acts on several luciferin derivatives, which were originally identified as substrates of the human microsomal P450s. We also describe the crystal structure of P450moxA in substrate-free form. Structural comparison with various bacterial and human microsomal P450s reveals that the P450moxA structure is most closely related to that of the fungal nitric oxide reductase P450nor (CYP55A1). Final refined model of P450moxA comprises almost all the residues, including the "BC-loop" and "FG-loop" regions pivotal for substrate recognition, and the current structure thus defines a well-ordered substrate-binding pocket. Clear electron density map reveals that the MES molecule is bound to the substrate-binding site, and the sixth coordination position of the heme iron is not occupied by a water molecule, probably due to the presence of MES molecule in the vicinity of the heme. The unexpected binding of the MES molecule might reflect the ability of P450moxA to accommodate a broad range of structurally diverse compounds.
Collapse
Affiliation(s)
- Yoshiaki Yasutake
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Miyake R, Kawamoto J, Wei YL, Kitagawa M, Kato I, Kurihara T, Esaki N. Construction of a low-temperature protein expression system using a cold-adapted bacterium, Shewanella sp. strain Ac10, as the host. Appl Environ Microbiol 2007; 73:4849-56. [PMID: 17526788 PMCID: PMC1951021 DOI: 10.1128/aem.00824-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recombinant protein expression system working at low temperatures is expected to be useful for the production of thermolabile proteins. We constructed a low-temperature expression system using an Antarctic cold-adapted bacterium, Shewanella sp. strain Ac10, as the host. We evaluated the promoters for proteins abundantly produced at 4 degrees C in this bacterium to express foreign proteins. We used 27 promoters and a broad-host-range vector, pJRD215, to produce beta-lactamase in Shewanella sp. strain Ac10. The maximum yield was obtained when the promoter for putative alkyl hydroperoxide reductase (AhpC) was used and the recombinant cells were grown to late stationary phase. The yield was 91 mg/liter of culture at 4 degrees C and 139 mg/liter of culture at 18 degrees C. We used this system to produce putative peptidases, PepF, LAP, and PepQ, and a putative glucosidase, BglA, from a psychrophilic bacterium, Desulfotalea psychrophila DSM12343. We obtained 48, 7.1, 28, and 5.4 mg/liter of culture of these proteins, respectively, in a soluble fraction. The amounts of PepF and PepQ produced by this system were greater than those produced by the Escherichia coli T7 promoter system.
Collapse
Affiliation(s)
- Ryoma Miyake
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Sallam KI, Tamura N, Tamura T. A multipurpose transposon-based vector system mediates protein expression in Rhodococcus erythropolis. Gene 2006; 386:173-82. [PMID: 17098379 DOI: 10.1016/j.gene.2006.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/07/2006] [Accepted: 09/07/2006] [Indexed: 11/29/2022]
Abstract
In the current study we developed two transposon-based vectors; namely pTNR-KA and pTNR-TA and utilized them for expression of proteasome complex, derived from Streptomyces coelicolor, in Rhodococcus erythropolis. The two vectors can be transposed into Rhodococcus cells by means of electroporation, either individually in two consecutive processes or in combinations by a single step. During transposition, each of the two vectors liberates its transposable-marker gene, which integrated in a single copy into a random site in the Rhodococcus chromosomal DNA. Southern blot analysis indicated that the two transposable-marker genes of both vectors does not alter or knock out each other. To utilize these vectors for Streptomyces proteasome expression, two expression cassettes were constructed; each cassette comprised a constitutive promoter (P(nit)), the DNA fragment, prcA or prcB that encodes alpha- or beta-subunits of Streptomyces proteasome, and T(thcA) transcriptional terminator. The cassettes were then individually introduced into the multiple cloning sites that are located in the transposable-marker gene of the two vectors. The two cassettes-harboring vectors were subsequently co-transposed, in combinations, into the Rhodococcus genome by a single electroporation step and the Streptomyces proteasome was successfully expressed in the rodococcal host cell. The isolated proteasome was further characterized and the peptidase activity was confirmed and indicated that it was biologically active. The present study concluded that both pTNR-KA and pTNR-TA can be used as transposon-based protein expression systems in Rhodococcus species.
Collapse
Affiliation(s)
- Khalid Ibrahim Sallam
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | | |
Collapse
|
50
|
Kimura N, Kitagawa W, Mori T, Nakashima N, Tamura T, Kamagata Y. Genetic and biochemical characterization of the dioxygenase involved in lateral dioxygenation of dibenzofuran from Rhodococcus opacus strain SAO101. Appl Microbiol Biotechnol 2006; 73:474-84. [PMID: 16736088 DOI: 10.1007/s00253-006-0481-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 04/19/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
Rhodococcus opacus strain SAO101 was shown to degrade on various polycyclic aromatic hydrocarbons such as naphthalene, dibenzofuran (DF), and dibenzo-p-dioxin (DD). One of the unique traits of the strain SAO101 is its ability to oxidize DF compounds by lateral dioxygenation. To clone the lateral dioxygenase gene involved in compound degradation in strain SAO101, we identified a cosmid clone that oxidizes aromatic compounds by using SAO101 genomic DNA. Sequencing analysis revealed that isolated cosmid clone contained ring-hydroxylating dioxygenase genes (narAaAb) with homologies to indene dioxygenase genes of Rhodococcus strain I24 and naphthalene dioxygenase genes of Rhodococcus strain NCIMB12038. The NarAaAb-expressing Rhodococcus cells exhibited broad substrate specificity for bicyclic aromatic compounds and had high ability to degrade dibenzofuran and naphthalene. Metabolite analysis revealed that dihydrodiol compounds were detected as metabolites from dibenzofuran by the NarAaAb-expressing Rhodococcus strain, indicating that dibenzofuran was converted by lateral dioxygenase activity of NarA dioxygenase. Based on reverse transcriptase-polymerase chain reaction analysis, it was found that the narAaAb genes were cotranscribed and that their expression was induced in the presence of aromatic hydrocarbon compounds. It is likely that these genes are involved in the degradation pathways of a wide range of aromatic hydrocarbons by this strain. Strain SAO101 harbors three huge linear plasmids, pWK301 (1,100 kbp), pWK302 (1,000 kbp), and pWK303 (700 kbp), and the nar genes were found to be located on the pWK301 plasmid.
Collapse
Affiliation(s)
- Nobutada Kimura
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | | | | | |
Collapse
|