1
|
Lyu X, Yamano-Adachi N, Koga Y, Omasa T. COP II-mediated ER-to-Golgi transport is a bottleneck for IgNAR-Fc production in the Chinese hamster ovary cell expression system. J Biosci Bioeng 2025; 139:133-140. [PMID: 39586758 DOI: 10.1016/j.jbiosc.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
The novel heavy-chain antibody known as immunoglobulin new antigen receptor (IgNAR) is derived from cartilaginous fishes such as sharks. IgNAR, which binds to antigens with the high specificity and affinity of a conventional IgG antibody and exhibits high resistance to denaturation, has potential as a next-generation antibody in biopharmaceutical and biotechnological applications. High-level expression of recombinant IgNAR in animal cells has been challenging. In our previous study, IgNAR was expressed as a fusion protein with a human IgG Fc region (IgNAR-Fc) in Chinese hamster ovary (CHO) cells, but did not meet the production level required for further research and application. In this study, we sought to identify the production bottleneck in CHO cells as a first step toward achieving abundant production of IgNAR. Using an established IgG high-production CHO cell line as a comparator, we found that the amounts of intracellular dimeric IgNAR-Fc produced in CHO cells were similar to those of intracellular dimeric IgG. Furthermore, the majority of intracellular IgNAR-Fc was retained in the endoplasmic reticulum (ER) and strongly colocalized to ERGIC-53, the cargo receptor for coat protein complex II (COP II)-coated vesicles. These findings suggest that COP II-mediated ER-to-Golgi transport may represent a bottleneck for IgNAR-Fc production in the CHO cell expression system.
Collapse
Affiliation(s)
- Xiaofang Lyu
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Faculty of Applied Chemistry, Department of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, Okayama 700-0005, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Toporova VA, Argentova VV, Aliev TK, Panina AA, Dolgikh DA, Kirpichnikov MP. Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines. J Genet Eng Biotechnol 2023; 21:23. [PMID: 36811683 PMCID: PMC9947203 DOI: 10.1186/s43141-023-00474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND The biopharmaceutical industry is significantly growing worldwide, and the Chinese hamster ovary (CHO) cells are used as a main expression host for the production of recombinant monoclonal antibodies. Various metabolic engineering approaches have been investigated to generate cell lines with improved metabolic characteristics for increasing longevity and mAb production. A novel cell culture method based on the 2-stage selection makes it possible to develop a stable cell line with high-quality mAb production. RESULTS We have constructed several design options of mammalian expression vectors for the high production of recombinant human IgG antibodies. Versions for bipromoter and bicistronic expression plasmids different in promoter orientation and cistron arrangements were generated. The aim of the work presented here was to assess a high-throughput mAb production system that integrates the advantages of high-efficiency cloning and stable cell clones to stage strategy selection reducing the time and effort required to express therapeutic monoclonal mAbs. Development of a stable cell line using bicistronic construct with EMCV IRES-long link gave an advantage in high mAb expression and long-term stability. Two-stage selection strategies allowed the elimination of low-producer clones by using metabolic level intensity to estimate the IgG production in the early steps of selection. The practical application of the new method allows to reduce time and costs during stable cell line development.
Collapse
Affiliation(s)
- V. A. Toporova
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya ul. 16/10, GSP-7, Moscow, 117997 Russia
| | - V. V. Argentova
- grid.14476.300000 0001 2342 9668Department of Bioengineering, Biology Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119234 Russia
| | - T. K. Aliev
- grid.14476.300000 0001 2342 9668Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, Leninskiye gory 1–3, Moscow, 119234 Russia
| | - A. A. Panina
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya ul. 16/10, GSP-7, Moscow, 117997 Russia
| | - D. A. Dolgikh
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya ul. 16/10, GSP-7, Moscow, 117997 Russia ,grid.14476.300000 0001 2342 9668Department of Bioengineering, Biology Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119234 Russia
| | - M. P. Kirpichnikov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya ul. 16/10, GSP-7, Moscow, 117997 Russia ,grid.14476.300000 0001 2342 9668Department of Bioengineering, Biology Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119234 Russia
| |
Collapse
|
3
|
Zambrano N, Froechlich G, Lazarevic D, Passariello M, Nicosia A, De Lorenzo C, Morelli MJ, Sasso E. High-Throughput Monoclonal Antibody Discovery from Phage Libraries: Challenging the Current Preclinical Pipeline to Keep the Pace with the Increasing mAb Demand. Cancers (Basel) 2022; 14:cancers14051325. [PMID: 35267633 PMCID: PMC8909429 DOI: 10.3390/cancers14051325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Monoclonal antibodies are increasingly used for a broad range of diseases. Rising demand must face with time time-consuming and laborious processes to isolate novel monoclonal antibodies. Next-generation sequencing coupled to phage display provides timely and sustainable high throughput selection strategy to rapidly access novel target. Here, we describe the current NGS-guided strategies to identify potential binders from enriched sub-libraires by applying a user-friendly informatic pipeline to identify and discard false positive clones. Rescue step and strategies to boost mAb yield are also discussed to improve the limiting selection and screening steps. Abstract Monoclonal antibodies are among the most powerful therapeutics in modern medicine. Since the approval of the first therapeutic antibody in 1986, monoclonal antibodies keep holding great expectations for application in a range of clinical indications, highlighting the need to provide timely and sustainable access to powerful screening options. However, their application in the past has been limited by time-consuming and expensive steps of discovery and production. The screening of antibody repertoires is a laborious step; however, the implementation of next-generation sequencing-guided screening of single-chain antibody fragments has now largely overcome this issue. This review provides a detailed overview of the current strategies for the identification of monoclonal antibodies from phage display-based libraries. We also discuss the challenges and the possible solutions to improve the limiting selection and screening steps, in order to keep pace with the increasing demand for monoclonal antibodies.
Collapse
Affiliation(s)
- Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
- Correspondence: (N.Z.); (E.S.)
| | - Guendalina Froechlich
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy; (D.L.); (M.J.M.)
| | - Margherita Passariello
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Alfredo Nicosia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Claudia De Lorenzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Marco J. Morelli
- Center for Omics Sciences Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy; (D.L.); (M.J.M.)
| | - Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
- Correspondence: (N.Z.); (E.S.)
| |
Collapse
|
4
|
Szkodny AC, Lee KH. Biopharmaceutical Manufacturing: Historical Perspectives and Future Directions. Annu Rev Chem Biomol Eng 2022; 13:141-165. [PMID: 35300518 DOI: 10.1146/annurev-chembioeng-092220-125832] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review describes key milestones related to the production of biopharmaceuticals-therapies manufactured using recombinant DNA technology. The market for biopharmaceuticals has grown significantly since the first biopharmaceutical approval in 1982, and the scientific maturity of the technologies used in their manufacturing processes has grown concomitantly. Early processes relied on established unit operations, with research focused on process scale-up and improved culture productivity. In the early 2000s, changes in regulatory frameworks and the introduction of Quality by Design emphasized the importance of developing manufacturing processes to deliver a desired product quality profile. As a result, companies adopted platform processes and focused on understanding the dynamic interplay between product quality and processing conditions. The consistent and reproducible manufacturing processes of today's biopharmaceutical industry have set high standards for product efficacy, quality, and safety, and as the industry continues to evolve in the coming decade, intensified processing capabilities for an expanded range of therapeutic modalities will likely become routine. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alana C Szkodny
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA; ;
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA; ;
| |
Collapse
|
5
|
Kim SH, Baek M, Park S, Shin S, Lee JS, Lee GM. Improving the secretory capacity of CHO producer cells: The effect of controlled Blimp1 expression, a master transcription factor for plasma cells. Metab Eng 2021; 69:73-86. [PMID: 34775077 DOI: 10.1016/j.ymben.2021.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/29/2021] [Accepted: 11/02/2021] [Indexed: 01/23/2023]
Abstract
With the advent of novel therapeutic proteins with complex structures, cellular bottlenecks in secretory pathways have hampered the high-yield production of difficult-to-express (DTE) proteins in CHO cells. To mitigate their limited secretory capacity, recombinant CHO (rCHO) cells were engineered to express Blimp1, a master regulator orchestrating B cell differentiation into professional secretory plasma cells, using the streamlined CRISPR/Cas9-based recombinase-mediated cassette exchange landing pad platform. The expression of Blimp1α or Blimp1β in rCHO cells producing DTE recombinant human bone morphogenetic protein-4 (rhBMP-4) increased specific rhBMP-4 productivity (qrhBMP-4). However, since Blimp1α expression suppressed cell growth more significantly than Blimp1β expression, only Blimp1β expression enhanced rhBMP-4 yield. In serum-free suspension culture, Blimp1β expression significantly increased the rhBMP-4 concentration (>3-fold) and qrhBMP-4 (>4-fold) without significant increase in hBMP-4 transcript levels. In addition, Blimp1β expression facilitated mature rhBMP-4 secretion by active proteolytic cleavage in the secretory pathway. Transcriptomic profiling (RNA-seq) revealed global changes in gene expression patterns that promote protein processing in secretory organelles. In-depth integrative analysis of the current RNA-seq data, public epigenome/RNA-seq data, and in silico analysis identified 45 potential key regulators of Blimp1 that are consistently up- or down-regulated in Blimp1β expressing rCHO cells and plasma cells. Blimp1β expression also enhanced the production of easy-to-express monoclonal antibodies (mAbs) and modulated the expression of key regulators in rCHO cells producing mAb. Taken together, the results show that controlled expression of Blimp1β improves the production capacity of rCHO cells by regulating secretory machinery and suggest new opportunities for engineering promising targets that are resting in CHO cells.
Collapse
Affiliation(s)
- Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Minhye Baek
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Sungje Park
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Yang J, Tu R, Yuan H, Wang Q, Zhu L. Recent advances in droplet microfluidics for enzyme and cell factory engineering. Crit Rev Biotechnol 2021; 41:1023-1045. [PMID: 33730939 DOI: 10.1080/07388551.2021.1898326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Enzymes and cell factories play essential roles in industrial biotechnology for the production of chemicals and fuels. The properties of natural enzymes and cells often cannot meet the requirements of different industrial processes in terms of cost-effectiveness and high durability. To rapidly improve their properties and performances, laboratory evolution equipped with high-throughput screening methods and facilities is commonly used to tailor the desired properties of enzymes and cell factories, addressing the challenges of achieving high titer and the yield of the target products at high/low temperatures or extreme pH, in unnatural environments or in the presence of unconventional media. Droplet microfluidic screening (DMFS) systems have demonstrated great potential for exploring vast genetic diversity in a high-throughput manner (>106/h) for laboratory evolution and have been increasingly used in recent years, contributing to the identification of extraordinary mutants. This review highlights the recent advances in concepts and methods of DMFS for library screening, including the key factors in droplet generation and manipulation, signal sources for sensitive detection and sorting, and a comprehensive summary of success stories of DMFS implementation for engineering enzymes and cell factories during the past decade.
Collapse
Affiliation(s)
- Jianhua Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ran Tu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Huiling Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Leilei Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
7
|
Sivaccumar J, Sandomenico A, Vitagliano L, Ruvo M. Monoclonal Antibodies: A Prospective and Retrospective View. Curr Med Chem 2021; 28:435-471. [PMID: 32072887 DOI: 10.2174/0929867327666200219142231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoclonal Antibodies (mAbs) represent one of the most important classes of biotherapeutic agents. They are used to cure many diseases, including cancer, autoimmune diseases, cardiovascular diseases, angiogenesis-related diseases and, more recently also haemophilia. They can be highly varied in terms of format, source, and specificity to improve efficacy and to obtain more targeted applications. This can be achieved by leaving substantially unchanged the basic structural components for paratope clustering. OBJECTIVES The objective was to trace the most relevant findings that have deserved prestigious awards over the years, to report the most important clinical applications and to emphasize their latest emerging therapeutic trends. RESULTS We report the most relevant milestones and new technologies adopted for antibody development. Recent efforts in generating new engineered antibody-based formats are briefly reviewed. The most important antibody-based molecules that are (or are going to be) used for pharmacological practice have been collected in useful tables. CONCLUSION The topics here discussed prove the undisputed role of mAbs as innovative biopharmaceuticals molecules and as vital components of targeted pharmacological therapies.
Collapse
Affiliation(s)
- Jwala Sivaccumar
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luigi Vitagliano
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
8
|
Khan MAAK, Turjya RR, Islam ABMMK. Computational engineering the binding affinity of Adalimumab monoclonal antibody for designing potential biosimilar candidate. J Mol Graph Model 2021; 102:107774. [DOI: 10.1016/j.jmgm.2020.107774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/15/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
|
9
|
Panting M, Holme IB, Björnsson JM, Brinch-Pedersen H. Modulation of Barley (Hordeum vulgare L.) Grain Protein Sink-Source Relations Towards Human Epidermal Growth Factor Instead of B-hordein Storage Protein. Mol Biotechnol 2020; 63:13-23. [PMID: 33051823 DOI: 10.1007/s12033-020-00279-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Seeds have evolutionarily developed to store protein without immediately degrading it and constitute ideal tissues for recombinant protein storage. Unfortunately, the production of recombinant protein in seeds is compromised by low yield as compared to other heterologous expression systems. In order to improve the yield of the human epidermal growth factor (EGF) in barley, protein sink-source relations in the developing grain were modulated towards EGF instead of the barley storage protein. The EGF gene, under the control of a B-hordein and a seed-specific oat globulin promoter, was introduced by crossing EGF lines into the Risø 56 mutant deficient in B-hordein storage protein synthesis. Offspring plants were analysed for EGF and Hordein expression and for expression of the unfolded protein response (UPR) genes PDI and CRT to monitor changes in ER stress levels. EGF content was increased significantly in the mature grain of homozygous offspring and PDI and CRT gene expressions were upregulated. We demonstrate, for the first time in barley, that replacement of an abundant seed storage protein with a specific heterologous protein driven by the promoter of the removed gene can accelerate the production of a specific heterologous protein in barley grains.
Collapse
Affiliation(s)
- Michael Panting
- Department of AgroEcology, Research Center Flakkebjerg, Aarhus University, 4200, Slagelse, Denmark
| | - Inger Bæksted Holme
- Department of AgroEcology, Research Center Flakkebjerg, Aarhus University, 4200, Slagelse, Denmark
| | | | - Henrik Brinch-Pedersen
- Department of AgroEcology, Research Center Flakkebjerg, Aarhus University, 4200, Slagelse, Denmark.
| |
Collapse
|
10
|
Zhang W, Liu X, Tang H, Zhang X, Zhou Y, Fan L, Wang H, Tan WS, Zhao L. Investigation into the impact of tyrosine on the product formation and quality attributes of mAbs in rCHO cell cultures. Appl Microbiol Biotechnol 2020; 104:6953-6966. [PMID: 32577803 DOI: 10.1007/s00253-020-10744-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
Tyrosine (Tyr) is crucial to the maintenance of the monoclonal antibody (mAb) titers and quality attributes in fed-batch cultures of recombinant Chinese hamster ovary (rCHO) cells. However, the relation between tyrosine and these aspects is not yet fully defined. In order to further elucidate such a relation, two groups of fed-batch experiments with high tyrosine (H-T) or low tyrosine (L-T) additions producing an IgG1 monoclonal antibody against CD20 were implemented to investigate the intracellular and extracellular effects of tyrosine on the culture performance. It was found that the scarcity of tyrosine led to the distinctive reduction in both viable cell density and antibody specific production rate, hence the sharply reduced titer, possibly related to the impaired translation efficiency caused by the substrate limitation of tyrosine. In addition, alterations to the critical quality attributes were detected in the L-T group, compared to those in the H-T condition. Notable decrease in the contents of intact antibody was found under the L-T condition because of the elevated reductive level in the supernatant. Moreover, the aggregate content in the L-T condition was also reduced, probably resulting from the accumulation of extracellular cystine. In particular, the lysine variant content noticeably increased with tyrosine limitation owing to the downregulation of two carboxypeptidases, i.e., CpB and CpH. Overall, understanding the role of tyrosine in these aspects is fundamental to the increase of product titers and control of critical quality attributes in the monoclonal antibody production of rCHO cell fed-batch cultures. KEY POINTS: • Tyrosine is essential in the maintenance of product titers and the control of product qualities in high cell density cultivations in rCHO cell. • This study revealed the bottleneck of decreased qmAbupon the deficiency of tyrosine. • The impact of tyrosine on the critical product qualities and the underlying mechanisms were also thoroughly assessed.
Collapse
Affiliation(s)
- Weijian Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Xuping Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Hongping Tang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Xinran Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Yanan Zhou
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Li Fan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Haibin Wang
- Zhejiang Hisun Pharmaceutical Co., Ltd., Fuyang, Hangzhou, 311404, Zhejiang, China
| | - Wen-Song Tan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Liang Zhao
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China.
| |
Collapse
|
11
|
Koskela EV, Gonzalez Salcedo A, Piirainen MA, Iivonen HA, Salminen H, Frey AD. Mining Data From Plasma Cell Differentiation Identified Novel Genes for Engineering of a Yeast Antibody Factory. Front Bioeng Biotechnol 2020; 8:255. [PMID: 32296695 PMCID: PMC7136540 DOI: 10.3389/fbioe.2020.00255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Saccharomyces cerevisiae is a common platform for production of therapeutic proteins, but it is not intrinsically suited for the manufacturing of antibodies. Antibodies are naturally produced by plasma cells (PCs) and studies conducted on PC differentiation provide a comprehensive blueprint for the cellular transformations needed to create an antibody factory. In this study we mined transcriptomics data from PC differentiation to improve antibody secretion by S. cerevisiae. Through data exploration, we identified several new target genes. We tested the effects of 14 genetic modifications belonging to different cellular processes on protein production. Four of the tested genes resulted in improved antibody expression. The ER stress sensor IRE1 increased the final titer by 1.8-fold and smaller effects were observed with PSA1, GOT1, and HUT1 increasing antibody titers by 1. 6-, 1. 4-, and 1.4-fold. When testing combinations of these genes, the highest increases were observed when co-expressing IRE1 with PSA1, or IRE1 with PSA1 and HUT1, resulting in 3.8- and 3.1-fold higher antibody titers. In contrast, strains expressing IRE1 alone or in combination with the other genes produced similar or lower levels of recombinantly expressed endogenous yeast acid phosphatase compared to the controls. Using a genetic UPR responsive GFP reporter construct, we show that IRE1 acts through constitutive activation of the unfolded protein response. Moreover, the positive effect of IRE1 expression was transferable to other antibody molecules. We demonstrate how data exploration from an evolutionary distant, but highly specialized cell type can pinpoint new genetic targets and provide a novel concept for rationalized cell engineering.
Collapse
Affiliation(s)
- Essi V Koskela
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | | | - Mari A Piirainen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Heidi A Iivonen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Heidi Salminen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
12
|
Tang P, Xu J, Louey A, Tan Z, Yongky A, Liang S, Li ZJ, Weng Y, Liu S. Kinetic modeling of Chinese hamster ovary cell culture: factors and principles. Crit Rev Biotechnol 2020; 40:265-281. [DOI: 10.1080/07388551.2019.1711015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Peifeng Tang
- Department of Paper and Bioprocess Engineering, SUNY-ESF, Syracuse, NY, USA
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Jianlin Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Alastair Louey
- Elpiscience Biopharma, Cayman Islands George Town, Grand Cayman, UK
| | - Zhijun Tan
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Andrew Yongky
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Shaoyan Liang
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Zheng Jian Li
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Yongyan Weng
- Department of Civil Engineering, University of Nottingham, Nottingham, UK
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY-ESF, Syracuse, NY, USA
| |
Collapse
|
13
|
Schelletter L, Albaum S, Walter S, Noll T, Hoffrogge R. Clonal variations in CHO IGF signaling investigated by SILAC-based phosphoproteomics and LFQ-MS. Appl Microbiol Biotechnol 2019; 103:8127-8143. [DOI: 10.1007/s00253-019-10020-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
|
14
|
Yamano-Adachi N, Ogata N, Tanaka S, Onitsuka M, Omasa T. Characterization of Chinese hamster ovary cells with disparate chromosome numbers: Reduction of the amount of mRNA relative to total protein. J Biosci Bioeng 2019; 129:121-128. [PMID: 31303495 DOI: 10.1016/j.jbiosc.2019.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/06/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Chromosomes in Chinese hamster ovary (CHO) cells are labile. We have shown that high-chromosome-number CHO cells have greater potential to become robust producers of recombinant proteins. One explanation being the increase in transgene integration sites. However, high-chromosome-number cell clones produce more IgG3 following culture of single-cell clones, even under conditions that yield the same number of integrations as cells with normal chromosome numbers. Here, we characterized high-chromosome-number cells by transcriptome analysis. RNA standards were used to normalize transcriptomes of cells that had different chromosome numbers. Our results demonstrate that the mRNA ratio of β-actin and many other genes in high-chromosome-number cells to that in normal-chromosome-number cells per cell (normalized to RNA standards) was smaller than the equivalent genomic size and cell volume ratios. Many genes encoding membrane proteins are more highly expressed in high-chromosome-number cells, probably due to differences in cell size caused by the increase in chromosomes. In addition, genes related to histone modification and lipid metabolism are differentially expressed. The reduced transcript level required per protein produced in total and the different intracellular signal transductions might be key factors for antibody production.
Collapse
Affiliation(s)
- Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Norichika Ogata
- Nihon BioData Corporation, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| | - Sho Tanaka
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-8506, Japan.
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
15
|
RNAi expression tuning, microfluidic screening, and genome recombineering for improved protein production in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2019; 116:9324-9332. [PMID: 31000602 DOI: 10.1073/pnas.1820561116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The cellular machinery that supports protein synthesis and secretion lies at the foundation of cell factory-centered protein production. Due to the complexity of such cellular machinery, the challenge in generating a superior cell factory is to fully exploit the production potential by finding beneficial targets for optimized strains, which ideally could be used for improved secretion of other proteins. We focused on an approach in the yeast Saccharomyces cerevisiae that allows for attenuation of gene expression, using RNAi combined with high-throughput microfluidic single-cell screening for cells with improved protein secretion. Using direct experimental validation or enrichment analysis-assisted characterization of systematically introduced RNAi perturbations, we could identify targets that improve protein secretion. We found that genes with functions in cellular metabolism (YDC1, AAD4, ADE8, and SDH1), protein modification and degradation (VPS73, KTR2, CNL1, and SSA1), and cell cycle (CDC39), can all impact recombinant protein production when expressed at differentially down-regulated levels. By establishing a workflow that incorporates Cas9-mediated recombineering, we demonstrated how we could tune the expression of the identified gene targets for further improved protein production for specific proteins. Our findings offer a high throughput and semirational platform design, which will improve not only the production of a desired protein but even more importantly, shed additional light on connections between protein production and other cellular processes.
Collapse
|
16
|
Kaneyoshi K, Yamano-Adachi N, Koga Y, Uchiyama K, Omasa T. Analysis of the immunoglobulin G (IgG) secretion efficiency in recombinant Chinese hamster ovary (CHO) cells by using Citrine-fusion IgG. Cytotechnology 2019; 71:193-207. [PMID: 30610509 PMCID: PMC6368511 DOI: 10.1007/s10616-018-0276-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
Biopharmaceuticals represented by immunoglobulin G (IgG) are produced by the cultivation of recombinant animal cells, especially Chinese hamster ovary (CHO) cells. It is thought that the intracellular secretion process of IgG is a bottleneck in the production of biopharmaceuticals. Many studies on the regulation of endogenous secretory protein expression levels have shown improved productivity. However, these strategies have not universally improved the productivity of various proteins. A more rational and efficient establishment of high producer cells is required based on an understanding of the secretory processes in IgG producing CHO cells. In this study, a CHO cell line producing humanized IgG1, which was genetically fused with fluorescent proteins, was established to directly analyze intracellular secretion. The relationship between the amount of intracellular and secreted IgG was analyzed at the single cell level by an automated single-cell analysis and isolation system equipped with dual color fluorescent filters. The amounts of intracellular and secreted IgG showed a weak positive correlation. The amount of secreted IgG analyzed by the system showed a weak negative linear correlation with the specific growth of isolated clones. An immunofluorescent microscopy study showed that the established clones could be used to analyze the intracellular secretion bottleneck. This is the first study to report the use of fluorescent protein fusion IgG as a tool to analyze the secretion of recombinant CHO cells.
Collapse
Affiliation(s)
- Kohei Kaneyoshi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
- Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-Minamimachi, Kobe, Hyogo, 6500047, Japan
| | - Yuichi Koga
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Keiji Uchiyama
- The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 7708503, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan.
- Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-Minamimachi, Kobe, Hyogo, 6500047, Japan.
| |
Collapse
|
17
|
Johari YB, Brown AJ, Alves CS, Zhou Y, Wright CM, Estes SD, Kshirsagar R, James DC. CHO genome mining for synthetic promoter design. J Biotechnol 2019; 294:1-13. [PMID: 30703471 DOI: 10.1016/j.jbiotec.2019.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/01/2023]
Abstract
Synthetic promoters are an attractive alternative for use in mammalian hosts such as CHO cells as they can be designed de novo with user-defined functionalities. In this study, we describe and validate a method for bioprocess-directed design of synthetic promoters utilizing CHO genomic sequence information. We designed promoters with two objective features, (i) constitutive high-level recombinant gene transcription, and (ii) upregulated transcription under mild hypothermia or late-stage culture. CHO genes varying in transcriptional activity were selected based on a comparative analysis of RNA-Seq transcript levels in normal and biphasic cultures in combination with estimates of mRNA half-life from published genome scale datasets. Discrete transcription factor regulatory elements (TFREs) upstream of these genes were informatically identified and functionally screened in vitro to identify a subset of TFREs with the potential to support high activity recombinant gene transcription during biphasic cell culture processes. Two libraries of heterotypic synthetic promoters with varying TFRE combinations were then designed in silico that exhibited a maximal 2.5-fold increase in transcriptional strength over the CMV-IE promoter after transient transfection into host CHO-K1 cells. A subset of synthetic promoters was then used to create stable transfectant pools using CHO-K1 cells under glutamine synthetase selection. Whilst not achieving the maximal 2.5-fold increase in productivity over stable pools harboring the CMV promoter, all stably transfected cells utilizing synthetic promoters exhibited increased reporter production - up to 1.6-fold that of cells employing CMV, both in the presence or absence of intron A immediately downstream of the promoter. The increased productivity of stably transfected cells harboring synthetic promoters was maintained during fed-batch culture, with or without a transition to mild hypothermia at the onset of stationary phase. Our data exemplify that it is important to consider both host cell and intended bioprocess contexts as design criteria in the de novo construction of synthetic genetic parts for mammalian cell engineering.
Collapse
Affiliation(s)
- Yusuf B Johari
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
| | - Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
| | | | - Yizhou Zhou
- Cell Culture Development, Biogen Inc., Cambridge, MA 02142, USA
| | | | - Scott D Estes
- Cell Culture Development, Biogen Inc., Cambridge, MA 02142, USA
| | | | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK.
| |
Collapse
|
18
|
Kaneyoshi K, Kuroda K, Uchiyama K, Onitsuka M, Yamano-Adachi N, Koga Y, Omasa T. Secretion analysis of intracellular "difficult-to-express" immunoglobulin G (IgG) in Chinese hamster ovary (CHO) cells. Cytotechnology 2019; 71:305-316. [PMID: 30637508 DOI: 10.1007/s10616-018-0286-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
The Chinese hamster ovary (CHO) cell line is the most widely used host cell for therapeutic antibody production. Although its productivity has been improved by various strategies to satisfy the growing global demand, some difficult-to-express (DTE) antibodies remain at low secretion levels. To improve the production of various therapeutic antibodies, it is necessary to determine possible rate-limiting steps in DTE antibody secretion in comparison with other high IgG producers. Here, we analyzed the protein secretion process in CHO cells producing the DTE immunoglobulin G (IgG) infliximab. The results from chase assays using a translation inhibitor revealed that infliximab secretion could be nearly completed within 2 h, at which time the cells still retained about 40% of heavy chains and 65% of light chains. Using fluorescent microscopy, we observed that these IgG chains remained in the endoplasmic reticulum and Golgi apparatus. The cells inefficiently form fully assembled heterodimer IgG by making LC aggregates, which may be the most serious bottleneck in the production of DTE infliximab compared with other IgG high producers. Our study could contribute to establish the common strategy for constructing DTE high-producer cells on the basis of rate-limiting step analysis.
Collapse
Affiliation(s)
- Kohei Kaneyoshi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kouki Kuroda
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Keiji Uchiyama
- The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 7708503, Japan
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima, 7708513, Japan.,Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo, 6500047, Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan.,Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo, 6500047, Japan
| | - Yuichi Koga
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan. .,Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo, 6500047, Japan.
| |
Collapse
|
19
|
Kaneyoshi K, Uchiyama K, Onitsuka M, Yamano N, Koga Y, Omasa T. Analysis of intracellular IgG secretion in Chinese hamster ovary cells to improve IgG production. J Biosci Bioeng 2019; 127:107-113. [DOI: 10.1016/j.jbiosc.2018.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 02/03/2023]
|
20
|
Sanchez-Schmitz G, Stevens CR, Bettencourt IA, Flynn PJ, Schmitz-Abe K, Metser G, Hamm D, Jensen KJ, Benn C, Levy O. Microphysiologic Human Tissue Constructs Reproduce Autologous Age-Specific BCG and HBV Primary Immunization in vitro. Front Immunol 2018; 9:2634. [PMID: 30524426 PMCID: PMC6256288 DOI: 10.3389/fimmu.2018.02634] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
Current vaccine development disregards human immune ontogeny, relying on animal models to select vaccine candidates targeting human infants, who are at greatest risk of infection worldwide, and receive the largest number of vaccines. To help accelerate and de-risk development of early-life effective immunization, we engineered a human age-specific microphysiologic vascular-interstitial interphase, suitable for pre-clinical modeling of distinct age-targeted immunity in vitro. Our Tissue Constructs (TCs) enable autonomous extravasation of monocytes that undergo rapid self-directed differentiation into migratory Dendritic Cells (DCs) in response to adjuvants and licensed vaccines such as Bacille Calmette-Guérin (BCG) or Hepatitis B virus Vaccine (HBV). TCs contain a confluent human endothelium grown atop a tri-dimensional human extracellular matrix substrate, employ human age-specific monocytes and autologous non heat-treated plasma, and avoid the use of xenogenic materials and exogenous cytokines. Vaccine-pulsed TCs autonomously generated DCs that induced single-antigen recall responses from autologous naïve and memory CD4+ T lymphocytes, matching study participant immune-status, including BCG responses paralleling donor PPD status, BCG-induced adenosine deaminase (ADA) activity paralleling infant cohorts in vivo, and multi-dose HBV antigen-specific responses as demonstrated by lymphoproliferation and TCR sequencing. Overall, our microphysiologic culture method reproduced age- and antigen-specific recall responses to BCG and HBV immunization, closely resembling those observed after a birth immunization of human cohorts in vivo, offering for the first time a new approach to early pre-clinical selection of effective age-targeted vaccine candidates.
Collapse
Affiliation(s)
- Guzman Sanchez-Schmitz
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Precision Vaccines Program, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| | - Chad R Stevens
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Ian A Bettencourt
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Peter J Flynn
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Klaus Schmitz-Abe
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Gil Metser
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - David Hamm
- Adaptive Biotechnologies, Seattle, WA, United States
| | - Kristoffer J Jensen
- Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark.,Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Christine Benn
- Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark.,Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
| | - Ofer Levy
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Precision Vaccines Program, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States.,Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
21
|
Torkashvand F, Mahboudi F, Vossoughi M, Fatemi E, Moosavi Basri SM, Heydari A, Vaziri B. Quantitative Proteomic Analysis of Cellular Responses to a Designed Amino Acid Feed in a Monoclonal Antibody
Producing Chinese Hamster Ovary Cell Line. IRANIAN BIOMEDICAL JOURNAL 2018. [PMID: 29678103 PMCID: PMC6305810 DOI: 10.29252/.22.6.385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Chinese hamster ovary (CHO) cell line is considered as the most common cell line in the biopharmaceutical industry because of its capability in performing efficient post-translational modifications and producing the recombinant proteins, which are similar to natural human proteins. The optimization of the upstream process via different feed strategies has a great impact on the target molecule expression and yield. Methods: To determine and understand the molecular events beneath the feed effects on the CHO cell, a label-free quantitative proteomic analysis was applied. The proteome changes followed by the addition of a designed amino acid feed to the monoclonal antibody producing CHO cell line culture medium were investigated. Results: The glutathione synthesis, the negative regulation of the programmed cell death, proteasomal catabolic process, and the endosomal transport pathway were up-regulated in the group fed with a designed amino acid feed compared to the control group. Conclusion: Our findings could be helpful to identify new targets for metabolic engineering.
Collapse
Affiliation(s)
- Fatemeh Torkashvand
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fereidoun Mahboudi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Biochemical and Bioenvironmental Research Center Sharif University of Technology, Tehran, Iran
| | - Elnaz Fatemi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Heydari
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Behrouz Vaziri
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
22
|
Cartwright JF, Anderson K, Longworth J, Lobb P, James DC. Highly sensitive detection of mutations in CHO cell recombinant DNA using multi-parallel single molecule real-time DNA sequencing. Biotechnol Bioeng 2018; 115:1485-1498. [DOI: 10.1002/bit.26561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/01/2017] [Accepted: 02/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Joseph F. Cartwright
- Department of Chemical and Biological Engineering; University of Sheffield; Sheffield UK
| | - Karin Anderson
- Cell Line Development; BioTherapeutic Pharmaceutical Sciences; Pfizer Inc; Andover Massachusetts
| | - Joseph Longworth
- Department of Chemical and Biological Engineering; University of Sheffield; Sheffield UK
| | | | - David C. James
- Department of Chemical and Biological Engineering; University of Sheffield; Sheffield UK
| |
Collapse
|
23
|
Kuo CC, Chiang AW, Shamie I, Samoudi M, Gutierrez JM, Lewis NE. The emerging role of systems biology for engineering protein production in CHO cells. Curr Opin Biotechnol 2017; 51:64-69. [PMID: 29223005 DOI: 10.1016/j.copbio.2017.11.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/26/2022]
Abstract
To meet the ever-growing demand for effective, safe, and affordable protein therapeutics, decades of intense efforts have aimed to maximize the quantity and quality of recombinant proteins produced in CHO cells. Bioprocessing innovations and cell engineering efforts have improved product titer; however, uncharacterized cellular processes and gene regulatory mechanisms still hinder cell growth, specific productivity, and protein quality. Herein, we summarize recent advances in systems biology and data-driven approaches aiming to unravel how molecular pathways, cellular processes, and extrinsic factors (e.g. media supplementation) influence recombinant protein production. In particular, as the available omics data for CHO cells continue to grow, predictive models and screens will be increasingly used to unravel the biological drivers of protein production, which can be used with emerging genome editing technologies to rationally engineer cells to further control the quantity, quality and affordability of many biologic drugs.
Collapse
Affiliation(s)
- Chih-Chung Kuo
- Department of Bioengineering, University of California, San Diego, United States; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States
| | - Austin Wt Chiang
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Department of Pediatrics, University of California, San Diego, United States
| | - Isaac Shamie
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Bioinformatics and Systems Biology Program, University of California, San Diego, United States
| | - Mojtaba Samoudi
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Department of Pediatrics, University of California, San Diego, United States
| | - Jahir M Gutierrez
- Department of Bioengineering, University of California, San Diego, United States; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, United States; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Department of Pediatrics, University of California, San Diego, United States.
| |
Collapse
|
24
|
Koskela EV, de Ruijter JC, Frey AD. Following nature's roadmap: folding factors from plasma cells led to improvements in antibody secretion in S. cerevisiae. Biotechnol J 2017; 12. [PMID: 28429845 DOI: 10.1002/biot.201600631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
Therapeutic protein production in yeast is a reality in industry with an untapped potential to expand to more complex proteins, such as full-length antibodies. Despite numerous engineering approaches, cellular limitations are preventing the use of Saccharomyces cerevisiae as the titers of recombinant antibodies are currently not competitive. Instead of a host specific approach, the possibility of adopting the features from native producers of antibodies, plasma cells, to improve antibody production in yeast. A subset of mammalian folding factors upregulated in plasma cells for expression in yeast and screened for beneficial effects on antibody secretion using a high-throughput ELISA platform was selected. Co-expression of the mammalian chaperone BiP, the co-chaperone GRP170, or the peptidyl-prolyl isomerase FKBP2, with the antibody improved specific product yields up to two-fold. By comparing strains expressing FKBP2 or the yeast PPIase Cpr5p, the authors demonstrate that speeding up peptidyl-prolyl isomerization by upregulation of catalyzing enzymes is a key factor to improve antibody titers in yeast. The findings show that following the route of plasma cells can improve product titers and contribute to developing an alternative yeast-based antibody factory.
Collapse
Affiliation(s)
- Essi V Koskela
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Jorg C de Ruijter
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.,Current address: Department of Biocatalysis and Isotope Chemistry, Almac Sciences, Craigavon, Northern Ireland, United Kingdom
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
25
|
Affiliation(s)
- Jennifer Pfizenmaier
- University of Stuttgart; Institute of Biochemical Engineering; Allmandring 31 70569 Stuttgart Germany
| | - Ralf Takors
- University of Stuttgart; Institute of Biochemical Engineering; Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
26
|
Granucci N, Pinu FR, Han TL, Villas-Boas SG. Can we predict the intracellular metabolic state of a cell based on extracellular metabolite data? MOLECULAR BIOSYSTEMS 2016; 11:3297-304. [PMID: 26400772 DOI: 10.1039/c5mb00292c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The analysis of extracellular metabolites presents many technical advantages over the analysis of intracellular compounds, which made this approach very popular in recent years as a high-throughput tool to assess the metabolic state of microbial cells. However, very little effort has been made to determine the actual relationship between intracellular and extracellular metabolite levels. The secretion of intracellular metabolites has been traditionally interpreted as a consequence of an intracellular metabolic overflow, which is based on the premise that for a metabolite to be secreted, it must be over-produced inside the cell. Therefore, we expect to find a secreted metabolite at increased levels inside the cells. Here we present a time-series metabolomics study of Saccharomyces cerevisiae growing on a glucose-limited chemostat with parallel measurements of intra- and extracellular metabolites. Although most of the extracellular metabolites were also detected in the intracellular samples and showed a typical metabolic overflow behaviour, we demonstrate that the secretion of many metabolites could not be explained by the metabolic overflow theory.
Collapse
Affiliation(s)
- Ninna Granucci
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Private Bag 92019, Auckland 1142, New Zealand.
| | - Farhana R Pinu
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Private Bag 92019, Auckland 1142, New Zealand. and The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Ting-Li Han
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Private Bag 92019, Auckland 1142, New Zealand.
| | - Silas G Villas-Boas
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
27
|
Xie P, Niu H, Chen X, Zhang X, Miao S, Deng X, Liu X, Tan WS, Zhou Y, Fan L. Elucidating the effects of pH shift on IgG1 monoclonal antibody acidic charge variant levels in Chinese hamster ovary cell cultures. Appl Microbiol Biotechnol 2016; 100:10343-10353. [DOI: 10.1007/s00253-016-7749-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 01/04/2023]
|
28
|
Generation of a new Gateway-compatible inducible lentiviral vector platform allowing easy derivation of co-transduced cells. Biotechniques 2016; 60:252-9. [PMID: 27177818 DOI: 10.2144/000114417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/05/2016] [Indexed: 11/23/2022] Open
Abstract
In contrast to most common gene delivery techniques, lentiviral vectors allow targeting of almost any mammalian cell type, even non-dividing cells, and they stably integrate in the genome. Therefore, these vectors are a very powerful tool for biomedical research. Here we report the generation of a versatile new set of 22 lentiviral vectors with broad applicability in multiple research areas. In contrast to previous systems, our platform provides a choice between constitutive and/or conditional expression and six different C-terminal fusions. Furthermore, two compatible selection markers enable the easy derivation of stable cell lines co-expressing differently tagged transgenes in a constitutive or inducible manner. We show that all of the vector features are functional and that they contribute to transgene overexpression in proof-of-principle experiments.
Collapse
|
29
|
Kis Z, Pereira HS, Homma T, Pedrigi RM, Krams R. Mammalian synthetic biology: emerging medical applications. J R Soc Interface 2016; 12:rsif.2014.1000. [PMID: 25808341 DOI: 10.1098/rsif.2014.1000] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes.
Collapse
Affiliation(s)
- Zoltán Kis
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Takayuki Homma
- Department of Bioengineering, Imperial College London, London, UK
| | - Ryan M Pedrigi
- Department of Bioengineering, Imperial College London, London, UK
| | - Rob Krams
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
30
|
Badsha MB, Kurata H, Onitsuka M, Oga T, Omasa T. Metabolic analysis of antibody producing Chinese hamster ovary cell culture under different stresses conditions. J Biosci Bioeng 2016; 122:117-24. [PMID: 26803706 DOI: 10.1016/j.jbiosc.2015.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/03/2023]
Abstract
Chinese hamster ovary (CHO) cells are commonly used as the host cell lines concerning their ability to produce therapeutic proteins with complex post-translational modifications. In this study, we have investigated the time course extra- and intracellular metabolome data of the CHO-K1 cell line, under a control and stress conditions. The addition of NaCl and trehalose greatly suppressed cell growth, where the maximum viable cell density of NaCl and trehalose cultures were 2.2-fold and 2.8-fold less than that of a control culture. Contrariwise, the antibody production of both the NaCl and trehalose cultures was sustained for a longer time to surpass that of the control culture. The NaCl and trehalose cultures showed relatively similar dynamics of cell growth, antibody production, and substrate/product concentrations, while they indicated different dynamics from the control culture. The principal component analysis of extra- and intracellular metabolome dynamics indicated that their dynamic behaviors were consistent with biological functions. The qualitative pattern matching classification and hierarchical clustering analyses for the intracellular metabolome identified the metabolite clusters whose dynamic behaviors depend on NaCl and trehalose. The volcano plot revealed several reporter metabolites whose dynamics greatly change between in the NaCl and trehalose cultures. The elastic net identified some critical, intracellular metabolites that are distinct between the NaCl and trehalose. While a relatively small number of intracellular metabolites related to the cell growth, glucose, glutamine, lactate and ammonium ion concentrations, the mechanism of antibody production was suggested to be very complicated or not to be explained by elastic net regression analysis.
Collapse
Affiliation(s)
- Md Bahadur Badsha
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Biomedical Informatics R&D Center, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| | - Masayoshi Onitsuka
- Institute of Technology and Science, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan.
| | - Takushi Oga
- Human Metabolome Technologies, Inc., 24 Denby Road, Suite 217, Boston, MA 02134, USA.
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, U1E801, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
31
|
Improving expression of recombinant human IGF-1 using IGF-1R knockout CHO cell lines. Biotechnol Bioeng 2016; 113:1094-101. [DOI: 10.1002/bit.25877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/11/2015] [Accepted: 10/28/2015] [Indexed: 12/13/2022]
|
32
|
Walther CG, Whitfield R, James DC. Importance of Interaction between Integrin and Actin Cytoskeleton in Suspension Adaptation of CHO cells. Appl Biochem Biotechnol 2015; 178:1286-302. [PMID: 26679704 PMCID: PMC4858566 DOI: 10.1007/s12010-015-1945-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/30/2015] [Indexed: 12/23/2022]
Abstract
The biopharmaceutical production process relies upon mammalian cell technology where single cells proliferate in suspension in a chemically defined synthetic environment. This environment lacks exogenous growth factors, usually contributing to proliferation of fibroblastic cell types such as Chinese hamster ovary (CHO) cells. Use of CHO cells for production hence requires a lengthy 'adaptation' process to select clones capable of proliferation as single cells in suspension. The underlying molecular changes permitting proliferation in suspension are not known. Comparison of the non-suspension-adapted clone CHO-AD and a suspension-adapted propriety cell line CHO-SA by flow cytometric analysis revealed a highly variable bi-modal expression pattern for cell-to-cell contact proteins in contrast to the expression pattern seen for integrins. Those have a uni-modal expression on suspension and adherent cells. Integrins showed a conformation distinguished by regularly distributed clusters forming a sphere on the cell membrane of suspension-adapted cells. Actin cytoskeleton analysis revealed reorganisation from the typical fibrillar morphology found in adherent cells to an enforced spherical subcortical actin sheath in suspension cells. The uni-modal expression and specific clustering of integrins could be confirmed for CHO-S, another suspension cell line. Cytochalasin D treatment resulted in breakdown of the actin sheath and the sphere-like integrin conformation demonstrating the link between integrins and actin in suspension-adapted CHO cells. The data demonstrates the importance of signalling changes, leading to an integrin rearrangement on the cell surface, and the necessity of the reinforcement of the actin cytoskeleton for proliferation in suspension conditions.
Collapse
Affiliation(s)
- Christa G Walther
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
- Chemical and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK.
| | - Robert Whitfield
- Department of Applied Sciences and Health, Coventry University, James Starley Building, Coventry, CV1 5FB, UK
- Chemical and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - David C James
- Chemical and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| |
Collapse
|
33
|
Taylor K, Howard CB, Jones ML, Sedliarou I, MacDiarmid J, Brahmbhatt H, Munro TP, Mahler SM. Nanocell targeting using engineered bispecific antibodies. MAbs 2015; 7:53-65. [PMID: 25523746 PMCID: PMC4622061 DOI: 10.4161/19420862.2014.985952] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There are many design formats for bispecific antibodies (BsAbs), and the best design choice is highly dependent on the final application. Our aim was to engineer BsAbs to target a novel nanocell (EnGeneIC Delivery Vehicle or EDVTMnanocell) to the epidermal growth factor receptor (EGFR). EDVTMnanocells are coated with lipopolysaccharide (LPS), and BsAb designs incorporated single chain Fv (scFv) fragments derived from an anti-LPS antibody (1H10) and an anti-EGFR antibody, ABX-EGF. We engineered various BsAb formats with monovalent or bivalent binding arms and linked scFv fragments via either glycine-serine (G4S) or Fc-linkers. Binding analyses utilizing ELISA, surface plasmon resonance, bio-layer interferometry, flow cytometry and fluorescence microscopy showed that binding to LPS and to either soluble recombinant EGFR or MDA-MB-468 cells expressing EGFR, was conserved for all construct designs. However, the Fc-linked BsAbs led to nanocell clumping upon binding to EDVTMnanocells. Clumping was eliminated when additional disulfide bonds were incorporated into the scFv components of the BsAbs, but this resulted in lower BsAb expression. The G4S-linked tandem scFv BsAb format was the optimal design with respect to EDV binding and expression yield. Doxorubicin-loaded EDVTMnanocells actively targeted with tandem scFv BsAb in vivo to MDA-MB-468-derived tumors in mouse xenograft models enhanced tumor regression by 40% compared to passively targeted EDVTMnanocells. BsAbs therefore provide a functional means to deliver EDVTMnanocells to target cells.
Collapse
Affiliation(s)
- Karin Taylor
- a Australian Institute for Bioengineering and Nanotechnology (AIBN) ; University of Queensland, St Lucia ; Queensland , Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Harreither E, Hackl M, Pichler J, Shridhar S, Auer N, Łabaj PP, Scheideler M, Karbiener M, Grillari J, Kreil DP, Borth N. Microarray profiling of preselected CHO host cell subclones identifies gene expression patterns associated with increased production capacity. Biotechnol J 2015; 10:1625-38. [PMID: 26315449 DOI: 10.1002/biot.201400857] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 06/22/2015] [Accepted: 08/21/2015] [Indexed: 01/02/2023]
Abstract
Over the last three decades, product yields from CHO cells have increased dramatically, yet specific productivity (qP) remains a limiting factor. In a previous study, using repeated cell-sorting, we have established different host cell subclones that show superior transient qP over their respective parental cell lines (CHO-K1, CHO-S). The transcriptome of the resulting six cell lines in different biological states (untransfected, mock transfected, plasmid transfected) was first explored by hierarchical clustering and indicated that gene activity associated with increased qP did not stem from a certain cellular state but seemed to be inherent for a high qP host line. We then performed a novel gene regression analysis identifying drivers for an increase in qP. Genes significantly implicated were first systematically tested for enrichment of GO terms using a Bayesian approach incorporating the hierarchical structure of the GO term tree. Results indicated that specific cellular components such as nucleus, ER, and Golgi are relevant for cellular productivity. This was complemented by targeted GSA that tested functionally homogeneous, manually curated subsets of KEGG pathways known to be involved in transcription, translation, and protein processing. Significantly implicated pathways included mRNA surveillance, proteasome, protein processing in the ER and SNARE interactions in vesicular transport.
Collapse
Affiliation(s)
- Eva Harreither
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Matthias Hackl
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannes Pichler
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Smriti Shridhar
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Paweł P Łabaj
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marcel Scheideler
- RNA Biology Group, Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
| | - Michael Karbiener
- RNA Biology Group, Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
| | - Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - David P Kreil
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria. .,ACIB GmbH, Graz, Austria.
| |
Collapse
|
35
|
Johari YB, Estes SD, Alves CS, Sinacore MS, James DC. Integrated cell and process engineering for improved transient production of a “difficult-to-express“ fusion protein by CHO cells. Biotechnol Bioeng 2015; 112:2527-42. [DOI: 10.1002/bit.25687] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/08/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Yusuf B. Johari
- Department of Chemical and Biological Engineering; University of Sheffield; ChELSI Institute; Mappin Street; Sheffield S1 3JD UK
| | - Scott D. Estes
- Cell Culture Development; Biogen Idec, Inc.; Cambridge Massachusetts
| | | | - Marty S. Sinacore
- Cell Culture Development; Biogen Idec, Inc.; Cambridge Massachusetts
| | - David C. James
- Department of Chemical and Biological Engineering; University of Sheffield; ChELSI Institute; Mappin Street; Sheffield S1 3JD UK
| |
Collapse
|
36
|
Kishishita S, Katayama S, Kodaira K, Takagi Y, Matsuda H, Okamoto H, Takuma S, Hirashima C, Aoyagi H. Optimization of chemically defined feed media for monoclonal antibody production in Chinese hamster ovary cells. J Biosci Bioeng 2015; 120:78-84. [DOI: 10.1016/j.jbiosc.2014.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 12/11/2022]
|
37
|
Kishishita S, Nishikawa T, Shinoda Y, Nagashima H, Okamoto H, Takuma S, Aoyagi H. Effect of temperature shift on levels of acidic charge variants in IgG monoclonal antibodies in Chinese hamster ovary cell culture. J Biosci Bioeng 2015; 119:700-5. [DOI: 10.1016/j.jbiosc.2014.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/18/2022]
|
38
|
Liu Z, Dai S, Bones J, Ray S, Cha S, Karger BL, Li JJ, Wilson L, Hinckle G, Rossomando A. A quantitative proteomic analysis of cellular responses to high glucose media in Chinese hamster ovary cells. Biotechnol Prog 2015; 31:1026-38. [PMID: 25857574 DOI: 10.1002/btpr.2090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 03/11/2015] [Indexed: 12/12/2022]
Abstract
A goal in recombinant protein production using Chinese hamster ovary (CHO) cells is to achieve both high specific productivity and high cell density. Addition of glucose to the culture media is necessary to maintain both cell growth and viability. We varied the glucose concentration in the media from 5 to 16 g/L and found that although specific productivity of CHO-DG44 cells increased with the glucose level, the integrated viable cell density decreased. To examine the biological basis of these results, we conducted a discovery proteomic study of CHO-DG44 cells grown under batch conditions in normal (5 g/L) or high (15 g/L) glucose over 3, 6, and 9 days. Approximately 5,000 proteins were confidently identified against an mRNA-based CHO-DG44 specific proteome database, with 2,800 proteins quantified with at least two peptides. A self-organizing map algorithm was used to deconvolute temporal expression profiles of quantitated proteins. Functional analysis of altered proteins suggested that differences in growth between the two glucose levels resulted from changes in crosstalk between glucose metabolism, recombinant protein expression, and cell death, providing an overall picture of the responses to high glucose environment. The high glucose environment may enhance recombinant dihydrofolate reductase in CHO cells by up-regulating NCK1 and down-regulating PRKRA, and may lower integrated viable cell density by activating mitochondrial- and endoplasmic reticulum-mediated cell death pathways by up-regulating HtrA2 and calpains. These proteins are suggested as potential targets for bioengineering to enhance recombinant protein production.
Collapse
Affiliation(s)
- Zhenke Liu
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Shujia Dai
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Jonathan Bones
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Somak Ray
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Sangwon Cha
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Barry L Karger
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Jingyi Jessica Li
- Dept. of Statistics, University of California, Los Angeles, CA, 90095
| | - Lee Wilson
- Alnylam Pharmaceuticals, Cambridge, MA, 02142
| | | | | |
Collapse
|
39
|
Orellana CA, Marcellin E, Schulz BL, Nouwens AS, Gray PP, Nielsen LK. High-Antibody-Producing Chinese Hamster Ovary Cells Up-Regulate Intracellular Protein Transport and Glutathione Synthesis. J Proteome Res 2015; 14:609-18. [DOI: 10.1021/pr501027c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Camila A. Orellana
- Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Esteban Marcellin
- Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Benjamin L. Schulz
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Amanda S. Nouwens
- Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter P. Gray
- Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Lars K. Nielsen
- Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| |
Collapse
|
40
|
Ishii Y, Imamoto Y, Yamamoto R, Tsukahara M, Wakamatsu K. Comparison of Antibody Molecules Produced from Two Cell Lines with Contrasting Productivities and Aggregate Contents. Biol Pharm Bull 2015; 38:306-16. [DOI: 10.1248/bpb.b14-00729] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoichi Ishii
- Graduate School of Engineering, Gunma University
- Bio-process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd
| | - Yasufumi Imamoto
- Bio-process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd
| | - Rie Yamamoto
- Bio-process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd
| | | | | |
Collapse
|
41
|
Kiparissides A, Pistikopoulos EN, Mantalaris A. On the model-based optimization of secreting mammalian cell (GS-NS0) cultures. Biotechnol Bioeng 2014; 112:536-48. [DOI: 10.1002/bit.25457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/01/2014] [Accepted: 09/05/2014] [Indexed: 12/16/2022]
Affiliation(s)
- A. Kiparissides
- Centre for Process Systems Engineering; Department of Chemical Engineering; Imperial College London; London SW7 2AZ UK
| | - E. N. Pistikopoulos
- Centre for Process Systems Engineering; Department of Chemical Engineering; Imperial College London; London SW7 2AZ UK
| | - A. Mantalaris
- Centre for Process Systems Engineering; Department of Chemical Engineering; Imperial College London; London SW7 2AZ UK
| |
Collapse
|
42
|
Yu Q, Wang Q, Li B, Lin Q, Duan Y. Technological Development of Antibody Immobilization for Optical Immunoassays: Progress and Prospects. Crit Rev Anal Chem 2014. [DOI: 10.1080/10408347.2014.881249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Gene expression measurements normalized to cell number reveal large scale differences due to cell size changes, transcriptional amplification and transcriptional repression in CHO cells. J Biotechnol 2014; 189:58-69. [PMID: 25194670 DOI: 10.1016/j.jbiotec.2014.08.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 01/20/2023]
Abstract
Conventional approaches to differential gene expression comparisons assume equal cellular RNA content among experimental conditions. We demonstrate that this assumption should not be universally applied because total RNA yield from a set number of cells varies among experimental treatments of the same Chinese Hamster Ovary (CHO) cell line and among different CHO cell lines expressing recombinant proteins. Conventional normalization strategies mask these differences in cellular RNA content and, consequently, skew biological interpretation of differential expression results. On the contrary, normalization to synthetic spike-in RNA standards added proportional to cell numbers reveals these differences and allows detection of global transcriptional amplification/repression. We apply this normalization method to assess differential gene expression in cell lines of different sizes, as well as cells treated with a cell cycle inhibitor (CCI), an mTOR inhibitor (mTORI), or subjected to high osmolarity conditions. CCI treatment of CHO cells results in a cellular volume increase and global transcriptional amplification, while mTORI treatment causes global transcriptional repression without affecting cellular volume. Similarly to CCI treatment, high osmolarity increases cell size, total RNA content and antibody expression. Furthermore, we show the importance of spike-in normalization for studies involving multiple CHO cell lines and advocate normalization to spike-in controls prior to correlating gene expression to specific productivity (qP). Overall, our data support the need for cell number specific spike-in controls for all gene expression studies where cellular RNA content differs among experimental conditions.
Collapse
|
44
|
Zhao Y, Xing J, Xing JZ, Ang WT, Chen J. Applications of low-intensity pulsed ultrasound to increase monoclonal antibody production in CHO cells using shake flasks or wavebags. ULTRASONICS 2014; 54:1439-1447. [PMID: 24841953 DOI: 10.1016/j.ultras.2014.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/19/2014] [Accepted: 04/27/2014] [Indexed: 06/03/2023]
Abstract
Many technologies, such as cell line screening and host cell engineering, culture media optimization and bioprocess optimization, have been proposed to increase monoclonal antibody (mAb) production in Chinese Hamster Ovary (CHO) cells. Unlike the existing biochemical approaches, we investigated stimulation using low-intensity pulsed ultrasound (LIPUS) as a purely physical approach, offering enhanced scalability, contamination control and cost-efficiency, while demonstrating significantly increased cell growth and antibody production. It was found that daily ultrasound treatments at 40 mW/cm(2) for 5 min during cell culture increased the production of human anti-IL-8 antibody by more than 30% using 10 or 30 mL shake flasks. Further increasing the ultrasound dosage (either intensities or the treatment duration) did not appreciably increase cell growth or antibody production, however feeding the culture with additional highly-concentrated nutrients, glucose and amino acids (glutamine in this case), did further increase cell growth and antibody titer to 35%. Similar ultrasound treatments (40 mW/cm(2), 5 min per day) when scaled up to larger volume wavebags, resulted in a 25% increase in antibody production. Increased antibody production can be attributed to both elevated cell count and the ultrasound stimulation. Theoretical study of underlying mechanisms was performed through the simulations of molecular dynamics using the AMBER software package, with results showing that LIPUS increases cell permeability. The significance of this study is that LIPUS, as a physical-based stimulation approach, can be externally applied to the cell culture without worrying about contamination. By combining with the existing technologies in antibody production, LIPUS can achieve additional mAb yields. Because it can be easily integrated with existing cell culture apparatuses, the technology is expected to be more acceptable by the end users.
Collapse
Affiliation(s)
- Yupeng Zhao
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Jida Xing
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - James Z Xing
- IntelligentNano Inc., Edmonton, Alberta, Canada; Department of Laboratory Medicine & Pathology, University of Alberta, Canada
| | - Woon T Ang
- IntelligentNano Inc., Edmonton, Alberta, Canada
| | - Jie Chen
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada; Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
45
|
Loh WP, Loo B, Zhou L, Zhang P, Lee DY, Yang Y, Lam KP. Overexpression of microRNAs enhances recombinant protein production in Chinese hamster ovary cells. Biotechnol J 2014; 9:1140-51. [DOI: 10.1002/biot.201400050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/15/2014] [Accepted: 05/09/2014] [Indexed: 12/27/2022]
|
46
|
Trehalose suppresses antibody aggregation during the culture of Chinese hamster ovary cells. J Biosci Bioeng 2014; 117:632-8. [DOI: 10.1016/j.jbiosc.2013.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 01/22/2023]
|
47
|
HEK293 cell culture media study towards bioprocess optimization: Animal derived component free and animal derived component containing platforms. J Biosci Bioeng 2014; 117:471-7. [DOI: 10.1016/j.jbiosc.2013.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/16/2013] [Accepted: 09/25/2013] [Indexed: 12/24/2022]
|
48
|
Ishii Y, Murakami J, Sasaki K, Tsukahara M, Wakamatsu K. Efficient folding/assembly in Chinese hamster ovary cells is critical for high quality (low aggregate content) of secreted trastuzumab as well as for high production: stepwise multivariate regression analyses. J Biosci Bioeng 2014; 118:223-30. [PMID: 24635945 DOI: 10.1016/j.jbiosc.2014.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 01/05/2023]
Abstract
When developing cell culture processes for therapeutic antibodies, the low content of aggregated proteins is the most critical because administering aggregated antibody molecules might result in adverse effects such as immunogenicity. To characterize cells with high productivity and quality, we determined factors that are closely related to antibody titer, which is a productivity indicator, and the area percentage of high molecular weight species in cultivated media, which is equivalent to aggregate content and is used as a quality indicator. We examined the factors influencing antibody titer and aggregate content using various data from 28 cell lines throughout their culture periods from growth to death phases. Our study using correlation analysis revealed that statistically significant correlations between factors and indicators changes with sampling points, hence we thought that various factors would influence each indicator simultaneously. To understand the relationship between these factors and titer/aggregates contents, we performed stepwise multiple linear regression analyses and deduced a multiple linear model for each indicator. The titer was found to positively associate with specific growth rate and specific production rate and negatively with intracellular heavy chain content. The aggregate content was found to positively associate with protein disulfide isomerase mRNA level and negatively with light chain secreted into culture media, specific production rate, intracellular light chain content, and specific growth rate. Our observations suggest that correct and efficient assembling and/or folding of an antibody molecule in an endoplasmic reticulum are important for high titer and low aggregates contents.
Collapse
Affiliation(s)
- Yoichi Ishii
- Bio-process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd., 100-1 Hagiwara-machi, Takasaki-shi, Gunma 370-0013, Japan; Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan.
| | - Junko Murakami
- Bio-process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd., 100-1 Hagiwara-machi, Takasaki-shi, Gunma 370-0013, Japan
| | - Kazue Sasaki
- Bio-process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd., 100-1 Hagiwara-machi, Takasaki-shi, Gunma 370-0013, Japan
| | - Masayoshi Tsukahara
- Kyowa Hakko Kirin Co., Ltd., 1-6-1 Ohte-machi, Chiyoda-ku, Tokyo 100-8185, Japan
| | - Kaori Wakamatsu
- Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| |
Collapse
|
49
|
Edros R, McDonnell S, Al-Rubeai M. The relationship between mTOR signalling pathway and recombinant antibody productivity in CHO cell lines. BMC Biotechnol 2014; 14:15. [PMID: 24533650 PMCID: PMC3937030 DOI: 10.1186/1472-6750-14-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/05/2014] [Indexed: 11/20/2022] Open
Abstract
Background High recombinant protein productivity in mammalian cell lines is often associated with phenotypic changes in protein content, energy metabolism, and cell growth, but the key determinants that regulate productivity are still not clearly understood. The mammalian target of rapamycin (mTOR) signalling pathway has emerged as a central regulator for many cellular processes including cell growth, apoptosis, metabolism, and protein synthesis. This role of this pathway changes in response to diverse environmental cues and allows the upstream proteins that respond directly to extracellular signals (such as nutrient availability, energy status, and physical stresses) to communicate with downstream effectors which, in turn, regulate various essential cellular processes. Results In this study, we have performed a transcriptomic analysis using a pathway-focused polymerase chain reaction (PCR) array to compare the expression of 84 target genes related to the mTOR signalling in two recombinant CHO cell lines with a 17.4-fold difference in specific monoclonal antibody productivity (qp). Eight differentially expressed genes that exhibited more than a 1.5-fold change were identified. Pik3cd (encoding the Class 1A catalytic subunit of phosphatidylinositol 3-kinase [PI3K]) was the most differentially expressed gene having a 71.3-fold higher level of expression in the high producer cell line than in the low producer. The difference in the gene’s transcription levels was confirmed at the protein level by examining expression of p110δ. Conclusion Expression of p110δ correlated with specific productivity (qp) across six different CHO cell lines, with a range of expression levels from 3 to 51 pg/cell/day, suggesting that p110δ may be a key factor in regulating productivity in recombinant cell lines.
Collapse
Affiliation(s)
| | | | - Mohamed Al-Rubeai
- School of Chemical and Bioprocess Engineering and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
50
|
Maglinao M, Eriksson M, Schlegel MK, Zimmermann S, Johannssen T, Götze S, Seeberger PH, Lepenies B. A platform to screen for C-type lectin receptor-binding carbohydrates and their potential for cell-specific targeting and immune modulation. J Control Release 2014; 175:36-42. [DOI: 10.1016/j.jconrel.2013.12.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/08/2013] [Accepted: 12/14/2013] [Indexed: 11/24/2022]
|