1
|
Gao L, Jiang Y, Hong K, Chen X, Wu X. Glycosylation of cellulase: a novel strategy for improving cellulase. Crit Rev Biotechnol 2024; 44:191-201. [PMID: 36592990 DOI: 10.1080/07388551.2022.2144117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 01/04/2023]
Abstract
Protein glycosylation is the most complex posttranslational modification process. Most cellulases from filamentous fungi contain N-glycosylation and O-glycosylation. Here, we discuss the potential roles of glycosylation on the characteristics and function of cellulases. The use of certain cultivation, inducer, and alteration of engineering glycosylation pathway can enable the rational control of cellulase glycosylation. Glycosylation does not occur arbitrarily and may tend to modify the 3D structure of cellulases by using specially distributed glycans. Therefore, glycoengineering should be considered comprehensively along with the spatial structure of cellulases. Cellulase glycosylation may be an evolution phenomenon, which has been considered as an economical way for providing different functions from identical proteins. In addition to gene and transcription regulations, glycosylation may be another regulation on the protein expression level. Enhanced understanding of the potential regulatory role of cellulase glycosylation will enable synthetic biology approaches for the development of commercial cellulase.
Collapse
Affiliation(s)
- Le Gao
- School of Bioengineering, Dalian Polytechnic University, Dalian, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yi Jiang
- School of Bioengineering, Dalian Polytechnic University, Dalian, China
| | - Kai Hong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xiaoyi Chen
- School of Bioengineering, Dalian Polytechnic University, Dalian, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
2
|
Li G, Yuan Y, Jin B, Zhang Z, Murtaza B, Zhao H, Li X, Wang L, Xu Y. Feasibility insights into the application of Paenibacillus pabuli E1 in animal feed to eliminate non-starch polysaccharides. Front Microbiol 2023; 14:1205767. [PMID: 37608941 PMCID: PMC10440823 DOI: 10.3389/fmicb.2023.1205767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
The goal of the research was to find alternative protein sources for animal farming that are efficient and cost-effective. The researchers focused on distillers dried grains with solubles (DDGS), a co-product of bioethanol production that is rich in protein but limited in its use as a feed ingredient due to its high non-starch polysaccharides (NSPs) content, particularly for monogastric animals. The analysis of the Paenibacillus pabuli E1 genome revealed the presence of 372 genes related to Carbohydrate-Active enzymes (CAZymes), with 98 of them associated with NSPs degrading enzymes that target cellulose, hemicellulose, and pectin. Additionally, although lignin is not an NSP, two lignin-degrading enzymes were also examined because the presence of lignin alongside NSPs can hinder the catalytic effect of enzymes on NSPs. To confirm the catalytic ability of the degrading enzymes, an in vitro enzyme activity assay was conducted. The results demonstrated that the endoglucanase activity reached 5.37 U/mL, while beta-glucosidase activity was 4.60 U/mL. The filter paper experiments did not detect any reducing sugars. The xylanase and beta-xylosidase activities were measured at 11.05 and 4.16 U/mL, respectively. Furthermore, the pectate lyase and pectin lyase activities were found to be 8.19 and 2.43 U/mL, respectively. The activities of laccase and MnP were determined as 1.87 and 4.30 U/mL, respectively. The researchers also investigated the effect of P. pabuli E1 on the degradation of NSPs through the solid-state fermentation of DDGS. After 240 h of fermentation, the results showed degradation rates of 11.86% for hemicellulose, 11.53% for cellulose, and 8.78% for lignin. Moreover, the crude protein (CP) content of DDGS increased from 26.59% to 30.59%. In conclusion, this study demonstrated that P. pabuli E1 possesses various potential NSPs degrading enzymes that can effectively eliminate NSPs in feed. This process improves the quality and availability of the feed, which is important for animal farming as it seeks alternative protein sources to replace traditional nutrients.
Collapse
Affiliation(s)
- Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yue Yuan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Bowen Jin
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Zhiqiang Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Hong Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
3
|
Malik WA, Javed S. Biochemical Characterization of Cellulase From Bacillus subtilis Strain and its Effect on Digestibility and Structural Modifications of Lignocellulose Rich Biomass. Front Bioeng Biotechnol 2022; 9:800265. [PMID: 34988069 PMCID: PMC8721162 DOI: 10.3389/fbioe.2021.800265] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial cellulases have become the mainstream biocatalysts due to their complex nature and widespread industrial applications. The present study reports the partial purification and characterization of cellulase from Bacillus subtilis CD001 and its application in biomass saccharification. Out of four different substrates, carboxymethyl cellulose, when amended as fermentation substrate, induced the highest cellulase production from B. subtilis CD001. The optimum activity of CMCase, FPase, and amylase was 2.4 U/ml, 1.5 U/ml, and 1.45 U/ml, respectively. The enzyme was partially purified by (NH4)2SO4 precipitation and sequenced through LC-MS/MS. The cellulase was found to be approximately 55 kDa by SDS-PAGE and capable of hydrolyzing cellulose, as confirmed by zymogram analysis. The enzyme was assigned an accession number AOR98335.1 and displayed 46% sequence homology with 14 peptide-spectrum matches having 12 unique peptide sequences. Characterization of the enzyme revealed it to be an acidothermophilic cellulase, having an optimum activity at pH 5 and a temperature of 60°C. Kinetic analysis of partially purified enzyme showed the Km and Vmax values of 0.996 mM and 1.647 U/ml, respectively. The enzyme activity was accelerated by ZnSO4, MnSO4, and MgSO4, whereas inhibited significantly by EDTA and moderately by β-mercaptoethanol and urea. Further, characterization of the enzyme saccharified sugarcane bagasse, wheat straw, and filter paper by SEM, ATR-FTIR, and XRD revealed efficient hydrolysis and structural modifications of cellulosic materials, indicating the potential industrial application of the B. subtilis CD001 cellulase. The findings demonstrated the potential suitability of cellulase from B. subtilis CD001 for use in current mainstream biomass conversion into fuels and other industrial processes.
Collapse
Affiliation(s)
- Waseem Ayoub Malik
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
4
|
Song Y, Liu S, Ben H, Zhang Y, Han G, Ragauskas AJ, Jiang W. Research on Chemically Deuterated Cellulose Macroperformance and Fast Identification. FRONTIERS IN PLANT SCIENCE 2021; 12:709692. [PMID: 34659283 PMCID: PMC8517537 DOI: 10.3389/fpls.2021.709692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Chemically deuterated cellulose fiber was expected to provide novel applications due to its spectral, biological, and kinetic isotope effect. In this research, the performance of the chemically deuterated cotton fibers, including their mechanical property, enzymatic degradation performance, effect on bacterial treatment, and fast identification (near-infrared modeling) was investigated. The breaking tenacity of the deuterated cotton fibers was slightly lower, which might be attributed to the structural damage during the chemical deuteration. The glucose yield by enzymatic hydrolysis was less than that of the protonic cotton fibers, implying the deuterated fibers are less sensitive to enzymatic degradation. Furthermore, the deuterated fibers could promote the growth of bacteria such as Escherichia. coli, which was associated with the released low-level deuterium content. At last, the near-infrared technique combined with partial least squares regression successfully achieved a fast identification of the protiated and deuterated cotton fibers, which significantly promoted the potential application of deuterated cellulose as anticounterfeiting materials (e.g., special paper).
Collapse
Affiliation(s)
- Yan Song
- College of Textiles, Qingdao University, Qingdao, China
- College of Textile and Clothing, Dezhou University, Dezhou, China
| | - Shaoyang Liu
- Department of Chemistry and Physics, Troy University, Troy, AL, United States
| | - Haoxi Ben
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao, China
| | - Yuanming Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao, China
| | - Guangting Han
- College of Textiles, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao, China
| | - Arthur J. Ragauskas
- Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Wei Jiang
- College of Textiles, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao, China
| |
Collapse
|
5
|
Pasha I, Ahmad F, Usman M. Elucidation of morphological characteristics, crystallinity, and molecular structures of native and enzyme modified cereal brans. J Food Biochem 2021; 45:e13768. [PMID: 34021610 DOI: 10.1111/jfbc.13768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 02/01/2023]
Abstract
Bran is a nutritious outermost layer of the cereal grain that is removed during milling to curtail the technical problems in end-products. Modification techniques such as enzyme treatments might be an effective way to alter bran morphology and end-use quality. In this study, bran from six cereals (wheat, barley, oat, maize, millet, and sorghum) were enzymatically modified (cellulase and xylanase), and evaluated for morphological properties through scanning electron microscopy, crystallinity through x-ray diffraction and molecular structures through FTIR spectroscopy. Scanning electron microscopy revealed that enzyme modifications caused breakage in bran fibers by hydrolyzing non-starch polysaccharides. X-ray diffraction exhibited that crystallinity of the structures was increased after modifications as enzymes hydrolyzed amorphous regions of cellulose and hemicellulose in bran matrix. Molecular structures studied by FTIR spectroscopy demonstrated absorption in wavelength ranges of 900-3400cm-1 associated to carbohydrates, oligosaccharides, proteins, and non-starch polysaccharides. PRACTICAL APPLICATIONS: Cereal bran creates technical problems for food processors and bakers in terms of grittiness leading to the unacceptability of the product. The bran can be modified using different approaches, such as enzyme modifications. This research will be helpful for the food scientists & researchers and bakers for making choices for preferred method of bran modification. This will also be helpful for cereal scientists for the understanding of structural properties of bran layers.
Collapse
Affiliation(s)
- Imran Pasha
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Farah Ahmad
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Usman
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Biocatalysis of Industrial Kraft Pulps: Similarities and Differences between Hardwood and Softwood Pulps in Hydrolysis by Enzyme Complex of Penicillium verruculosum. Catalysts 2020. [DOI: 10.3390/catal10050536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Kraft pulp enzymatic hydrolysis is a promising method of woody biomass bioconversion. The influence of composition and structure of kraft fibers on their hydrolysis efficiency was evaluated while using four substrates, unbleached hardwood pulp (UHP), unbleached softwood pulp (USP), bleached hardwood pulp (BHP), and bleached softwood pulp (BSP). Hydrolysis was carried out with Penicillium verruculosum enzyme complex at a dosage of 10 filter paper units (FPU)/g pulp. The changes in fiber morphology and structure were visualized while using optical and electron microscopy. Fiber cutting and swelling and quick xylan destruction were the main processes at the beginning of hydrolysis. The negative effect of lignin content was more pronounced for USP. Drying decreased the sugar yield of dissolved hydrolysis products for all kraft pulps. Fiber morphology, different xylan and mannan content, and hemicelluloses localization in kraft fibers deeply affected the hydrolyzability of bleached pulps. The introduction of additional xylobiase, mannanase, and cellobiohydrolase activities to enzyme mixture will further improve the hydrolysis of bleached pulps. A high efficiency of never-dried bleached pulp bioconversion was shown. At 10% substrate concentration, hydrolysates with more than 50 g/L sugar concentration were obtained. The bioconversion of never-dried BHP and BSP could be integrated into working kraft pulp mills.
Collapse
|
7
|
Nanofibrillated Cellulose-Enzyme Assemblies for Enhanced Biotransformations with In Situ Cofactor Regeneration. Appl Biochem Biotechnol 2020; 191:1369-1383. [PMID: 32100231 DOI: 10.1007/s12010-020-03263-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
We report herein the use of nanofibrillated cellulose (NFC) for development of enzyme assemblies in an oriented manner for biotransformation with in situ cofactor regeneration. This is achieved by developing fusion protein enzymes with cellulose-specific binding domains. Specifically, lactate dehydrogenase and NADH oxidase were fused with a cellulose binding domain, which enabled both enzyme recovery and assembling in essentially one single step by using NFC. Results showed that the binding capacity of the enzymes was as high as 0.9 μmol-enzyme/g-NFC. Compared to native parent free enzymes, NFC-enzyme assemblies improved the catalytic efficiency of the coupled reaction system by over 100%. The lifetime of enzymes was also improved by as high as 27 folds. The work demonstrates promising potential of using biocompatible and environmentally benign bio-based nanomaterials for construction of efficient catalysts for intensified bioprocessing and biotransformation applications.
Collapse
|
8
|
Enzymatic hydrolysis of cellulose using extracts from insects. Carbohydr Res 2019; 485:107811. [PMID: 31526927 DOI: 10.1016/j.carres.2019.107811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/02/2019] [Accepted: 09/08/2019] [Indexed: 11/20/2022]
Abstract
The use of Zophobas morio extracts in the aspect of cellulose hydrolysis is presented for the first time. The aim of this study was to investigate the action of enzymes obtained from Z. morio on cellulose hydrolysis and to determine their influence on the structural properties of cellulose with use the Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). Cellulose hydrolysis products were analyzed by high performance liquid chromatography (HPLC). This analysis indicated that microcrystalline cellulose with smaller particle size was more susceptible to enzymatically treatment. Moreover, our investigation of cellulase activity showed a different profile of the used enzyme during particular developmental stages of Z. morio. Midgut extracts obtained from adult insects are more effective in degrading cellulose than extracts from larvae. The analysis of cellulose hydrolysis confirms that the efficiency of this reaction also depends on the structure of cellulosic materials and internal conditions of enzymatic reaction. In this study the cellulolytic activity of Z. morio midgut extracts showed that these insects could be valuable sources of cellulases.
Collapse
|
9
|
Gu H, Song IB, Han HJ, Lee NY, Cha JY, Son YK, Kwon J. Antioxidant Activity of Royal Jelly Hydrolysates Obtained by Enzymatic Treatment. Korean J Food Sci Anim Resour 2018; 38:135-142. [PMID: 29725231 PMCID: PMC5932976 DOI: 10.5851/kosfa.2018.38.1.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/02/2022] Open
Abstract
Recently, research on the processing of raw functional materials with the aim of improving various physiological activities has been conducted. In this study, we investigated the antioxidant activity of royal jelly (RJ) hydrolysates obtained from three commercial proteases. Enzyme-treated royal jelly (ERJ), in which the RJ hydrolysates were converted into easy-to-absorb shorter chain monomers through the removal of two known allergen proteins, showed no difference in the content of (E)-10-hydroxydec-2-enoicacid (10-HDA) or the freshness parameter and showed a significant increase in total free amino acid content. The antioxidant activity of ERJ was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and chemical assays. The ERJ showed about 80% DPPH-radical scavenging activity at same concentration of ascorbic acid. The antioxidant effect of ERJ was confirmed to be due to reduction of intracellular reactive oxidative species (ROS) and nitric oxide (NO) production in LPS-treated macrophages. Moreover, ERJ significantly increased the activity of the antioxidant enzyme superoxide dismutase (SOD) and the level of the antioxidant glutathione (GSH) in a dose-dependent manner. Interestingly, these antioxidant activities of ERJ were stronger than those of non-treated RJ. These findings indicate that ERJ has high potential as an antioxidant agent for use in human and animal diets.
Collapse
Affiliation(s)
- Hyejung Gu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - In-Bong Song
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Hye-Ju Han
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Na-Young Lee
- R&D Team, Food & Supplement Health Claims, Vitech, Jeonju 54810, Korea
| | - Ji-Yun Cha
- R&D Team, Food & Supplement Health Claims, Vitech, Jeonju 54810, Korea
| | - Yeon-Kyong Son
- R&D Team, Food & Supplement Health Claims, Vitech, Jeonju 54810, Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|
10
|
Kang C, Kim S, Kim S, Lee JW. The Significant Influence of Bacterial Reaction on Physico-Chemical Property Changes of Biodegradable Natural and Synthetic Polymers Using Escherichia coli. Polymers (Basel) 2017; 9:E121. [PMID: 30970800 PMCID: PMC6431910 DOI: 10.3390/polym9040121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli (E. coli) was used to activate hydrolysis reaction along with biodegradation in natural and synthetic fibers to identify possibilities as alternative substitutes for textile wastes using chemical solutions and enzymes. To confirm the reaction between the bacterial infections of E. coli and the excessively abundant interstitial spaces of the fibers, various types of natural and synthetic fibers such as cotton, wool, polyethylene terephalate (PET), polyadmide (PA), polyethylene (PE), and polypropylene (PP) were used to confirm the physico-chemical reactions. Tensile strength analysis, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle analysis were used to determine the physico-chemical property changes of the fiber by the bacteria. When biofilm was formed on the fiber surface, various physical changes such as the following were observed: (i) in the analysis of tensile strength, all except PA and PP were decreased and a decrease in cotton fibers was noticeable (ii) depending on the type of fibers, the degree of roughness was different, but generally the surface became rough. In this study, the change of roughness was the most severe on the cotton fiber surface and the change of PET and PA fiber was relatively small. It was found that the intensity peak of oxygen was increased, except for the in cases of PA and PP, through the change of chemical properties by XPS analysis. Changes in topographical properties on the surface through contact angle analysis were stronger in hydrophilic properties, and in the case of cotton, completely hydrophilic surfaces were formed. Through this study, PA and PP fibers, which are Olefin fibers, were theoretically free of physicochemical and topographical changes since there were no functional groups that could trigger the hydrolysis reaction.
Collapse
Affiliation(s)
- Chankyu Kang
- Ministry of Employment and Labor, Major Industrial Accident Prevention Center, 34 Yeosusandallo, Yeosu-Si, Jeonnam 59631, Republic of Korea.
| | - SamSoo Kim
- Department of Textile Engineering and Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - SooJung Kim
- Department of Textile Engineering and Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Jae Woong Lee
- Department of Textile Engineering and Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
11
|
Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.09.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Shi J, Wu D, Zhang L, Simmons BA, Singh S, Yang B, Wyman CE. Dynamic changes of substrate reactivity and enzyme adsorption on partially hydrolyzed cellulose. Biotechnol Bioeng 2016; 114:503-515. [PMID: 27617791 DOI: 10.1002/bit.26180] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/29/2016] [Accepted: 09/05/2016] [Indexed: 11/10/2022]
Abstract
The enzymatic hydrolysis of cellulose is a thermodynamically challenging catalytic process that is influenced by both substrate-related and enzyme-related factors. In this study, a proteolysis approach was applied to recover and clean the partially converted cellulose at the different stages of enzymatic hydrolysis to monitor the hydrolysis rate as a function of substrate reactivity/accessibility and investigate surface characteristics of the partially converted cellulose. Enzyme-substrate interactions between individual key cellulase components from wild-type Trichoderma reesei and partially converted cellulose were followed and correlated to the enzyme adsorption capacity and dynamic sugar release. Results suggest that cellobiohydrolase CBH1 (Cel7A) and endoglucanases EG2 (Cel5A) adsorption capacities decreased as cellulose was progressively hydrolyzed, likely due to the "depletion" of binding sites. Furthermore, the degree of synergism between CBH1 and EG2 varied depending on the enzyme loading and the substrates. The results provide a better understanding of the relationship between dynamic change of substrate features and the functionality of various cellulase components during enzymatic hydrolysis. Biotechnol. Bioeng. 2017;114: 503-515. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jian Shi
- Center for Environmental Research and Technology, University of California, 1084 Columbia Avenue, Riverside, CA 92507.,Deconstruction Division, Joint BioEnergy Institute, Emeryville, California.,Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky
| | - Dong Wu
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California.,Biological and Materials Science Center, Sandia National Laboratories, Livermore, California
| | - Libing Zhang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, Washington
| | - Blake A Simmons
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California
| | - Seema Singh
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California.,Biological and Materials Science Center, Sandia National Laboratories, Livermore, California
| | - Bin Yang
- Center for Environmental Research and Technology, University of California, 1084 Columbia Avenue, Riverside, CA 92507.,Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, Washington
| | - Charles E Wyman
- Center for Environmental Research and Technology, University of California, 1084 Columbia Avenue, Riverside, CA 92507.,Department of Chemical and Environmental Engineering, Bourns College of Engineering, Riverside, California.,BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
13
|
Li J, Qiang D, Zhang M, Xiu H, Zhang X. Joint action of ultrasonic and Fe3+ to improve selectivity of acid hydrolysis for microcrystalline cellulose. Carbohydr Polym 2015; 129:44-9. [DOI: 10.1016/j.carbpol.2015.04.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
|
14
|
Chang A, Wu Q, Xu W, Xie J, Wu W. Enhanced enzymatic hydrolysis of cellulose in microgels. Chem Commun (Camb) 2015; 51:10502-5. [PMID: 26035077 DOI: 10.1039/c5cc03543k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cellulose-based microgel, where an individual microgel contains approximately one cellulose chain on average, is synthesized via free radical polymerization of a difunctional small-molecule N,N'-methylenebisacrylamide in cellulose solution. This microgelation leads to a low-ordered cellulose, favoring enzymatic hydrolysis of cellulose to generate glucose.
Collapse
Affiliation(s)
- Aiping Chang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | | | | | | | | |
Collapse
|
15
|
Zhang Q, Zhang X, Wang P, Li D, Chen G, Gao P, Wang L. Determination of the action modes of cellulases from hydrolytic profiles over a time course using fluorescence-assisted carbohydrate electrophoresis. Electrophoresis 2015; 36:910-7. [PMID: 25546561 DOI: 10.1002/elps.201400563] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/26/2014] [Accepted: 12/15/2014] [Indexed: 11/05/2022]
Abstract
Fluorescence-assisted carbohydrate electrophoresis (FACE) is a sensitive and simple method for the separation of oligosaccharides. It relies on labeling the reducing ends of oligosaccharides with a fluorophore, followed by PAGE. Concentration changes of oligosaccharides following hydrolysis of a carbohydrate polymer could be quantitatively measured continuously over time using the FACE method. Based on the quantitative analysis, we suggested that FACE was a relatively high-throughput, repeatable, and suitable method for the analysis of the action modes of cellulases. On account of the time courses of their hydrolytic profiles, the apparent processivity was used to show the different action modes of cellulases. Cellulases could be easily differentiated as exoglucanases, β-glucosidases, or endoglucanases. Moreover, endoglucanases from the same glycoside hydrolases family had a variety of apparent processivity, indicating the different modes of action. Endoglucanases with the same binding capacities and hydrolytic activities had similar oligosaccharide profiles, which aided in their classification. The hydrolytic profile of Trichoderma reesei Cel12A, an endoglucanases from T. reesei, contained glucose, cellobiose, and cellotriose, which revealed that it may have a new glucosidase activity, corresponding to that of EC 3.2.1.74. A hydrolysate study of a T. reesei Cel12A-N20A mutant demonstrated that the FACE method was sufficiently sensitive to detect the influence of a single-site mutation on enzymatic activity.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Pothiraj C, Arumugam R, Gobinath M. Sustaining ethanol production from lime pretreated water hyacinth biomass using mono and co-cultures of isolated fungal strains with Pichia stipitis. BIORESOUR BIOPROCESS 2014. [DOI: 10.1186/s40643-014-0027-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
17
|
Guo H, He M, Huang R, Qi W, Guo W, Su R, He Z. Changes in the supramolecular structures of cellulose after hydrolysis studied by terahertz spectroscopy and other methods. RSC Adv 2014. [DOI: 10.1039/c4ra08314h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Fattahi Meyabadi T, Dadashian F, Mir Mohamad Sadeghi G, Ebrahimi Zanjani Asl H. Spherical cellulose nanoparticles preparation from waste cotton using a green method. POWDER TECHNOL 2014. [DOI: 10.1016/j.powtec.2014.04.039] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Lee DS, Wi SG, Lee SJ, Lee YG, Kim YS, Bae HJ. Rapid saccharification for production of cellulosic biofuels. BIORESOURCE TECHNOLOGY 2014; 158:239-47. [PMID: 24607460 DOI: 10.1016/j.biortech.2014.02.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 05/11/2023]
Abstract
The economical production of biofuels is hindered by the recalcitrance of lignocellulose to processing, causing high consumption of processing enzymes and impeding hydrolysis of pretreated lignocellulosic biomass. We determined the major rate-limiting factor in the hydrolysis of popping pre-treated rice straw (PPRS) by examining cellulase adsorption to lignin and cellulose, amorphogenesis of PPRS, and re-hydrolysis. Based on the results, equivalence between enzyme loading and the open structural area of cellulose was required to significantly increase productive adsorption of cellulase and to accelerate enzymatic saccharification of PPRS. Amorphogenesis of PPRS by phosphoric acid treatment to expand open structural area of the cellulose fibers resulted in twofold higher cellulase adsorption and increased the yield of the first re-hydrolysis step from 13% to 46%. The total yield from PPRS was increased to 84% after 3h. These results provide evidence that cellulose structure is one of major effects on the enzymatic hydrolysis.
Collapse
Affiliation(s)
- Dae-Seok Lee
- Bio-energy Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seung Gon Wi
- Bio-energy Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Soo Jung Lee
- Bio-energy Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yoon-Gyo Lee
- Department of Forest Products and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yeong-Suk Kim
- Department of Forest Products, Kookmin University, Seoul 136-702, Republic of Korea
| | - Hyeun-Jong Bae
- Bio-energy Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea; Department of Forest Products and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
20
|
Lin L, Yan R, Jiang W, Shen F, Zhang X, Zhang Y, Deng S, Li Z. Enhanced enzymatic hydrolysis of palm pressed fiber based on the three main components: cellulose, hemicellulose, and lignin. Appl Biochem Biotechnol 2014; 173:409-20. [PMID: 24652599 DOI: 10.1007/s12010-014-0848-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/03/2014] [Indexed: 11/26/2022]
Abstract
The enzymatic hydrolysis of the native and the pretreated palm pressed fiber (PPF) was deeply investigated by using the enzyme cocktail ACCELLERASE 1500. Together with the spent PPF from the first hydrolysis and the further doubly-treated PPF, the proportions of three main components were determined and analyzed based on a triangle figure. The proportion (cellulose/hemicelluloses/lignin) in the spent PPF was equal to 44:23:33 and the surface morphology of the spent PPF looks very similar to the native PPF surface showing poor hydrolysis efficiency. After further double treatment, the proportion was changed evidently from the original 44:23:33 to 54:21:25 and the surface structure was significantly disrupted showing a potential to be hydrolyzed completely. Additionally, all samples were characterized by Fourier transform infrared spectroscopy and X-ray diffractogram through considerations of alkaline solution treatment, so as to understand better the nature of biomass hydrolysis, from the aspect of three biomass components.
Collapse
Affiliation(s)
- Lili Lin
- Department of Environmental Science and Engineering, College of Resource and Environment, Sichuan Agricultural University, Chengdu, 610065, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Arantes V, Gourlay K, Saddler JN. The enzymatic hydrolysis of pretreated pulp fibers predominantly involves "peeling/erosion" modes of action. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:87. [PMID: 24976863 PMCID: PMC4062648 DOI: 10.1186/1754-6834-7-87] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/23/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND There is still considerable debate regarding the actual mechanism by which a "cellulase mixture" deconstructs cellulosic materials, with accessibility to the substrate at the microscopic level being one of the major restrictions that limits fast, complete cellulose hydrolysis. In the work reported here we tried to determine the predominant mode of action, at the fiber level, of how a cellulase mixture deconstructs pretreated softwood and hardwood pulp fibers. Quantitative changes in the pulp fibers derived from different pretreated biomass substrates were monitored throughout the course of enzymatic hydrolysis to see if the dominant mechanisms involved either the fragmentation/cutting of longer fibers to shorter fibers or their "peeling/delamination/erosion," or if both cutting and peeling mechanisms occurred simultaneously. RESULTS Regardless of the source of biomass, the type of pretreatment and the chemical composition of the substrate, under typical hydrolysis conditions (50°C, pH 4.8, mixing) longer pulp fibers (fiber length >200 μm) were rapidly broken down until a relatively constant fiber length of 130 to 160 μm was reached. In contrast, shorter fibers with an initial average fiber length of 130 to 160 μm showed no significant change in length despite their substantial hydrolysis. The fragmentation/cutting mode of deconstruction was only observed on longer fibers at early stages of hydrolysis. Although the fiber fragmentation mode of deconstruction was not greatly influenced by enzyme loading, it was significantly inhibited by glucose and was mainly observed during initial mixing of the enzyme and substrate. In contrast, significant changes in the fiber width occurred throughout the course of hydrolysis for all of the substrates, suggesting that fiber width may limit the rate and extent of cellulose hydrolysis. CONCLUSION It appears that, at the fiber level, pretreated pulp fibers are hydrolyzed through a two-step mode of action involving an initial rapid fragmentation followed by simultaneous swelling and peeling/erosion of the fragmented fibers. This latter mechanism is the predominant mode of action involved in effectively hydrolyzing the cellulose present in pretreated wood substrates.
Collapse
Affiliation(s)
- Valdeir Arantes
- University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Keith Gourlay
- University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jack N Saddler
- University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
22
|
Xing S, Li G, Sun X, Ma S, Chen G, Wang L, Gao P. Dynamic changes in xylanases and β-1,4-endoglucanases secreted by Aspergillus niger An-76 in response to hydrolysates of lignocellulose polysaccharide. Appl Biochem Biotechnol 2013; 171:832-46. [PMID: 23900618 DOI: 10.1007/s12010-013-0402-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/16/2013] [Indexed: 11/30/2022]
Abstract
Aspergillus niger is an effective secretor of glycoside hydrolases that facilitate the saprophytic lifestyle of the fungus by degrading plant cell wall polysaccharides. In the present study, a series of dynamic zymography assays were applied to quantify the secreted glycoside hydrolases of A. niger cultured in media containing different carbon sources. Differences in the diversity and concentrations of polysaccharide hydrolysates dynamically regulated the secretion of glycoside hydrolases. The secretion of β-1,4-endoglucanase isozymes was observed to lag at least 24 h behind, rather than coincide with, the secretion of xylanase isozymes. Low concentrations of xylose could induce many endoxylanases (such as Xyn1/XynA, Xyn2, and Xyn3/XynB). High concentrations of xylose could sustain the induction of Xyn2 and Xyn3/XynB but repress Xyn1/XynA (GH10 endoxylanase), which has a broad substrate specificity, and also triggers the low-level secretion of Egl3/EglA, which also has a broad substrate specificity. Mixed polysaccharide hydrolysates sustained the induction of Egl1, whereas the other β-1,4-endoglucanases were sustainably induced by the specific polysaccharide hydrolysates released during the hydrolysis process (such as Egl2 and Egl4). These results indicate that the secretion of glycoside hydrolases may be specifically regulated by the production of polysaccharide hydrolysates released during the process of biomass degradation.
Collapse
Affiliation(s)
- Sheng Xing
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shandanan Rd, Jinan, 250100, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
23
|
Qin YM, Tao H, Liu YY, Wang YD, Zhang JR, Tang AX. A novel non-hydrolytic protein from Pseudomonas oryzihabitans enhances the enzymatic hydrolysis of cellulose. J Biotechnol 2013; 168:24-31. [PMID: 23916949 DOI: 10.1016/j.jbiotec.2013.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/19/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
Several kinds of protein such as the expansin, expansin-like proteins and LPMOs (lytic polysaccharide monooxygenases) are known to exert enhancement effects on cellulase activity. In this study, a novel cellulase synergistic protein named POEP1 was purified from the culture filtrate of Pseudomonas oryzihabitans CGMCC 6169, and was homogeneous on SDS-PAGE with a molecular weight of 60kDa. Mass spectrometry analysis indicated that it was an unknown protein without sequence similarity to the expansin and expansin-like proteins. Evaluation of the enzymatic hydrolysis of filter paper revealed that POEP1 had no cellulase activity but displayed high synergistic activity of 364% at a cellulase concentration of 0.1FPU/g of filter paper. When a mixture containing 0.6FPU cellulase and 700μg POEP1 per g of cellulose was evaluated, the maximal sugar yield was achieved, which was 2.2-fold greater than that with the cellulase alone. POEP1 was found to have functional similarity to the expansin and expansin-like proteins, which could decrease both the hydrogen-bond intensity and crystallinity, and cause the filter paper disruption. This study provided evidence for the existence of novel bacterial proteins in nature serving the same function as expansin and expansin-like proteins.
Collapse
Affiliation(s)
- Yi-Min Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | | | | | | | | | | |
Collapse
|
24
|
He P, Chai L, Li L, Hao L, Shao L, Lü F. In situ visualization of the change in lignocellulose biodegradability during extended anaerobic bacterial degradation. RSC Adv 2013. [DOI: 10.1039/c3ra40654g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
25
|
Jäger G, Büchs J. Biocatalytic conversion of lignocellulose to platform chemicals. Biotechnol J 2012; 7:1122-36. [DOI: 10.1002/biot.201200033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/17/2012] [Accepted: 06/08/2012] [Indexed: 01/12/2023]
|
26
|
Characterisation of microbial floras and functional gene levels in an anaerobic/aerobic bio-reactor for the degradation of carboxymethyl cellulose. Appl Microbiol Biotechnol 2012; 97:3195-206. [PMID: 22576945 DOI: 10.1007/s00253-012-4134-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
The current study determined the carboxymethyl cellulose (CMC) degradation efficiency, dominant microbial flora, eubacteria and archaebacteria characteristics, and expression levels of genes cel5A, cel6B, and bglC in an anaerobic/aerobic bio-reactor consisting of two-stage UASB (U1 and U2) and two-stage BAF (B1 and B2). The results showed that under three CMC loads, the CMC degradation efficiency of the UASB-BAF system was 91.25%, 80.44%, and 78.73%, respectively. At higher CMC loads, the degradation of cellulose and transformation to cellobiose in U1 was higher, while the transformation to glucose was lower. The results of DGGE and real-time PCR indicated that cellulose degradation bacteria are dominant in U1, cellulose degradation bacteria and cellulose degradation symbiosis bacteria are dominant in B1, and non-cellulose degradation symbiosis bacteria are dominant in both U2 and B2. The rate-limiting enzyme gene of cellulose degradation in U1, B1, and B2 is cel6B, but it is cel5A in U2.
Collapse
|
27
|
Del Rio LF, Chandra RP, Saddler JN. Fibre size does not appear to influence the ease of enzymatic hydrolysis of organosolv-pretreated softwoods. BIORESOURCE TECHNOLOGY 2012; 107:235-42. [PMID: 22243924 DOI: 10.1016/j.biortech.2011.12.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 05/11/2023]
Abstract
To determine the effect of fibre size on enzymatic hydrolysis, organosolv-pretreated lodgepole pine was size-fractionated into six substrates ranging in average size from 0.20 to 3.4mm. Other than the fines fraction (<0.2mm) which contained most of the lignin, the fractionated substrates were more readily hydrolyzed than the original substrate with nearly complete hydrolysis after 72 h at 5 FPU g(-1) cellulose. Surprisingly, fibre size was found to have little influence on enzymatic hydrolysis likely due to similarities in the substrates' chemical composition, accessible surface area, cellulose crystallinity and degree of polymerization. To determine the influence of the fines on enzymatic hydrolysis, their content was artificially increased (from 8.9% to 55.4%) however; this did not have a noticeable effect. These results show that within the range of fibre sizes tested, other substrate characteristics likely play a more significant role in the ease of hydrolysis of pretreated substrates.
Collapse
Affiliation(s)
- Luis F Del Rio
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
28
|
Kamphunthong W, Hornsby P, Sirisinha K. Isolation of cellulose nanofibers from para rubberwood and their reinforcing effect in poly(vinyl alcohol) composites. J Appl Polym Sci 2012. [DOI: 10.1002/app.35642] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Cellulolytic Enzyme Production and Enzymatic Hydrolysis for Second-Generation Bioethanol Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 128:1-24. [DOI: 10.1007/10_2011_131] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Caparrós C, López C, Torrell M, Lant N, Smets J, Cavaco-Paulo A. Treatment of cotton with an alkaline Bacillus spp cellulase: Activity towards crystalline cellulose. Biotechnol J 2011; 7:275-83. [DOI: 10.1002/biot.201000352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 07/21/2011] [Accepted: 09/22/2011] [Indexed: 11/07/2022]
|
31
|
Jäger G, Girfoglio M, Dollo F, Rinaldi R, Bongard H, Commandeur U, Fischer R, Spiess AC, Büchs J. How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:33. [PMID: 21943248 PMCID: PMC3203333 DOI: 10.1186/1754-6834-4-33] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/23/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND In order to generate biofuels, insoluble cellulosic substrates are pretreated and subsequently hydrolyzed with cellulases. One way to pretreat cellulose in a safe and environmentally friendly manner is to apply, under mild conditions, non-hydrolyzing proteins such as swollenin - naturally produced in low yields by the fungus Trichoderma reesei. To yield sufficient swollenin for industrial applications, the first aim of this study is to present a new way of producing recombinant swollenin. The main objective is to show how swollenin quantitatively affects relevant physical properties of cellulosic substrates and how it affects subsequent hydrolysis. RESULTS After expression in the yeast Kluyveromyces lactis, the resulting swollenin was purified. The adsorption parameters of the recombinant swollenin onto cellulose were quantified for the first time and were comparable to those of individual cellulases from T. reesei. Four different insoluble cellulosic substrates were then pretreated with swollenin. At first, it could be qualitatively shown by macroscopic evaluation and microscopy that swollenin caused deagglomeration of bigger cellulose agglomerates as well as dispersion of cellulose microfibrils (amorphogenesis). Afterwards, the effects of swollenin on cellulose particle size, maximum cellulase adsorption and cellulose crystallinity were quantified. The pretreatment with swollenin resulted in a significant decrease in particle size of the cellulosic substrates as well as in their crystallinity, thereby substantially increasing maximum cellulase adsorption onto these substrates. Subsequently, the pretreated cellulosic substrates were hydrolyzed with cellulases. Here, pretreatment of cellulosic substrates with swollenin, even in non-saturating concentrations, significantly accelerated the hydrolysis. By correlating particle size and crystallinity of the cellulosic substrates with initial hydrolysis rates, it could be shown that the swollenin-induced reduction in particle size and crystallinity resulted in high cellulose hydrolysis rates. CONCLUSIONS Recombinant swollenin can be easily produced with the robust yeast K. lactis. Moreover, swollenin induces deagglomeration of cellulose agglomerates as well as amorphogenesis (decrystallization). For the first time, this study quantifies and elucidates in detail how swollenin affects different cellulosic substrates and their hydrolysis.
Collapse
Affiliation(s)
- Gernot Jäger
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University,
Worringerweg 1, D-52074 Aachen, Germany
| | - Michele Girfoglio
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1,
D-52074 Aachen, Germany
| | - Florian Dollo
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University,
Worringerweg 1, D-52074 Aachen, Germany
| | - Roberto Rinaldi
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470
Mülheim an der Ruhr, Germany
| | - Hans Bongard
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470
Mülheim an der Ruhr, Germany
| | - Ulrich Commandeur
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1,
D-52074 Aachen, Germany
| | - Rainer Fischer
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1,
D-52074 Aachen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME),
Forckenbeckstrasse 6, D-52074 Aachen, Germany
| | - Antje C Spiess
- AVT-Aachener Verfahrenstechnik, Enzyme Process Technology, RWTH Aachen University,
Worringerweg 1, D-52074 Aachen, Germany
| | - Jochen Büchs
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University,
Worringerweg 1, D-52074 Aachen, Germany
| |
Collapse
|
32
|
Zhang H, Wang L, Shen Q, Wu B, Gao P. A novel approach for estimating the relationship between the kinetics and thermodynamics of glycoside hydrolases. Acta Biochim Biophys Sin (Shanghai) 2011; 43:409-17. [PMID: 21460363 DOI: 10.1093/abbs/gmr014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A series of experiments were performed, in which p-nitrophenyl-β-D-cellobioside (PNPC) was hydrolyzed by 1, 4-β-D-glucan-cellobiohydrolase (CBHI: EC 3.2.1.91), and O-nitrophenyl-β-D-galactoside (ONPG) was hydrolyzed by β-galactosidase (EC 3.2.1.23) under different combinations of temperature and time period. The combined effects of temperature and time on p-nitrophenyl and O-nitrophenyl formation were characterized as the change of the instantaneous reaction velocity occurrence per temperature range termed as v(inst)· T(-1). This parameter was used as a stable index to evaluate the apparent activation energy (E(a)) based on the Arrhenius approach, instead of the reaction velocity constant, k. It was found that E(a) for PNPC hydrolysis by CBHI first decreased with temperature increase and then slightly increased at higher temperature, and its minimum value was obtained just at the maximum point of v(inst). In addition, E(a) for PNPC hydrolysis by dilute sulfuric acid was not a constant, but was continuously increased with temperature. The present studies demonstrated that E(a) obtained by Arrhenius approach for the hydrolysis reaction of β-hydrolases appears to be only an empirical kinetic parameter for the dependence of the reaction velocity on temperature and time, and has no meaning in the sense of thermodynamic energy.
Collapse
Affiliation(s)
- Huaiqiang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Ji'nan 250100, China
| | | | | | | | | |
Collapse
|
33
|
Heiss-Blanquet S, Zheng D, Lopes Ferreira N, Lapierre C, Baumberger S. Effect of pretreatment and enzymatic hydrolysis of wheat straw on cell wall composition, hydrophobicity and cellulase adsorption. BIORESOURCE TECHNOLOGY 2011; 102:5938-46. [PMID: 21450460 DOI: 10.1016/j.biortech.2011.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 05/11/2023]
Abstract
The present study aimed to determine the impact of cell wall composition and lignin content on enzyme adsorption and degradability. Thioacidolysis analysis of residual lignins in wheat straw after steam-explosion or organosolv pretreatment revealed an increase in lignin condensation degree of 27% and 33%, respectively. Surface hydrophobicity assessed through wettability tests decreased after the pretreatments (contact angle decrease of 20-50%), but increased with enzymatic conversion (30% maximum contact angle increase) and correlatively to lignin content. Adsorption of the three major cellulases Cel7A, Cel6A and Cel7B from Trichoderma reesei decreased with increasing hydrolysis time, down to 7%, 31% and 70% on the sample with the highest lignin content, respectively. The fraction of unspecifically bound enzymes was dependent both on the enzyme and the lignin content. Adsorption and specific activity were shown to be inversely proportional to lignin content and hydrophobicity, suggesting that lignin is one of the factors restricting enzymatic hydrolysis.
Collapse
Affiliation(s)
- Senta Heiss-Blanquet
- IFP Energies nouvelles, 1 et 4, avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
| | | | | | | | | |
Collapse
|
34
|
Chandra RP, Au-Yeung K, Chanis C, Roos AA, Mabee W, Chung PA, Ghatora S, Saddler JN. The influence of pretreatment and enzyme loading on the effectiveness of batch and fed-batch hydrolysis of corn stover. Biotechnol Prog 2010; 27:77-85. [DOI: 10.1002/btpr.508] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Indexed: 11/07/2022]
|
35
|
Santa-Maria M, Jeoh T. Molecular-Scale Investigations of Cellulose Microstructure during Enzymatic Hydrolysis. Biomacromolecules 2010; 11:2000-7. [DOI: 10.1021/bm100366h] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Monica Santa-Maria
- Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, California 95616
| | - Tina Jeoh
- Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, California 95616
| |
Collapse
|
36
|
Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. BIOTECHNOLOGY FOR BIOFUELS 2010; 3:10. [PMID: 20497524 PMCID: PMC2890632 DOI: 10.1186/1754-6834-3-10] [Citation(s) in RCA: 1170] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 05/24/2010] [Indexed: 05/02/2023]
Abstract
Although measurements of crystallinity index (CI) have a long history, it has been found that CI varies significantly depending on the choice of measurement method. In this study, four different techniques incorporating X-ray diffraction and solid-state 13C nuclear magnetic resonance (NMR) were compared using eight different cellulose preparations. We found that the simplest method, which is also the most widely used, and which involves measurement of just two heights in the X-ray diffractogram, produced significantly higher crystallinity values than did the other methods. Data in the literature for the cellulose preparation used (Avicel PH-101) support this observation. We believe that the alternative X-ray diffraction (XRD) and NMR methods presented here, which consider the contributions from amorphous and crystalline cellulose to the entire XRD and NMR spectra, provide a more accurate measure of the crystallinity of cellulose. Although celluloses having a high amorphous content are usually more easily digested by enzymes, it is unclear, based on studies published in the literature, whether CI actually provides a clear indication of the digestibility of a cellulose sample. Cellulose accessibility should be affected by crystallinity, but is also likely to be affected by several other parameters, such as lignin/hemicellulose contents and distribution, porosity, and particle size. Given the methodological dependency of cellulose CI values and the complex nature of cellulase interactions with amorphous and crystalline celluloses, we caution against trying to correlate relatively small changes in CI with changes in cellulose digestibility. In addition, the prediction of cellulase performance based on low levels of cellulose conversion may not include sufficient digestion of the crystalline component to be meaningful.
Collapse
Affiliation(s)
- Sunkyu Park
- Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - John O Baker
- Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA
| | - Philip A Parilla
- National Center for Photovoltaics, National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA
| | - David K Johnson
- Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA
| |
Collapse
|
37
|
Penttilä PA, Várnai A, Leppänen K, Peura M, Kallonen A, Jääskeläinen P, Lucenius J, Ruokolainen J, Siika-aho M, Viikari L, Serimaa R. Changes in Submicrometer Structure of Enzymatically Hydrolyzed Microcrystalline Cellulose. Biomacromolecules 2010; 11:1111-7. [DOI: 10.1021/bm1001119] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paavo A. Penttilä
- Departments of Physics and Food and Environmental Sciences, University of Helsinki, Helsinki, Finland, Departments of Biomedical Engineering and Computational Science and Applied Physics, Aalto University School of Science and Technology, Espoo, Finland, and VTT Technical Research Centre of Finland, Espoo, Finland
| | - Anikó Várnai
- Departments of Physics and Food and Environmental Sciences, University of Helsinki, Helsinki, Finland, Departments of Biomedical Engineering and Computational Science and Applied Physics, Aalto University School of Science and Technology, Espoo, Finland, and VTT Technical Research Centre of Finland, Espoo, Finland
| | - Kirsi Leppänen
- Departments of Physics and Food and Environmental Sciences, University of Helsinki, Helsinki, Finland, Departments of Biomedical Engineering and Computational Science and Applied Physics, Aalto University School of Science and Technology, Espoo, Finland, and VTT Technical Research Centre of Finland, Espoo, Finland
| | - Marko Peura
- Departments of Physics and Food and Environmental Sciences, University of Helsinki, Helsinki, Finland, Departments of Biomedical Engineering and Computational Science and Applied Physics, Aalto University School of Science and Technology, Espoo, Finland, and VTT Technical Research Centre of Finland, Espoo, Finland
| | - Aki Kallonen
- Departments of Physics and Food and Environmental Sciences, University of Helsinki, Helsinki, Finland, Departments of Biomedical Engineering and Computational Science and Applied Physics, Aalto University School of Science and Technology, Espoo, Finland, and VTT Technical Research Centre of Finland, Espoo, Finland
| | - Pentti Jääskeläinen
- Departments of Physics and Food and Environmental Sciences, University of Helsinki, Helsinki, Finland, Departments of Biomedical Engineering and Computational Science and Applied Physics, Aalto University School of Science and Technology, Espoo, Finland, and VTT Technical Research Centre of Finland, Espoo, Finland
| | - Jessica Lucenius
- Departments of Physics and Food and Environmental Sciences, University of Helsinki, Helsinki, Finland, Departments of Biomedical Engineering and Computational Science and Applied Physics, Aalto University School of Science and Technology, Espoo, Finland, and VTT Technical Research Centre of Finland, Espoo, Finland
| | - Janne Ruokolainen
- Departments of Physics and Food and Environmental Sciences, University of Helsinki, Helsinki, Finland, Departments of Biomedical Engineering and Computational Science and Applied Physics, Aalto University School of Science and Technology, Espoo, Finland, and VTT Technical Research Centre of Finland, Espoo, Finland
| | - Matti Siika-aho
- Departments of Physics and Food and Environmental Sciences, University of Helsinki, Helsinki, Finland, Departments of Biomedical Engineering and Computational Science and Applied Physics, Aalto University School of Science and Technology, Espoo, Finland, and VTT Technical Research Centre of Finland, Espoo, Finland
| | - Liisa Viikari
- Departments of Physics and Food and Environmental Sciences, University of Helsinki, Helsinki, Finland, Departments of Biomedical Engineering and Computational Science and Applied Physics, Aalto University School of Science and Technology, Espoo, Finland, and VTT Technical Research Centre of Finland, Espoo, Finland
| | - Ritva Serimaa
- Departments of Physics and Food and Environmental Sciences, University of Helsinki, Helsinki, Finland, Departments of Biomedical Engineering and Computational Science and Applied Physics, Aalto University School of Science and Technology, Espoo, Finland, and VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
38
|
Kumar R, Wyman CE. Does change in accessibility with conversion depend on both the substrate and pretreatment technology? BIORESOURCE TECHNOLOGY 2009; 100:4193-202. [PMID: 19398329 DOI: 10.1016/j.biortech.2008.11.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/11/2008] [Accepted: 11/20/2008] [Indexed: 05/17/2023]
Abstract
The accessibility of cellulase and xylanase enzymes to glucan and xylan, respectively, and its change with conversion were measured for pure Avicel glucan and poplar solids that had been pretreated by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), dilute acid, and lime. Avicel and pretreated solids were digested to various degrees by cellulase together with beta-glucosidase enzymes and then cleaned of residual protein via a biological method using Protease. Glucan accessibility was determined by purified CBHI (Cel7A) adsorption at 4 degrees C, and 4 and 24 h hydrolysis yields were determined for solids loading containing equal amounts of glucan (1.0% w/v) and lignin (1.0% w/v), in two separate sets of experiments. Consistent with our previous study and in contrast to some in the literature, little change in glucan accessibility was observed with conversion for Avicel, but glucan and xylan accessibility for real biomass varied with the type of pretreatment. For example, AFEX pretreated solids showed a negligible change in glucan accessibility for conversion up to 90%, although xylan accessibility seemed to decline first and then remained constant. On the other hand, a substantial decline in glucan and xylan accessibility with conversion was observed for lime pretreated poplar solids, as shown by initial hydrolysis rates. Yet, an increase in CBHI adsorption with conversion for lime pretreated poplar solids suggested the opposite trend, possibly due to increased lignin exposure and/or reduced effectiveness of adsorbed enzyme.
Collapse
Affiliation(s)
- Rajeev Kumar
- Thayer School of Engineering, Dartmouth College, New Hampshire 03755, USA
| | | |
Collapse
|
39
|
Saravanan D, Dinesh C, Karthikeyan S, Vivekanandan A, Nalankilli G, Ramachandran T. Biopolishing of cotton fabrics with total cellulases ofTrichoderma reeseiand optimization using Taguchi methods. J Appl Polym Sci 2009. [DOI: 10.1002/app.29826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Gupta R, Lee Y. Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnol Bioeng 2009; 102:1570-81. [DOI: 10.1002/bit.22195] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Kumar R, Wyman CE. Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnol Bioeng 2009; 102:1544-57. [DOI: 10.1002/bit.22203] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Saravanan D, Vasanthi N, Ramachandran T. A review on influential behaviour of biopolishing on dyeability and certain physico-mechanical properties of cotton fabrics. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Kumar R, Wyman C. Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol Bioeng 2009; 102:457-67. [DOI: 10.1002/bit.22068] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Wu B, Wang LS, Gao PJ. The combined effects of temperature and assay time on the catalytic ability and stability of 1,4-β-d-glucan cellobiohydrolase I. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Structural changes of cellobiohydrolase I (1,4-β-D-glucan-cellobiohydrolase I, CBHI) and PNPC (p-nitrophenyl-β-D-cellobioside) during the binding process. ACTA ACUST UNITED AC 2008; 51:459-69. [DOI: 10.1007/s11427-008-0064-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
|
47
|
Jing D, Li P, Xiong XZ, Wang L. Optimization of cellulase complex formulation for peashrub biomass hydrolysis. Appl Microbiol Biotechnol 2007; 75:793-800. [PMID: 17347818 DOI: 10.1007/s00253-007-0891-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/11/2007] [Accepted: 02/13/2007] [Indexed: 11/30/2022]
Abstract
To improve efficiency and reduce cost, solid state simultaneous saccharification and fermentation of peashrub woody biomass was investigated under anaerobic conditions at 50 degrees C, with a cellulase-inoculant mixture consisting of Trichoderma koningii cellulase, Aspergillus niger cellulase, and Lactobacillus. Experimental formulations were prepared according to uniform prescription design principles. By crude protein, crude fiber models constructed using multivariate regression in SPSS and solutions analysis through unconstrained mathematical optimization in Microsoft Excel, it was clearly revealed that low pH value (3.8) from lactic acid accumulation produced by Lactobacillus would ultimately limit enzymatic hydrolysis during long-term fermentation (30 days). It was shown that a cellulase complex with filter paper cellulase/carboxymethyl cellulase/cotton lyase/beta-glucosidase/pectinase of activity ratios of 0.6:1:0.3:1:2.6 could effectively break peashrub cell wall structure by biodegradation of easily digested components and, then, release cellular contents to improve crude protein content. Thus, the enzymatic hydrolysis of peashrub biomass by the optimized cellulase complex could improve crude protein content by 45.3% (from 8.45 to 12.28%), although it only biodegraded about 10.90% of the crude fiber (from 44.45 to 40.08%).
Collapse
Affiliation(s)
- Debing Jing
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China.
| | | | | | | |
Collapse
|
48
|
Park S, Venditti RA, Abrecht DG, Jameel H, Pawlak JJ, Lee JM. Surface and pore structure modification of cellulose fibers through cellulase treatment. J Appl Polym Sci 2006. [DOI: 10.1002/app.25457] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|