1
|
Wang H, Shan M, Gao Q, Wang J, Zhang R, Wang Y, Yao M, Xiao W. Efficient nepetalactone production in Saccharomyces cerevisiae via metabolic engineering and bioprocess optimization. BIORESOURCE TECHNOLOGY 2025; 428:132440. [PMID: 40158864 DOI: 10.1016/j.biortech.2025.132440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Nepetalactone, a natural insect repellent comparable to N,N-diethyl-meta-toluamide (DEET), is challenging to produce through plant extraction or chemical synthesis. This study achieved the de novo synthesis of nepetalactone in Saccharomyces cerevisiae without expensive precursors or inducers. Initially, the metabolic pathway for nepetalactone synthesis was successfully established in Saccharomyces cerevisiae. A metabolic pathway was established using strategies such as iridoid synthase (ISY) source screening, enzyme fusion, and cofactor regeneration to optimize nepetalactone production. Bioprocess optimization through chromosomal integration and two-phase fermentation prevented its conversion to dihydronepetalactone, resulting in a high-yield strain, NTE21, with a titer of 2.5 g/L. A record titer of 4.5 g/L was achieved in 5.0 L fed-batch fermentation via continuous batch feeding. This study documents the potential of microbial platforms for the sustainable, cost-effective, and scalable production of nepetalactone, paving the way for its commercial application as a natural insect repellent.
Collapse
Affiliation(s)
- Herong Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Mengying Shan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Qi Gao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Jia Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Ruixuan Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; School of Life Sciences, Faculty of Medicine, Tianjin University, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China.
| |
Collapse
|
2
|
Huo J, Chu X, Hong B, Lv R, Wang X, Li J, Jiang G, Feng B, Yu Z. Exploration and mutagenesis of the germacrene A synthase from Solidago canadensis to enhance germacrene A production in E. coli. Synth Syst Biotechnol 2025; 10:620-628. [PMID: 40151792 PMCID: PMC11946497 DOI: 10.1016/j.synbio.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
β-elemene is an effective anti-cancer component which has been widely used in clinic. However, it still relies on the extraction from the Chinese medicine plant Curcuma wenyujin, which seriously limits its application. Synthetic biology offers a promising approach to satisfy its supply. β-elemene is derived from germacrene A (GA), which is synthesized by germacrene A synthase (GAS), through Cope rearrangement under heat condition instead of enzymatic reaction. In this study, an effective germacrene A synthase (ScGAS) was identified from Solidago canadensis which could produce GA when expressed in E. coli. By introducing the heterogeneous MVA pathway to enrich the FPP pool, the strain yielded 147 mg/L of GA in shake flasks which represented 2.98-fold improvement over the initial one. Moreover, combining molecular docking with phylogeny analysis of ScGAS largely narrowed down the category of its key residues' mutagenesis. The Y376L mutant showed the highest yield of 487 mg/L which was almost 10-fold higher than the initial yield. These results indicate that diverting the metabolism of the host and enzyme mutagenesis based on the combination of molecular docking and phylogeny analysis are of great value to constructing terpenoids chassis.
Collapse
Affiliation(s)
- Jinyan Huo
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resource, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332000, China
- College of Life and Health, Dalian University, Dalian, 116622, China
| | - Xiaohui Chu
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resource, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332000, China
- College of Life and Health, Dalian University, Dalian, 116622, China
| | - Bo Hong
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resource, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332000, China
| | - Ruo Lv
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resource, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332000, China
| | - Xiaoyu Wang
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resource, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332000, China
- College of Life and Health, Dalian University, Dalian, 116622, China
| | - Jianxu Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center (CAS), Shanghai, 201602, China
| | - Ge Jiang
- College of Life and Health, Dalian University, Dalian, 116622, China
| | - Baomin Feng
- College of Life and Health, Dalian University, Dalian, 116622, China
| | - Zongxia Yu
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resource, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332000, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center (CAS), Shanghai, 201602, China
| |
Collapse
|
3
|
Wang X, Zhang X, Zhang J, Zhou Y, Wang F, Wang Z, Li X. Advances in microbial production of geraniol: from metabolic engineering to potential industrial applications. Crit Rev Biotechnol 2025; 45:727-742. [PMID: 39266251 DOI: 10.1080/07388551.2024.2391881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024]
Abstract
Geraniol, an acyclic monoterpene alcohol, has significant potential applications in various fields, including: food, cosmetics, biofuels, and pharmaceuticals. However, the current sources of geraniol mainly include plant tissue extraction or chemical synthesis, which are unsustainable and suffer severely from high energy consumption and severe environmental problems. The process of microbial production of geraniol has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Escherichia coli (13.2 g/L) and Saccharomyces cerevisiae (5.5 g/L) laid a solid foundation for the microbial production of geraniol. In this review, recent advances in the development of geraniol-producing strains, including: metabolic pathway construction, key enzyme improvement, genetic modification strategies, and cytotoxicity alleviation, are critically summarized. Furthermore, the key challenges in scaling up geraniol production and future perspectives for the development of robust geraniol-producing strains are suggested. This review provides theoretical guidance for the industrial production of geraniol using microbial cell factories.
Collapse
Affiliation(s)
- Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jia Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yujunjie Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Li J, Gao J, Ye M, Cai P, Yu W, Zhai X, Zhou YJ. Engineering yeast for high-level production of β-farnesene from sole methanol. Metab Eng 2024; 85:194-200. [PMID: 39181436 DOI: 10.1016/j.ymben.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Methanol, a rich one-carbon feedstock, can be massively produced from CO2 by the liquid sunshine route, which is helpful to realize carbon neutrality. β-Farnesene is widely used in the production of polymers, surfactants, lubricants, and also serves as a suitable substitute for jet fuel. Constructing an efficient cell factory is a feasible approach for β-farnesene production through methanol biotransformation. Here, we extensively engineered the methylotrophic yeast Ogataea polymorpha for the efficient bio-production of β-farnesene using methanol as the sole carbon source. Our study demonstrated that sufficient supply of precursor acetyl-CoA and cofactor NADPH in an excellent yeast chassis had a 1.3-fold higher β-farnesene production than that of wild-type background strain. Further optimization of the mevalonate pathway and enhancement of acetyl-CoA supply led to a 7-fold increase in β-farnesene accumulation, achieving the highest reported sesquiterpenoids production (14.7 g/L with a yield of 46 mg/g methanol) from one-carbon feedstock under fed-batch fermentation in bioreactor. This study demonstrates the great potential of engineering O. polymorpha for high-level terpenoid production from methanol.
Collapse
Affiliation(s)
- Jingjing Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiaoqi Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Min Ye
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Peng Cai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wei Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoxin Zhai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yongjin J Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
5
|
Li T, Liu X, Xiang H, Zhu H, Lu X, Feng B. Two-Phase Fermentation Systems for Microbial Production of Plant-Derived Terpenes. Molecules 2024; 29:1127. [PMID: 38474639 PMCID: PMC10934027 DOI: 10.3390/molecules29051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid-a crucial precursor to artemisinin-is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. This paper reviews the latest developments in two-phase fermentation system applications, focusing on microbial fermentation of plant-derived terpenes. It also discusses the mechanisms influencing microbial biosynthesis of terpenes. Moreover, we introduce some new two-phase fermentation techniques, currently unexplored in terpene fermentation, with the aim of providing more thoughts and explorations on the future applications of two-phase fermentation technology. Lastly, we discuss several challenges in the industrial application of two-phase fermentation systems, especially in downstream processing.
Collapse
Affiliation(s)
- Tuo Li
- Correspondence: (T.L.); (B.F.)
| | | | | | | | | | - Baomin Feng
- College of Life and Health, Dalian University, Dalian 116622, China; (X.L.); (H.X.); (H.Z.); (X.L.)
| |
Collapse
|
6
|
Wang F, Zhao W, Lv W, Li P, Tian M, Xu S, Li L, Wang R, Liu F, Chen Y, Feng X. Identification and Functional Characterization of a Novel Sinapyl Alcohol Acyltransferase from Euphorbia lathyris L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20187-20197. [PMID: 38044624 DOI: 10.1021/acs.jafc.3c07127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Methoxyeugenol is a phenylpropene compound derived from plants and has various bioactivities. The chemical synthesis of methoxyeugenol is accompanied by pollution issues, whereas extraction from plants is associated with problems such as low yield and high cost. The production of methoxyeugenol can be effectively addressed through an enzymatic approach. In this study, the acyltransferase genes of Euphorbia lathyris L. were screened by homologous alignment of the transcriptome data of E. lathyris in the late growth stage and the acyltransferase genes of the closely related plant species. The results showed that ElBAHD10 had the closest relationship with earlier reported ScCFAT and PhCFAT, which were found to catalyze the reaction of coniferyl alcohol to generate coniferyl acetate. The ElBAHD10 gene was successfully cloned from E. lathyris and subsequently expressed in Escherichia coli. The purified protein ElBAHD10 catalyzed the reaction of sinapyl alcohol with acetyl CoA and cinnamoyl CoA to form sinapyl acetate and sinapyl cinnamate, respectively. In contrast, the crude ElBAHD10 protein could catalyze sinapyl alcohol to directly generate methoxyeugenol. The recombinant E. coli strain expressing ElBAHD10 produced methoxyeugenol through whole-cell transformation. This study provides insights and lays the foundation for methoxyeugenol production through biosynthetic approaches.
Collapse
Affiliation(s)
- Fan Wang
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Wanli Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Wei Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Pirui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Mei Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Linwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ruiyang Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Fei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xu Feng
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
7
|
Jiang H, Wang X. Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances. Biotechnol Adv 2023; 65:108151. [PMID: 37037288 DOI: 10.1016/j.biotechadv.2023.108151] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Terpenoids are a large class of plant-derived compounds, that constitute the main components of essential oils and are widely used as natural flavors and fragrances. The biosynthesis approach presents a promising alternative route in terpenoid production compared to plant extraction or chemical synthesis. In the past decade, the production of terpenoids using biotechnology has attracted broad attention from both academia and the industry. With the growing market of flavor and fragrance, the production of terpenoids directed by synthetic biology shows great potential in promoting future market prospects. Here, we reviewed the latest advances in terpenoid biosynthesis. The engineering strategies for biosynthetic terpenoids were systematically summarized from the enzyme, metabolic, and cellular dimensions. Additionally, we analyzed the key challenges from laboratory production to scalable production, such as key enzyme improvement, terpenoid toxicity, and volatility loss. To provide comprehensive technical guidance, we collected milestone examples of biosynthetic mono- and sesquiterpenoids, compared the current application status of chemical synthesis and biosynthesis in terpenoid production, and discussed the cost drivers based on the data of techno-economic assessment. It is expected to provide critical insights into developing translational research of terpenoid biomanufacturing.
Collapse
Affiliation(s)
- Hui Jiang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, PR China
| | - Xi Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, PR China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China.
| |
Collapse
|
8
|
Zhao L, Zhu Y, Jia H, Han Y, Zheng X, Wang M, Feng W. From Plant to Yeast-Advances in Biosynthesis of Artemisinin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206888. [PMID: 36296479 PMCID: PMC9609949 DOI: 10.3390/molecules27206888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022]
Abstract
Malaria is a life-threatening disease. Artemisinin-based combination therapy (ACT) is the preferred choice for malaria treatment recommended by the World Health Organization. At present, the main source of artemisinin is extracted from Artemisia annua; however, the artemisinin content in A. annua is only 0.1-1%, which cannot meet global demand. Meanwhile, the chemical synthesis of artemisinin has disadvantages such as complicated steps, high cost and low yield. Therefore, the application of the synthetic biology approach to produce artemisinin in vivo has magnificent prospects. In this review, the biosynthesis pathway of artemisinin was summarized. Then we discussed the advances in the heterologous biosynthesis of artemisinin using microorganisms (Escherichia coli and Saccharomyces cerevisiae) as chassis cells. With yeast as the cell factory, the production of artemisinin was transferred from plant to yeast. Through the optimization of the fermentation process, the yield of artemisinic acid reached 25 g/L, thereby producing the semi-synthesis of artemisinin. Moreover, we reviewed the genetic engineering in A. annua to improve the artemisinin content, which included overexpressing artemisinin biosynthesis pathway genes, blocking key genes in competitive pathways, and regulating the expression of transcription factors related to artemisinin biosynthesis. Finally, the research progress of artemisinin production in other plants (Nicotiana, Physcomitrella, etc.) was discussed. The current advances in artemisinin biosynthesis may help lay the foundation for the remarkable up-regulation of artemisinin production in A. annua through gene editing or molecular design breeding in the future.
Collapse
Affiliation(s)
- Le Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunhao Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Haoyu Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yongguang Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Plant Research and Development, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (M.W.); (W.F.); Tel.: +86-134-2629-2115 (M.W.); +86-371-60190296 (W.F.)
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Correspondence: (M.W.); (W.F.); Tel.: +86-134-2629-2115 (M.W.); +86-371-60190296 (W.F.)
| |
Collapse
|
9
|
Facile Biosynthesis of Taxadiene by a Newly Constructed Escherichia coli Strain Fusing Enzymes Taxadiene Synthase and Geranylgeranyl Pyrophosphate Synthase. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Ayakar S, Yadav VG. Continuous
ex situ
recovery of volatile monoterpenoids produced by genetically engineered
Escherichia coli. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sonal Ayakar
- Department of Chemical and Biological Engineering The University of British Columbia Vancouver BC Canada
| | - Vikramaditya G. Yadav
- Department of Chemical and Biological Engineering The University of British Columbia Vancouver BC Canada
- School of Biomedical Engineering The University of British Columbia Vancouver BC Canada
| |
Collapse
|
11
|
Phenotype-centric modeling for rational metabolic engineering. Metab Eng 2022; 72:365-375. [DOI: 10.1016/j.ymben.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022]
|
12
|
Kabernick DC, Gostick JT, Ward VCA. Kinetic characterization and modelling of sequentially entrapped enzymes in 3D-printed PMMA microfluidic reactors for the synthesis of amorphadiene via the isopentenol utilization pathway. Biotechnol Bioeng 2022; 119:1239-1251. [PMID: 35099806 DOI: 10.1002/bit.28046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/27/2021] [Accepted: 01/16/2022] [Indexed: 11/06/2022]
Abstract
The development of cascade cell-free systems reduces the requirement for extensive metabolic engineering and optimization to increase in vivo pathway flux. For continuous operation and increased stability, direct enzyme entrapment during reactor fabrication by 3D-printing allows for simple immobilization procedures without enzyme-specific optimization. In this work, the isopentenol utilization pathway (IUP) was selected for the synthesis of amorphadiene, an anti-malaria drug precursor, using a 3D-printed, sequentially immobilized, microfluidic reactor. As an initial proof-of-concept, alkaline phosphatase (ALP) was entrapped in a poly(methyl methacrylate) (PMMA)-based matrix during stereolithographic 3D-printing and was kinetically characterized. No significant shift of the kinetically modelled substrate binding affinity was observed during immobilization and continuous operation of an entrapped ALP microfluidic reactor displayed high stability. The IUP enzymes retained moderate activity during entrapment (6.6-9.6 %) relative to the free enzyme solutions, however the sequentially immobilized IUP microfluidic reactor was severely limited by low pathway flux due to the use of stereolithographic 3D-printing which significantly diluted enzyme concentrations for printing. Although this study demonstrated the use of additive manufacturing for the synthesis of amorphadiene using a complex five-enzyme cascade microfluidic reactor, stereolithographic enzyme entrapment remains limited in scope and dependent on advancements to additive manufacturing technologies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Derek C Kabernick
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1
| | - Jeff T Gostick
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1
| | - Valerie C A Ward
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1
| |
Collapse
|
13
|
Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep 2022; 39:90-118. [PMID: 34231643 PMCID: PMC8791446 DOI: 10.1039/d1np00025j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are a diverse group of chemicals used in a wide range of industries. Microbial terpenoid production has the potential to displace traditional manufacturing of these compounds with renewable processes, but further titre improvements are needed to reach cost competitiveness. This review discusses strategies to increase terpenoid titres in Escherichia coli with a focus on alternative metabolic pathways. Alternative pathways can lead to improved titres by providing higher orthogonality to native metabolism that redirects carbon flux, by avoiding toxic intermediates, by bypassing highly-regulated or bottleneck steps, or by being shorter and thus more efficient and easier to manipulate. The canonical 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonate (MVA) pathways are engineered to increase titres, sometimes using homologs from different species to address bottlenecks. Further, alternative terpenoid pathways, including additional entry points into the MEP and MVA pathways, archaeal MVA pathways, and new artificial pathways provide new tools to increase titres. Prenyl diphosphate synthases elongate terpenoid chains, and alternative homologs create orthogonal pathways and increase product diversity. Alternative sources of terpenoid synthases and modifying enzymes can also be better suited for E. coli expression. Mining the growing number of bacterial genomes for new bacterial terpenoid synthases and modifying enzymes identifies enzymes that outperform eukaryotic ones and expand microbial terpenoid production diversity. Terpenoid removal from cells is also crucial in production, and so terpenoid recovery and approaches to handle end-product toxicity increase titres. Combined, these strategies are contributing to current efforts to increase microbial terpenoid production towards commercial feasibility.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Clara A Ferraz
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
14
|
Farmanpour-Kalalagh K, Beyraghdar Kashkooli A, Babaei A, Rezaei A, van der Krol AR. Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand. FRONTIERS IN PLANT SCIENCE 2022; 13:780257. [PMID: 35197994 PMCID: PMC8859114 DOI: 10.3389/fpls.2022.780257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 05/05/2023]
Abstract
Artemisinin is a natural bioactive sesquiterpene lactone containing an unusual endoperoxide 1, 2, 4-trioxane ring. It is derived from the herbal medicinal plant Artemisia annua and is best known for its use in treatment of malaria. However, recent studies also indicate the potential for artemisinin and related compounds, commonly referred to as artemisinins, in combating viral infections, inflammation and certain cancers. Moreover, the different potential modes of action of artemisinins make these compounds also potentially relevant to the challenges the world faces in the COVID-19 pandemic. Initial studies indicate positive effects of artemisinin or Artemisia spp. extracts to combat SARS-CoV-2 infection or COVID-19 related symptoms and WHO-supervised clinical studies on the potential of artemisinins to combat COVID-19 are now in progress. However, implementing multiple potential new uses of artemisinins will require effective solutions to boost production, either by enhancing synthesis in A. annua itself or through biotechnological engineering in alternative biosynthesis platforms. Because of this renewed interest in artemisinin and its derivatives, here we review its modes of action, its potential application in different diseases including COVID-19, its biosynthesis and future options to boost production.
Collapse
Affiliation(s)
- Karim Farmanpour-Kalalagh
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Arman Beyraghdar Kashkooli
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Arman Beyraghdar Kashkooli,
| | - Alireza Babaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Rezaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
15
|
Dietsch M, Behle A, Westhoff P, Axmann IM. Metabolic engineering of Synechocystis sp. PCC 6803 for the photoproduction of the sesquiterpene valencene. Metab Eng Commun 2021; 13:e00178. [PMID: 34466381 PMCID: PMC8382996 DOI: 10.1016/j.mec.2021.e00178] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 11/05/2022] Open
Abstract
Cyanobacteria are extremely adaptable, fast-growing, solar-powered cell factories that, like plants, are able to convert carbon dioxide into sugar and oxygen and thereby produce a large number of important compounds. Due to their unique phototrophy-associated physiological properties, i.e. naturally occurring isoprenoid metabolic pathway, they represent a highly promising platform for terpenoid biosynthesis. Here, we implemented a carefully devised engineering strategy to boost the biosynthesis of commercially attractive plant sequiterpenes, in particular valencene. Sesquiterpenes are a diverse group of bioactive metabolites, mainly produced in higher plants, but with often low concentrations and expensive downstream extraction. In this work we successfully demonstrate a multi-component engineering approach towards the photosynthetic production of valencene in the cyanobacterium Synechocystis sp. PCC 6803. First, we improved the flux towards valencene by markerless genomic deletions of shc and sqs. Secondly, we downregulated the formation of carotenoids, which are essential for viability of the cell, using CRISPRi on crtE. Finally, we intended to increase the spatial proximity of the two enzymes, ispA and CnVS, involved in valencene formation by creating an operon construct, as well as a fusion protein. Combining the most successful strategies resulted in a valencene production of 19 mg/g DCW in Synechocystis. In this work, we have devised a useful platform for future engineering steps.
Collapse
Affiliation(s)
- Maximilian Dietsch
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Behle
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Westhoff
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40001, Düsseldorf, Germany
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Takemura M, Kubo A, Watanabe A, Sakuno H, Minobe Y, Sahara T, Murata M, Araki M, Harada H, Terada Y, Yaoi K, Ohdan K, Misawa N. Pathway engineering for high-yield production of lutein in Escherichia coli. Synth Biol (Oxf) 2021; 6:ysab012. [PMID: 34712837 PMCID: PMC8546607 DOI: 10.1093/synbio/ysab012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/15/2021] [Indexed: 11/15/2022] Open
Abstract
Lutein is an industrially important carotenoid pigment, which is essential for photoprotection and photosynthesis in plants. Lutein is crucial for maintaining human health due to its protective ability from ocular diseases. However, its pathway engineering research has scarcely been performed for microbial production using heterologous hosts, such as Escherichia coli, since the engineering of multiple genes is required. These genes, which include tricky key carotenoid biosynthesis genes typically derived from plants, encode two sorts of cyclases (lycopene ε- and β-cyclase) and cytochrome P450 CYP97C. In this study, upstream genes effective for the increase in carotenoid amounts, such as isopentenyl diphosphate isomerase (IDI) gene, were integrated into the E. coli JM101 (DE3) genome. The most efficient set of the key genes (MpLCYe, MpLCYb and MpCYP97C) was selected from among the corresponding genes derived from various plant (or bacterial) species using E. coli that had accumulated carotenoid substrates. Furthermore, to optimize the production of lutein in E. coli, we introduced several sorts of plasmids that contained some of the multiple genes into the genome-inserted strain and compared lutein productivity. Finally, we achieved 11 mg/l as lutein yield using a mini jar. Here, the high-yield production of lutein was successfully performed using E. coli through approaches of pathway engineering. The findings obtained here should be a base reference for substantial lutein production with microorganisms in the future.
Collapse
Affiliation(s)
- Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Akiko Kubo
- Applied Research Laboratory, Ezaki Glico Co., Ltd., Osaka, Japan
| | - Asuka Watanabe
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Hanayo Sakuno
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Yuka Minobe
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Takehiko Sahara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | - Hisashi Harada
- Faculty of Engineering, Tottori University, Tottori, Japan
| | - Yoshinobu Terada
- Mechanism-Based Research Laboratory, Ezaki Glico Co., Ltd., Osaka, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Kohji Ohdan
- Applied Research Laboratory, Ezaki Glico Co., Ltd., Osaka, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| |
Collapse
|
17
|
Amorpha-4,11-diene synthase: a key enzyme in artemisinin biosynthesis and engineering. ABIOTECH 2021; 2:276-288. [PMID: 36303880 PMCID: PMC9590458 DOI: 10.1007/s42994-021-00058-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Amorpha-4,11-diene synthase (ADS) catalyzes the first committed step in the artemisinin biosynthetic pathway, which is the first catalytic reaction enzymatically and genetically characterized in artemisinin biosynthesis. The advent of ADS in Artemisia annua is considered crucial for the emergence of the specialized artemisinin biosynthetic pathway in the species. Microbial production of amorpha-4,11-diene is a breakthrough in metabolic engineering and synthetic biology. Recently, numerous new techniques have been used in ADS engineering; for example, assessing the substrate promiscuity of ADS to chemoenzymatically produce artemisinin. In this review, we discuss the discovery and catalytic mechanism of ADS, its application in metabolic engineering and synthetic biology, as well as the role of sesquiterpene synthases in the evolutionary origin of artemisinin.
Collapse
|
18
|
Yang LY, Gong Q, Guo JQ, Li GL. Microbes as a production host to produce natural activecompounds from mushrooms: biosynthetic pathway elucidationand metabolic engineering. Chin J Nat Med 2021; 19:580-590. [PMID: 34419258 DOI: 10.1016/s1875-5364(21)60058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Indexed: 11/29/2022]
Abstract
Mushrooms are abundant in bioactive natural compounds. Due to strict growth conditions and long fermentation-time, microbe as a production host is an alternative and sustainable approach for the production of natural compounds. This review focuses on the biosynthetic pathways of mushroom originated natural compounds and microbes as the production host for the production of the above natural compounds.
Collapse
Affiliation(s)
- Li-Yang Yang
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Qiang Gong
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Jian-Quan Guo
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China.
| | - Gui-Lan Li
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| |
Collapse
|
19
|
Liu CL, Xue K, Yang Y, Liu X, Li Y, Lee TS, Bai Z, Tan T. Metabolic engineering strategies for sesquiterpene production in microorganism. Crit Rev Biotechnol 2021; 42:73-92. [PMID: 34256675 DOI: 10.1080/07388551.2021.1924112] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sesquiterpenes are a large variety of terpene natural products, widely existing in plants, fungi, marine organisms, insects, and microbes. Value-added sesquiterpenes are extensively used in industries such as: food, drugs, fragrances, and fuels. With an increase in market demands and the price of sesquiterpenes, the biosynthesis of sesquiterpenes by microbial fermentation methods from renewable feedstocks is acquiring increasing attention. Synthetic biology provides robust tools of sesquiterpene production in microorganisms. This review presents a summary of metabolic engineering strategies on the hosts and pathway engineering for sesquiterpene production. Advances in synthetic biology provide new strategies on the creation of desired hosts for sesquiterpene production. Especially, metabolic engineering strategies for the production of sesquiterpenes such as: amorphadiene, farnesene, bisabolene, and caryophyllene are emphasized in: Escherichia coli, Saccharomyces cerevisiae, and other microorganisms. Challenges and future perspectives of the bioprocess for translating sesquiterpene production into practical industrial work are also discussed.
Collapse
Affiliation(s)
- Chun-Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Kai Xue
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| |
Collapse
|
20
|
Rationally optimized generation of integrated Escherichia coli with stable and high yield lycopene biosynthesis from heterologous mevalonate (MVA) and lycopene expression pathways. Synth Syst Biotechnol 2021; 6:85-94. [PMID: 33997358 PMCID: PMC8091476 DOI: 10.1016/j.synbio.2021.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 11/23/2022] Open
Abstract
The stability and high productivity of heterogeneous terpenoid production in Escherichia coli expression system is one of the most key issues for its large scale industrialization. In the current study on taking lycopene biosynthesis as an example, an integrated Escherichia coli system has been generated successfully, which resulted into stable and high lycopene production. In this process, two modules of mevalonate (MVA) pathway and one module of lycopene expression pathway were completely integrated in the chromosome. Firstly, the copy number and integrated position of three modules of heterologous pathways were rationally optimized. Later, a strain DH416 equipped with heterogeneous expression pathways through chromosomal integration was efficiently derived from parental strain DH411. The evolving DH416 strain efficiently produced the lycopene level of 1.22 g/L (49.9 mg/g DCW) in a 5 L fermenter with mean productivity of 61.0 mg/L/h. Additionally, the integrated strain showed more genetic stability than the plasmid systems after successive 21st passage.
Collapse
|
21
|
Shukla V, Phulara SC. Impact of culture condition modulation on the high-yield, high-specificity and cost-effective production of terpenoids from microbial sources: A review. Appl Environ Microbiol 2021; 87:AEM.02369-20. [PMID: 33257314 PMCID: PMC7851692 DOI: 10.1128/aem.02369-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent years have seen a remarkable increase in the non-natural production of terpenoids from microbial route. This is due to the advancements in synthetic biology tools and techniques, which have overcome the challenges associated with the non-native production of terpenoids from microbial hosts. Although, microbes in their native form have ability to grow in wide range of physicochemical parameters such as, pH, temperature, agitation, aeration etc; however, after genetic modifications, culture conditions need to be optimized in order to achieve improved titers of desired terpenoids from engineered microbes. The physicochemical parameters together with medium supplements, such as, inducer, carbon and nitrogen source, and cofactor supply not only play an important role in high-yield production of target terpenoids from engineered host, but also reduce the accumulation of undesired metabolites in fermentation medium, thus facilitate product recovery. Further, for the economic production of terpenoids, the biomass derived sugars can be utilized together with the optimized culture conditions. In the present mini-review, we have highlighted the impact of culture conditions modulation on the high-yield and high-specificity production of terpenoids from engineered microbes. Lastly, utilization of economic feedstock has also been discussed for the cost-effective and sustainable production of terpenoids.
Collapse
Affiliation(s)
- Vibha Shukla
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Suresh Chandra Phulara
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur-522502, Andhra Pradesh, India
| |
Collapse
|
22
|
Huang JQ, Li DM, Tian X, Lin JL, Yang L, Xu JJ, Fang X. Side Products of Recombinant Amorpha-4,11-diene Synthase and Their Effect on Microbial Artemisinin Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2168-2178. [PMID: 33566615 DOI: 10.1021/acs.jafc.0c07462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amorpha-4,11-diene synthase (ADS) is the first committed enzyme in the biosynthesis of artemisinin. Artemisinin production by biobased fermentation is considered a reliable alternative pathway. Heterologously expressed ADS has been established to generate several minor products, including structural analogues of amorpha-4,11-diene, but their fate in fermentation is still unknown. Here, using chiral analysis, we found that ADS produces one of the analogues, amorpha-4-en-11-ol, as a pair of epimers. Labeling experiments revealed that ADS mutants yielded amorphene-type sesquiterpenes, indicating the co-occurrence of initial 1,6 and 1,10 cyclization of farnesyl diphosphate in a single enzyme. Interestingly, the immediate downstream oxidase CYP71AV1 had very low affinity to the side products of the recombinant ADS, including amorpha-4-en-7-ol, which is structurally similar to amorpha-4,11-diene. Our data uncover the complex catalytic mechanism of recombinant ADS and reveal a potential negative effect of the side products of recombinant ADS on the production of the artemisinin precursor in microbes.
Collapse
Affiliation(s)
- Jin-Quan Huang
- , Yunnan University, Kunming 650091, P. R. China
- , National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Dong-Mei Li
- , Yunnan University, Kunming 650091, P. R. China
- , State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, P. R. China
| | - Xiu Tian
- , National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Jia-Ling Lin
- , National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- , School of Life Science and Technology, ShanghaiTech Universit, Shanghai 200031, P. R. China
| | - Lei Yang
- , Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, P. R. China
| | - Jing-Jing Xu
- , Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, P. R. China
| | - Xin Fang
- , State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, P. R. China
| |
Collapse
|
23
|
Aguilar F, Ekramzadeh K, Scheper T, Beutel S. Whole-Cell Production of Patchouli Oil Sesquiterpenes in Escherichia coli: Metabolic Engineering and Fermentation Optimization in Solid-Liquid Phase Partitioning Cultivation. ACS OMEGA 2020; 5:32436-32446. [PMID: 33376881 PMCID: PMC7758989 DOI: 10.1021/acsomega.0c04590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/25/2020] [Indexed: 05/27/2023]
Abstract
Patchouli oil is a major ingredient in perfumery, granting a dark-woody scent due to its main constituent (-)-patchoulol. The growing demand for patchouli oil has raised interest in the development of a biotechnological process to assure a reliable supply. Herein, we report the production of patchouli oil sesquiterpenes by metabolically engineered Escherichia coli strains, using solid-liquid phase partitioning cultivation. The (-)-patchoulol production was possible using the endogenous methylerythritol phosphate pathway and overexpressing a (-)-patchoulol synthase isoform from Pogostemon cablin but at low titers. To improve the (-)-patchoulol production, the exogenous mevalonate pathway was overexpressed in the multi-plasmid PTS + Mev strain, which increased the (-)-patchoulol titer 5-fold. Fermentation was improved further by evaluating several defined media, and optimizing the pH and temperature of culture broth, enhancing the (-)-patchoulol titer 3-fold. To augment the (-)-patchoulol recovery from fermentation, the solid-liquid phase partitioning cultivation was analyzed by screening polymeric adsorbers, where the Diaion HP20 adsorber demonstrated the highest (-)-patchoulol recovery from all tests. Fermentation was scaled-up to fed-batch bioreactors, reaching a (-)-patchoulol titer of 40.2 mg L-1 and productivity of 20.1 mg L-1 d-1. The terpene profile and aroma produced from the PTS + Mev strain were similar to the patchouli oil, comprising (-)-patchoulol as the main product, and α-bulnesene, trans-β-caryophyllene, β-patchoulene, and guaia-5,11-diene as side products. This investigation represents the first study of (-)-patchoulol production in E. coli by solid-liquid phase partitioning cultivation, which provides new insights for the development of sustainable bioprocesses for the microbial production of fragrant terpenes.
Collapse
Affiliation(s)
- Francisco Aguilar
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany
| | - Kimia Ekramzadeh
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany
| | - Sascha Beutel
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany
| |
Collapse
|
24
|
High-throughput screening for high-efficiency small-molecule biosynthesis. Metab Eng 2020; 63:102-125. [PMID: 33017684 DOI: 10.1016/j.ymben.2020.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/14/2023]
Abstract
Systems metabolic engineering faces the formidable task of rewiring microbial metabolism to cost-effectively generate high-value molecules from a variety of inexpensive feedstocks for many different applications. Because these cellular systems are still too complex to model accurately, vast collections of engineered organism variants must be systematically created and evaluated through an enormous trial-and-error process in order to identify a manufacturing-ready strain. The high-throughput screening of strains to optimize their scalable manufacturing potential requires execution of many carefully controlled, parallel, miniature fermentations, followed by high-precision analysis of the resulting complex mixtures. This review discusses strategies for the design of high-throughput, small-scale fermentation models to predict improved strain performance at large commercial scale. Established and promising approaches from industrial and academic groups are presented for both cell culture and analysis, with primary focus on microplate- and microfluidics-based screening systems.
Collapse
|
25
|
Engineering a Carotenoid-Overproducing Strain of Azospirillum brasilense for Heterologous Production of Geraniol and Amorphadiene. Appl Environ Microbiol 2020; 86:AEM.00414-20. [PMID: 32591387 DOI: 10.1128/aem.00414-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/22/2020] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli and Saccharomyces cerevisiae have been used extensively for heterologous production of a variety of secondary metabolites. Neither has an endogenous high-flux isoprenoid pathway, required for the production of terpenoids. Azospirillum brasilense, a nonphotosynthetic GRAS (generally recognized as safe) bacterium, produces carotenoids in the presence of light. The carotenoid production increases multifold upon inactivating a gene encoding an anti-sigma factor (ChrR1). We used this A. brasilense mutant (Car-1) as a host for the heterologous production of two high-value phytochemicals, geraniol and amorphadiene. Cloned genes (crtE1 and crtE2) of A. brasilense encoding native geranylgeranyl pyrophosphate synthases (GGPPS), when overexpressed and purified, did not produce geranyl pyrophosphate (GPP) in vitro Therefore, we cloned codon-optimized copies of the Catharanthus roseus genes encoding GPP synthase (GPPS) and geraniol synthase (GES) to show the endogenous intermediates of the carotenoid biosynthetic pathway in the Car-1 strain were utilized for the heterologous production of geraniol in A. brasilense Similarly, cloning and expression of a codon-optimized copy of the amorphadiene synthase (ads) gene from Artemisia annua also led to the heterologous production of amorphadiene in Car-1. Geraniol or amorphadiene content was estimated using gas chromatography-mass spectrometry (GC-MS) and GC. These results demonstrate that Car-1 is a promising host for metabolic engineering, as the naturally available endogenous pool of the intermediates of the carotenoid biosynthetic pathway of A. brasilense can be effectively utilized for the heterologous production of high-value phytochemicals.IMPORTANCE To date, the major host organisms used for the heterologous production of terpenoids, i.e., E. coli and S. cerevisiae, do not have high-flux isoprenoid pathways and involve tedious metabolic engineering to increase the precursor pool. Since carotenoid-producing bacteria carry endogenous high-flux isoprenoid pathways, we used a carotenoid-producing mutant of A. brasilense as a host to show its suitability for the heterologous production of geraniol and amorphadiene as a proof-of-concept. The advantages of using A. brasilense as a model system include (i) dispensability of carotenoids and (ii) the possibility of overproducing carotenoids through a single mutation to exploit high carbon flux for terpenoid production.
Collapse
|
26
|
Hasni I, Decloquement P, Demanèche S, Mameri RM, Abbe O, Colson P, La Scola B. Insight into the Lifestyle of Amoeba Willaertia magna during Bioreactor Growth Using Transcriptomics and Proteomics. Microorganisms 2020; 8:microorganisms8050771. [PMID: 32455615 PMCID: PMC7285305 DOI: 10.3390/microorganisms8050771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Willaertia magna C2c maky is a thermophilic free-living amoeba strain that showed ability to eliminate Legionella pneumophila, a pathogenic bacterium living in the aquatic environment. The amoeba industry has proposed the use of Willaertia magna as a natural biocide to control L. pneumophila proliferation in cooling towers. Here, transcriptomic and proteomic studies were carried out in order to expand knowledge on W. magna produced in a bioreactor. Illumina RNA-seq generated 217 million raw reads. A total of 8790 transcripts were identified, of which 6179 and 5341 were assigned a function through comparisons with National Center of Biotechnology Information (NCBI) reference sequence and the Clusters of Orthologous Groups of proteins (COG) databases, respectively. To corroborate these transcriptomic data, we analyzed the W. magna proteome using LC–MS/MS. A total of 3561 proteins were identified. The results of transcriptome and proteome analyses were highly congruent. Metabolism study showed that W. magna preferentially consumed carbohydrates and fatty acids to grow. Finally, an in-depth analysis has shown that W. magna produces several enzymes that are probably involved in the metabolism of secondary metabolites. Overall, our multi-omic study of W. magna opens the way to a better understanding of the genetics and biology of this amoeba.
Collapse
Affiliation(s)
- Issam Hasni
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
| | - Philippe Decloquement
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
| | - Sandrine Demanèche
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
| | - Rayane Mouh Mameri
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
| | - Olivier Abbe
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
| | - Philippe Colson
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
| | - Bernard La Scola
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
- Correspondence: ; Tel.: +33-4-9132-4375; Fax: +33-4-9138-7772
| |
Collapse
|
27
|
Zha W, An T, Li T, Zhu J, Gao K, Sun Z, Xu W, Lin P, Zi J. Reconstruction of the Biosynthetic Pathway of Santalols under Control of the GAL Regulatory System in Yeast. ACS Synth Biol 2020; 9:449-456. [PMID: 31940436 DOI: 10.1021/acssynbio.9b00479] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sandalwood oil has been widely used in perfumery industries and aromatherapy. Santalols are its major components. Herein, we attempted to construct santalol-producing yeasts. To alter flux from predominant triterpenoid/steroid biosynthesis to sesquiterpenoid production, expression of ERG9 (encoding yeast squalene synthase) was depressed by replacing its innate promotor with PHXT1 and fermenting the resulting strains in galactose-rich media. And the genes related to santalol biosynthesis were overexpressed under control of GAL promotors, which linked santalol biosynthesis to GAL regulatory system. GAL4 (a transcriptional activator of GAL promotors) and PGM2 (a yeast phosphoglucomutase) were overexpressed to overall promote this artificial santalol biosynthetic pathway and enhance galactose uptake. 1.3 g/L santalols and 1.2 g/L Z-α-santalol were achieved in the strain WL17 expressing SaSS (α-santalene synthase from Santalum album) and WL19 expressing SanSyn (α-santalene synthase from Clausena lansium) by fed-batch fermentation, respectively. This study constructed the microbial santalol-producing platform for the first time.
Collapse
Affiliation(s)
- Wenlong Zha
- Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Tianyue An
- Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ting Li
- Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China
| | - Jianxun Zhu
- Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China
| | - Ke Gao
- Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China
| | - Zhenjiao Sun
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512600, China
| | - Wendong Xu
- National Engineering Research Center for Modernization of Extraction and Separation Process of TCM/Guangzhou Hanfang Pharmaceutical Co., Ltd., Guangzhou 510240, China
| | - Pengcheng Lin
- College of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Jiachen Zi
- Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
28
|
Metabolic flux ratio analysis by parallel 13C labeling of isoprenoid biosynthesis in Rhodobacter sphaeroides. Metab Eng 2019; 57:228-238. [PMID: 31843486 DOI: 10.1016/j.ymben.2019.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 11/21/2022]
Abstract
Metabolic engineering for increased isoprenoid production often benefits from the simultaneous expression of the two naturally available isoprenoid metabolic routes, namely the 2-methyl-D-erythritol 4-phosphate (MEP) pathway and the mevalonate (MVA) pathway. Quantification of the contribution of these pathways to the overall isoprenoid production can help to obtain a better understanding of the metabolism within a microbial cell factory. Such type of investigation can benefit from 13C metabolic flux ratio studies. Here, we designed a method based on parallel labeling experiments (PLEs), using [1-13C]- and [4-13C]glucose as tracers to quantify the metabolic flux ratios in the glycolytic and isoprenoid pathways. By just analyzing a reporter isoprenoid molecule and employing only four equations, we could describe the metabolism involved from substrate catabolism to product formation. These equations infer 13C atom incorporation into the universal isoprenoid building blocks, isopentenyl-pyrophosphate (IPP) and dimethylallyl-pyrophosphate (DMAPP). Therefore, this renders the method applicable to the study of any of isoprenoid of interest. As proof of principle, we applied it to study amorpha-4,11-diene biosynthesis in the bacterium Rhodobacter sphaeroides. We confirmed that in this species the Entner-Doudoroff pathway is the major pathway for glucose catabolism, while the Embden-Meyerhof-Parnas pathway contributes to a lesser extent. Additionally, we demonstrated that co-expression of the MEP and MVA pathways caused a mutual enhancement of their metabolic flux capacity. Surprisingly, we also observed that the isoprenoid flux ratio remains constant under exponential growth conditions, independently from the expression level of the MVA pathway. Apart from proposing and applying a tool for studying isoprenoid biosynthesis within a microbial cell factory, our work reveals important insights from the co-expression of MEP and MVA pathways, including the existence of a yet unclear interaction between them.
Collapse
|
29
|
Aguilar F, Scheper T, Beutel S. Improved Production and In Situ Recovery of Sesquiterpene (+)-Zizaene from Metabolically-Engineered E. coli. Molecules 2019; 24:E3356. [PMID: 31540161 PMCID: PMC6767195 DOI: 10.3390/molecules24183356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 02/08/2023] Open
Abstract
The sesquiterpene (+)-zizaene is the direct precursor of khusimol, the main fragrant compound of the vetiver essential oil from Chrysopogon zizanioides and used in nearly 20% of men's fine perfumery. The biotechnological production of such fragrant sesquiterpenes is a promising alternative towards sustainability; nevertheless, product recovery from fermentation is one of the main constraints. In an effort to improve the (+)-zizaene recovery from a metabolically-engineered Escherichia coli, we developed an integrated bioprocess by coupling fermentation and (+)-zizaene recovery using adsorber extractants. Initially, (+)-zizaene volatilization was confirmed from cultivations with no extractants but application of liquid-liquid phase partitioning cultivation (LLPPC) improved (+)-zizaene recovery nearly 4-fold. Furthermore, solid-liquid phase partitioning cultivation (SLPPC) was evaluated by screening polymeric adsorbers, where Diaion HP20 reached the highest recovery. Bioprocess was scaled up to 2 L bioreactors and in situ recovery configurations integrated to fermentation were evaluated. External recovery configuration was performed with an expanded bed adsorption column and improved (+)-zizaene titers 2.5-fold higher than LLPPC. Moreover, internal recovery configuration (IRC) further enhanced the (+)-zizaene titers 2.2-fold, whereas adsorption velocity was determined as critical parameter for recovery efficiency. Consequently, IRC improved the (+)-zizaene titer 8.4-fold and productivity 3-fold from our last report, achieving a (+)-zizaene titer of 211.13 mg L-1 and productivity of 3.2 mg L-1 h-1. This study provides further knowledge for integration of terpene bioprocesses by in situ product recovery, which could be applied for many terpene studies towards the industrialization of fragrant molecules.
Collapse
Affiliation(s)
- Francisco Aguilar
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany.
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany.
| | - Sascha Beutel
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany.
| |
Collapse
|
30
|
Xiang H, Sun-Waterhouse D, Waterhouse GI, Cui C, Ruan Z. Fermentation-enabled wellness foods: A fresh perspective. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Madhavan A, Arun KB, Sindhu R, Binod P, Kim SH, Pandey A. Tailoring of microbes for the production of high value plant-derived compounds: From pathway engineering to fermentative production. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140262. [PMID: 31404685 DOI: 10.1016/j.bbapap.2019.140262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Plant natural products have been an attracting platform for the isolation of various active drugs and other bioactives. However large-scale extraction of these compounds is affected by the difficulty in mass cultivation of these plants and absence of strategies for successful extraction. Even though, synthesis by chemical method is an alternative method; it is less efficient as their chemical structure is highly complex which involve enantio-selectivity. Thus an alternate bio-system for heterologous production of plant natural products using microbes has emerged. Advent of various omics, synthetic and metabolic engineering strategies revolutionised the field of heterologous plant metabolite production. In this context, various engineering methods taken to synthesise plant natural products are described with an additional focus to fermentation strategies.
Collapse
Affiliation(s)
- Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, India
| | | | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR- NIIST), Trivandrum 695 019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR- NIIST), Trivandrum 695 019, India
| | - Sang Hyoun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Ashok Pandey
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea; Center for Innovation and Translational Research, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226 001, India.
| |
Collapse
|
32
|
Abstract
Cell-free systems (CFS) have recently evolved into key platforms for synthetic biology applications. Many synthetic biology tools have traditionally relied on cell-based systems, and while their adoption has shown great progress, the constraints inherent to the use of cellular hosts have limited their reach and scope. Cell-free systems, which can be thought of as programmable liquids, have removed many of these complexities and have brought about exciting opportunities for rational design and manipulation of biological systems. Here we review how these simple and accessible enzymatic systems are poised to accelerate the rate of advancement in synthetic biology and, more broadly, biotechnology.
Collapse
Affiliation(s)
- Aidan Tinafar
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | - Katariina Jaenes
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
33
|
Grozdev L, Kaiser J, Berensmeier S. One-Step Purification of Microbially Produced Hydrophobic Terpenes via Process Chromatography. Front Bioeng Biotechnol 2019; 7:185. [PMID: 31417900 PMCID: PMC6681792 DOI: 10.3389/fbioe.2019.00185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022] Open
Abstract
Novel and existing terpenes are already being produced by genetically modified microorganisms, leading to new process challenges for the isolation and purification of these terpenes. Here, eight different chromatographic resins were characterized for the packed bed adsorption of the model terpene β-caryophyllene, showing their applicability on an Escherichia coli fermentation mixture. The polystyrenic Rensa® RP (Ø 50 μm) shows the highest affinity, with a maximum capacity of >100 g L-1 and the best efficiency, with a height equivalent of a theoretical plate (HETP) of 0.022 cm. With this material, an optimized adsorption-based purification of β-caryophyllene from a fermentation mixture was developed, with the green solvent ethanol for desorption. A final yield of >80% and a purity of >99% were reached after only one process step with a total productivity of 0.83 g h-1 L-1. The product solution was loaded with a volume ratio (feed to column) of >500 and the adapted gradient elution yielded a 40 times higher concentration of β-caryophyllene. The adsorption-based chromatography represents therefore a serious alternative to the liquid-liquid extraction and achieves desired purities without the utilization of hazardous solvents.
Collapse
Affiliation(s)
| | | | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
34
|
Grenz S, Baumann PT, Rückert C, Nebel BA, Siebert D, Schwentner A, Eikmanns BJ, Hauer B, Kalinowski J, Takors R, Blombach B. Exploiting Hydrogenophaga pseudoflava for aerobic syngas-based production of chemicals. Metab Eng 2019; 55:220-230. [PMID: 31319152 DOI: 10.1016/j.ymben.2019.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 01/04/2023]
Abstract
Gasification is a suitable technology to generate energy-rich synthesis gas (syngas) from biomass or waste streams, which can be utilized in bacterial fermentation processes for the production of chemicals and fuels. Established microbial processes currently rely on acetogenic bacteria which perform an energetically inefficient anaerobic CO oxidation and acetogenesis potentially hampering the biosynthesis of complex and ATP-intensive products. Since aerobic oxidation of CO is energetically more favorable, we exploit in this study the Gram-negative β-proteobacterium Hydrogenophaga pseudoflava DSM1084 as novel host for the production of chemicals from syngas. We sequenced and annotated the genome of H. pseudoflava and established a genetic engineering toolbox, which allows markerless chromosomal modification via the pk19mobsacB system and heterologous gene expression on pBBRMCS2-based plasmids. The toolbox was extended by identifying strong endogenous promotors such as PgapA2 which proved to yield high expression under heterotrophic and autotrophic conditions. H. pseudoflava showed relatively fast heterotrophic growth in complex and minimal medium with sugars and organic acids which allows convenient handling in lab routines. In autotrophic bioreactor cultivations with syngas, H. pseudoflava exhibited a growth rate of 0.06 h-1 and biomass specific uptakes rates of 14.2 ± 0.3 mmol H2 gCDW-1 h-1, 73.9 ± 1.8 mmol CO gCDW-1 h-1, and 31.4 ± 0.3 mmol O2 gCDW-1 h-1. As proof of concept, we engineered the carboxydotrophic bacterium for the aerobic production of the C15 sesquiterpene (E)-α-bisabolene from the C1 carbon source syngas by heterologous expression of the (E)-α-bisabolene synthase gene agBIS. The resulting strain H. pseudoflava (pOCEx1:agBIS) produced 59 ± 8 μg (E)-α-bisabolene L-1 with a volumetric productivity Qp of 1.2 ± 0.2 μg L-1 h-1 and a biomass-specific productivity qp of 13.1 ± 0.6 μg gCDW-1 h-1. The intrinsic properties and the genetic repertoire of H. pseudoflava make this carboxydotrophic bacterium a promising candidate for future aerobic production processes to synthesize more complex or ATP-intensive chemicals from syngas.
Collapse
Affiliation(s)
- Sebastian Grenz
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Philipp T Baumann
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Bernd A Nebel
- Department of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Daniel Siebert
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany; Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Andreas Schwentner
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany
| | - Bernhard Hauer
- Department of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany; Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany.
| |
Collapse
|
35
|
Modulating the Precursor and Terpene Synthase Supply for the Whole-Cell Biocatalytic Production of the Sesquiterpene (+)-Zizaene in a Pathway Engineered E. coli. Genes (Basel) 2019; 10:genes10060478. [PMID: 31238595 PMCID: PMC6627501 DOI: 10.3390/genes10060478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/15/2019] [Accepted: 06/20/2019] [Indexed: 11/23/2022] Open
Abstract
The vetiver essential oil from Chrysopogon zizanioides contains fragrant sesquiterpenes used widely in the formulation of nearly 20% of men’s cosmetics. The growing demand and issues in the supply have raised interest in the microbial production of the sesquiterpene khusimol, the main compound of the vetiver essential oil due to its woody smell. In this study, we engineered the biosynthetic pathway for the production of (+)-zizaene, the immediate precursor of khusimol. A systematic approach of metabolic engineering in Escherichia coli was applied to modulate the critical bottlenecks of the metabolic flux towards (+)-zizaene. Initially, production of (+)-zizaene was possible with the endogenous methylerythritol phosphate pathway and the codon-optimized zizaene synthase (ZS). Raising the precursor E,E-farnesyl diphosphate supply through the mevalonate pathway improved the (+)-zizaene titers 2.7-fold, although a limitation of the ZS supply was observed. To increase the ZS supply, distinct promoters were tested for the expression of the ZS gene, which augmented 7.2-fold in the (+)-zizaene titers. Final metabolic enhancement for the ZS supply by using a multi-plasmid strain harboring multiple copies of the ZS gene improved the (+)-zizaene titers 1.3-fold. The optimization of the fermentation conditions increased the (+)-zizaene titers 2.2-fold, achieving the highest (+)-zizaene titer of 25.09 mg L−1. This study provides an alternative strategy to enhance the terpene synthase supply for the engineering of isoprenoids. Moreover, it demonstrates the development of a novel microbial platform for the sustainable production of fragrant molecules for the cosmetic industry.
Collapse
|
36
|
Advances in the Metabolic Engineering of Escherichia coli for the Manufacture of Monoterpenes. Catalysts 2019. [DOI: 10.3390/catal9050433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Monoterpenes are commonly applied as pharmaceuticals and valuable chemicals in various areas. The bioproduction of valuable monoterpenes in prokaryotic microbial hosts, such as E. coli, has progressed considerably thanks to the development of different outstanding approaches. However, the large-scale production of monoterpenes still presents considerable limitations. Thus, process development warrants further investigations. This review discusses the endogenous methylerythritol-4-phosphate-dependent pathway engineering and the exogenous mevalonate-dependent isoprenoid pathway introduction, as well as the accompanied optimization of rate-limiting enzymes, metabolic flux, and product toxicity tolerance. We suggest further studies to focus on the development of systematical, integrational, and synthetic biological strategies in light of the inter disciplines at the cutting edge. Our review provides insights into the current advances of monoterpene bioengineering and serves as a reference for future studies to promote the industrial production of valuable monoterpenes.
Collapse
|
37
|
Sun W, Qin L, Xue H, Yu Y, Ma Y, Wang Y, Li C. Novel trends for producing plant triterpenoids in yeast. Crit Rev Biotechnol 2019; 39:618-632. [DOI: 10.1080/07388551.2019.1608503] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Wentao Sun
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Lei Qin
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Haijie Xue
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yang Yu
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yihua Ma
- The High School Affiliated to Renmin University of China, Beijing, China
| | - Ying Wang
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
38
|
Phulara SC, Chaturvedi P, Chaurasia D, Diwan B, Gupta P. Modulation of culture medium confers high-specificity production of isopentenol in Bacillus subtilis. J Biosci Bioeng 2019; 127:458-464. [DOI: 10.1016/j.jbiosc.2018.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 11/25/2022]
|
39
|
Zhuang X, Kilian O, Monroe E, Ito M, Tran-Gymfi MB, Liu F, Davis RW, Mirsiaghi M, Sundstrom E, Pray T, Skerker JM, George A, Gladden JM. Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides. Microb Cell Fact 2019; 18:54. [PMID: 30885220 PMCID: PMC6421710 DOI: 10.1186/s12934-019-1099-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to their high energy density and compatible physical properties, several monoterpenes have been investigated as potential renewable transportation fuels, either as blendstocks with petroleum or as drop-in replacements for use in vehicles (both heavy and light-weight) or in aviation. Sustainable microbial production of these biofuels requires the ability to utilize cheap and readily available feedstocks such as lignocellulosic biomass, which can be depolymerized into fermentable carbon sources such as glucose and xylose. However, common microbial production platforms such as the yeast Saccharomyces cerevisiae are not naturally capable of utilizing xylose, hence requiring extensive strain engineering and optimization to efficiently utilize lignocellulosic feedstocks. In contrast, the oleaginous red yeast Rhodosporidium toruloides is capable of efficiently metabolizing both xylose and glucose, suggesting that it may be a suitable host for the production of lignocellulosic bioproducts. In addition, R. toruloides naturally produces several carotenoids (C40 terpenoids), indicating that it may have a naturally high carbon flux through its mevalonate (MVA) pathway, providing pools of intermediates for the production of a wide range of heterologous terpene-based biofuels and bioproducts from lignocellulose. RESULTS Sixteen terpene synthases (TS) originating from plants, bacteria and fungi were evaluated for their ability to produce a total of nine different monoterpenes in R. toruloides. Eight of these TS were functional and produced several different monoterpenes, either as individual compounds or as mixtures, with 1,8-cineole, sabinene, ocimene, pinene, limonene, and carene being produced at the highest levels. The 1,8-cineole synthase HYP3 from Hypoxylon sp. E74060B produced the highest titer of 14.94 ± 1.84 mg/L 1,8-cineole in YPD medium and was selected for further optimization and fuel properties study. Production of 1,8-cineole from lignocellulose was also demonstrated in a 2L batch fermentation, and cineole production titers reached 34.6 mg/L in DMR-EH (Deacetylated, Mechanically Refined, Enzymatically Hydorlized) hydrolysate. Finally, the fuel properties of 1,8-cineole were examined, and indicate that it may be a suitable petroleum blend stock or drop-in replacement fuel for spark ignition engines. CONCLUSION Our results demonstrate that Rhodosporidium toruloides is a suitable microbial platform for the production of non-native monoterpenes with biofuel applications from lignocellulosic biomass.
Collapse
Affiliation(s)
- Xun Zhuang
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Oliver Kilian
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Eric Monroe
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Masakazu Ito
- Energy Bioscience Institute, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Mary Bao Tran-Gymfi
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Fang Liu
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Ryan W Davis
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Mona Mirsiaghi
- Advanced Biofuels Process Development Unit (ABPDU), Lawrence Berkeley National Laboratory, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Eric Sundstrom
- Advanced Biofuels Process Development Unit (ABPDU), Lawrence Berkeley National Laboratory, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Todd Pray
- Advanced Biofuels Process Development Unit (ABPDU), Lawrence Berkeley National Laboratory, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Jeffrey M Skerker
- Energy Bioscience Institute, 2151 Berkeley Way, Berkeley, CA, 94704, USA.,Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Anthe George
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA. .,Deconstruction Division, Joint BioEnergy Institute/Sandia National Laboratories, 5885 Hollis St, Emeryville, CA, 94608, USA.
| | - John M Gladden
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA. .,Deconstruction Division, Joint BioEnergy Institute/Sandia National Laboratories, 5885 Hollis St, Emeryville, CA, 94608, USA.
| |
Collapse
|
40
|
Flores A, Wang X, Nielsen DR. Recent trends in integrated bioprocesses: aiding and expanding microbial biofuel/biochemical production. Curr Opin Biotechnol 2019; 57:82-87. [PMID: 30877994 DOI: 10.1016/j.copbio.2019.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 01/04/2023]
Abstract
Microbial biosynthesis of fuels and chemicals represents a promising route for their renewable production. Product toxicity, however, represents a common challenge limiting the efficacy of this approach. Integrated bioprocesses incorporating in situ product separation are poised to help address this intrinsic problem, but suffer their own unique shortcomings. To improve and expand the utility of this versatile bioprocessing strategy, recent innovations have focused on developing more effective separation materials and novel process configurations, as well as adapting designs to accommodate semi-continuous modes of operation. As a result, integrated bioprocesses are finding new applications to aid the biosynthesis of an ever-growing list of bioproducts. Emerging applications, meanwhile, are exploring the further expansion of such designs to interface microbial and chemical catalysts, leading to new and versatile routes for the one-pot synthesis of an even greater diversity of renewable products.
Collapse
Affiliation(s)
- Andrew Flores
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, United States
| | - Xuan Wang
- School of Life Sciences, Arizona State University, United States
| | - David R Nielsen
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, United States.
| |
Collapse
|
41
|
|
42
|
Jervis AJ, Carbonell P, Vinaixa M, Dunstan MS, Hollywood KA, Robinson CJ, Rattray NJW, Yan C, Swainston N, Currin A, Sung R, Toogood H, Taylor S, Faulon JL, Breitling R, Takano E, Scrutton NS. Machine Learning of Designed Translational Control Allows Predictive Pathway Optimization in Escherichia coli. ACS Synth Biol 2019; 8:127-136. [PMID: 30563328 DOI: 10.1021/acssynbio.8b00398] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The field of synthetic biology aims to make the design of biological systems predictable, shrinking the huge design space to practical numbers for testing. When designing microbial cell factories, most optimization efforts have focused on enzyme and strain selection/engineering, pathway regulation, and process development. In silico tools for the predictive design of bacterial ribosome binding sites (RBSs) and RBS libraries now allow translational tuning of biochemical pathways; however, methods for predicting optimal RBS combinations in multigene pathways are desirable. Here we present the implementation of machine learning algorithms to model the RBS sequence-phenotype relationship from representative subsets of large combinatorial RBS libraries allowing the accurate prediction of optimal high-producers. Applied to a recombinant monoterpenoid production pathway in Escherichia coli, our approach was able to boost production titers by over 60% when screening under 3% of a library. To facilitate library screening, a multiwell plate fermentation procedure was developed, allowing increased screening throughput with sufficient resolution to discriminate between high and low producers. High producers from one library did not translate during scale-up, but the reduced screening requirements allowed rapid rescreening at the larger scale. This methodology is potentially compatible with any biochemical pathway and provides a powerful tool toward predictive design of bacterial production chassis.
Collapse
Affiliation(s)
- Adrian J. Jervis
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Pablo Carbonell
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Maria Vinaixa
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Mark S. Dunstan
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Katherine A. Hollywood
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Christopher J. Robinson
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Nicholas J. W. Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Cunyu Yan
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Neil Swainston
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Andrew Currin
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Rehana Sung
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Helen Toogood
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Sandra Taylor
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Jean-Loup Faulon
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
- MICALIS, INRA-AgroParisTech, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
| | - Rainer Breitling
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
43
|
Qiao J, Luo Z, Cui S, Zhao H, Tang Q, Mo C, Ma X, Ding Z. Modification of isoprene synthesis to enable production of curcurbitadienol synthesis in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2018; 46:147-157. [PMID: 30535727 DOI: 10.1007/s10295-018-2116-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022]
Abstract
Cucurbitane-type triterpenoids such as mogrosides and cucurbitacins that are present in the plants of Cucurbitaceae are widely used in Asian traditional medicine. Cucurbitadienol is the skeleton of cucurbitane-type triterpenoids. As an alternative production strategy, we developed baker's yeast Saccharomyces cerevisiae as a microbial host for the eventual transformation of cucurbitadienol. The synthetic pathway of cucurbitadienol was constructed in Saccharomyces cerevisiae by introducing the cucurbitadienol synthase gene from different plants, resulting in 7.80 mg cucurbitadienol from 1 L of fermentation broth. Improving supplies of isoprenoid precursors was then investigated for increasing cucurbitadienol production. Cucurbitadienol production increased to 21.47 mg/L through the overexpression of a global regulatory factor (UPC2) gene of triterpenoid synthase. In addition, knockout of the ERG7 gene increased cucurbitadienol production from 21.47 to 61.80 mg/L. Finally, fed-batch fermentation was performed, and 63.00 mg/L cucurbitadienol was produced. This work is an important step towards the total biosynthesis of valuable cucurbitane-type triterpenoids and demonstrates the potential for developing a sustainable and secure yeast biomanufacturing platform for triterpenoids.
Collapse
Affiliation(s)
- Jing Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Huan Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qi Tang
- National and Local Union Engineering Research Center of Veterinary Herbal Medicine Resources and Initiative and Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Changming Mo
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Zimian Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
44
|
Yuzawa S, Mirsiaghi M, Jocic R, Fujii T, Masson F, Benites VT, Baidoo EEK, Sundstrom E, Tanjore D, Pray TR, George A, Davis RW, Gladden JM, Simmons BA, Katz L, Keasling JD. Short-chain ketone production by engineered polyketide synthases in Streptomyces albus. Nat Commun 2018; 9:4569. [PMID: 30385744 PMCID: PMC6212451 DOI: 10.1038/s41467-018-07040-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023] Open
Abstract
Microbial production of fuels and commodity chemicals has been performed primarily using natural or slightly modified enzymes, which inherently limits the types of molecules that can be produced. Type I modular polyketide synthases (PKSs) are multi-domain enzymes that can produce unique and diverse molecular structures by combining particular types of catalytic domains in a specific order. This catalytic mechanism offers a wealth of engineering opportunities. Here we report engineered microbes that produce various short-chain (C5-C7) ketones using hybrid PKSs. Introduction of the genes into the chromosome of Streptomyces albus enables it to produce >1 g · l-1 of C6 and C7 ethyl ketones and several hundred mg · l-1 of C5 and C6 methyl ketones from plant biomass hydrolysates. Engine tests indicate these short-chain ketones can be added to gasoline as oxygenates to increase the octane of gasoline. Together, it demonstrates the efficient and renewable microbial production of biogasolines by hybrid enzymes.
Collapse
Affiliation(s)
- Satoshi Yuzawa
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States. .,Joint BioEnegy Institute, Emeryville, California, 94608, United States. .,Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan.
| | - Mona Mirsiaghi
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Renee Jocic
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Tatsuya Fujii
- Joint BioEnegy Institute, Emeryville, California, 94608, United States.,Research Institute for Sustainable Chemistry, Institute for Synthetic Biology, National Institute of Advanced Industrial Science and Technology, Higashi-hiroshima, Hiroshima, 739-0046, Japan
| | - Fabrice Masson
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Veronica T Benites
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Joint BioEnegy Institute, Emeryville, California, 94608, United States
| | - Edward E K Baidoo
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Joint BioEnegy Institute, Emeryville, California, 94608, United States
| | - Eric Sundstrom
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Deepti Tanjore
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Todd R Pray
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Anthe George
- Joint BioEnegy Institute, Emeryville, California, 94608, United States.,Department of Biomass Science and Conversion Technologies, Sandia National Laboratory, Livermore, California, 94551, United States
| | - Ryan W Davis
- Department of Biomass Science and Conversion Technologies, Sandia National Laboratory, Livermore, California, 94551, United States
| | - John M Gladden
- Joint BioEnegy Institute, Emeryville, California, 94608, United States.,Department of Biomass Science and Conversion Technologies, Sandia National Laboratory, Livermore, California, 94551, United States
| | - Blake A Simmons
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Joint BioEnegy Institute, Emeryville, California, 94608, United States
| | - Leonard Katz
- Joint BioEnegy Institute, Emeryville, California, 94608, United States.,QB3 Institute, University of California, Berkeley, California, 94720, United States
| | - Jay D Keasling
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States. .,Joint BioEnegy Institute, Emeryville, California, 94608, United States. .,QB3 Institute, University of California, Berkeley, California, 94720, United States. .,Department of Bioengineering, University of California, Berkeley, California, 94720, United States. .,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, 94720, United States. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, DK-2800, Kgs, Lyngby, Denmark. .,Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
45
|
Halka LM, Nowacki C, Kleinschmidt A, Koenen K, Wichmann R. Glucose limited feed strategy leads to increased production of fusicocca-2,10(14)-diene by Saccharomyces cerevisiae. AMB Express 2018; 8:132. [PMID: 30136000 PMCID: PMC6104463 DOI: 10.1186/s13568-018-0662-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
Fusicocca-2,10(14)-diene (FCdiene) is a diterpene which is interesting as a precursor of the anti-cancer drug fusicoccin A and therefore for pharmaceutical applications. Production of FCdiene using a genetically modified Saccharomyces cerevisiae has been previously demonstrated with batch cultivations with a product concentration up to 10 mg/L. However, it is widely known that fed-batch processes can significantly improve product titer in yeast fermentations. This study focuses on the establishment of fed-batch fermentation for FCdiene production because fed-batch cultivations using FeedBeads® indicated that limiting glucose supply could increase yields of biomass (1.07 gCDW/gGlucose instead of 0.20 gCDW/gGlucose) and FCdiene (21.54 mgFCdiene/gGlucose instead of 9.74 mgFCdiene/gGlucose) in shake flask scale and may have implications for larger scale processes. We implemented a new exponential glucose feed profile in a 1.8 L stirred tank reactor. This reduced overfeeding and the consequent, ethanol production. As a result improvements in cell concentrations up to 246% could be achieved and FCdiene yield increased up to 2.8X in the first 28 h. FCdiene concentration reached 161 mg/L and 320 mg/L at 44 h. Fed-batch and batch mode were combined to examine dynamics of bi-modal cultivation where a fed-batch phase was used for biomass production and a batch phase used for FCdiene production potentially supported by ethanol consumption as reported on production of betulinic acid. The present study highlights the potential of process development improvements which increase high-value heterologous diterpene yields from S. cerevisiae.
Collapse
|
46
|
Abstract
Fusicocca-2,10(14)-diene (FCdiene) is a tricyclic diterpene which has many pharmaceutical applications, for example, it is a precursor for different anticancer drugs, including fusicoccin A. Chemical synthesis of this diterpene is not economical as it requires 14 steps with several stereospecific reactions. FCdiene is naturally produced at low titers in phytopathogenic filamentous fungi. However, production of FCdiene can be achieved via expression of fusicoccadiene synthase in yeast. The objective of this study is to increase FCdiene production by optimizing the yeast fermentation process. Our preliminary fermentations showed influences of carbon sources, buffer agents, and oxygen supply on FCdiene production. Buffer agents as well as oxygen supply were investigated in detail at 0.2 and 1.8 L cultivation volumes. Using glucose as the carbon source, FCdiene concentrations were increased to 240 mgFCdiene/L by optimizing pH and oxygen conditions. In situ extraction and adsorption techniques were examined at the 0.2 L scale to determine if these techniques could improve FCdiene yields. Different adsorbents and solvents were tested with in situ product recovery and 4-fold increases in FCdiene productivity could be shown. The results generated in this work provide a proof-of-concept for the fermentative production of FCdiene from S. cerevisiae as a practical alternative to chemical synthesis.
Collapse
|
47
|
Current strategies to induce secondary metabolites from microbial biosynthetic cryptic gene clusters. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1351-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
48
|
Kayani WK, Kiani BH, Dilshad E, Mirza B. Biotechnological approaches for artemisinin production in Artemisia. World J Microbiol Biotechnol 2018; 34:54. [PMID: 29589124 PMCID: PMC5871647 DOI: 10.1007/s11274-018-2432-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/09/2018] [Indexed: 12/01/2022]
Abstract
Artemisinin and its analogues are naturally occurring most effective antimalarial secondary metabolites. These compounds also possess activity against various types of cancer cells, schistosomiasis, and some viral diseases. Artemisinin and its derivatives (A&D) are found in very low amounts in the only natural source i.e. Artemisia plant. To meet the global needs, plant sources have been exploited for the enhanced production of these natural products because their chemical synthesis is not profitable. The generally adopted approaches include non-transgenic (tissue and cell cultures) and transgenic together with the cell, tissue, and whole transgenic plant cultures. The genes targeted for the overproduction of A&D include the biosynthetic pathway genes, trichome development genes and rol genes, etc. Artemisinin is naturally produced in trichomes of leaves. At the same time, transgenic hairy roots are considered a good source to harvest artemisinin. However, the absence of trichomes in hairy roots suggests that artemisinin biosynthesis is not limited to trichomes. Moreover, the expression of the gene involved in trichome development and sesquiterpenoid biosynthesis (TFAR1) in transgenic and non-transgenic roots provokes researchers to look for new insight of artemisinin biosynthesis. Here we discuss and review precisely the various biotechnological approaches for the enhanced biosynthesis of A&D.
Collapse
Affiliation(s)
- Waqas Khan Kayani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 230 53 Alnarp, Sweden
| | - Bushra Hafeez Kiani
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, 45320 Pakistan
| | - Erum Dilshad
- Department of Biosciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| |
Collapse
|
49
|
Pedraza-de la Cuesta S, Keijzers L, van der Wielen LAM, Cuellar MC. Integration of Gas Enhanced Oil Recovery in Multiphase Fermentations for the Microbial Production of Fuels and Chemicals. Biotechnol J 2018; 13:e1700478. [DOI: 10.1002/biot.201700478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/21/2017] [Indexed: 11/07/2022]
Affiliation(s)
| | - Lore Keijzers
- Department of Biotechnology, Delft University of Technology; van der Maasweg 9 2629HZ Delft The Netherlands
| | - Luuk A. M. van der Wielen
- Department of Biotechnology, Delft University of Technology; van der Maasweg 9 2629HZ Delft The Netherlands
- Bernal Institute, University of Limerick; Castletroy Limerick Ireland
- BE-Basic Foundation; Mijnbouwstraat 120 2628 RX Delft The Netherlands
| | - Maria C. Cuellar
- Department of Biotechnology, Delft University of Technology; van der Maasweg 9 2629HZ Delft The Netherlands
| |
Collapse
|
50
|
Park SY, Yang D, Ha SH, Lee SY. Metabolic Engineering of Microorganisms for the Production of Natural Compounds. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700190] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seon Young Park
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Shin Hee Ha
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
- BioProcess Engineering Research Center; KAIST; Daejeon 34141 Republic of Korea
- BioInformatics Research Center; KAIST; Daejeon 34141 Republic of Korea
| |
Collapse
|