1
|
Yang W, Zhang J, Xiao Y, Li W, Wang T. Screening Strategies for High-Yield Chinese Hamster Ovary Cell Clones. Front Bioeng Biotechnol 2022; 10:858478. [PMID: 35782513 PMCID: PMC9247297 DOI: 10.3389/fbioe.2022.858478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are by far the most commonly used mammalian expression system for recombinant expression of therapeutic proteins in the pharmaceutical industry. The development of high-yield stable cell lines requires processes of transfection, selection, screening and adaptation, among which the screening process requires tremendous time and determines the level of forming highly productive monoclonal cell lines. Therefore, how to achieve productive cell lines is a major question prior to industrial manufacturing. Cell line development (CLD) is one of the most critical steps in the production of recombinant therapeutic proteins. Generation of high-yield cell clones is mainly based on the time-consuming, laborious process of selection and screening. With the increase in recombinant therapeutic proteins expressed by CHO cells, CLD has become a major bottleneck in obtaining cell lines for manufacturing. The basic principles for CLD include preliminary screening for high-yield cell pool, single-cell isolation and improvement of productivity, clonality and stability. With the development of modern analysis and testing technologies, various screening methods have been used for CLD to enhance the selection efficiency of high-yield clonal cells. This review provides a comprehensive overview on preliminary screening methods for high-yield cell pool based on drug selective pressure. Moreover, we focus on high throughput methods for isolating high-yield cell clones and increasing the productivity and stability, as well as new screening strategies used for the biopharmaceutical industry.
Collapse
Affiliation(s)
- Wenwen Yang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Junhe Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Tianyun Wang, ; Junhe Zhang,
| | - Yunxi Xiao
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Wenqing Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tianyun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- *Correspondence: Tianyun Wang, ; Junhe Zhang,
| |
Collapse
|
2
|
Raigani M, Barkhordari F, Moazzami R, Davami F, Mahboudi F. Optimization of expression yield in a stable cell line expressing a novel mutated chimeric tissue plasminogen activator (mt-PA). BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Zou Z, Spencer M, Sun PD. Developing a secretory AcGFP1-based IRES expression system for efficient production of mammalian recombinant proteins. Protein Expr Purif 2021; 192:106029. [PMID: 34920134 DOI: 10.1016/j.pep.2021.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
To generate stable cell lines that express high levels of recombinant genes often requires screening of a large number of transfected cells using ELISA. The most widely used alternative to ELISA screening is to use an intracellularly expressed GFP reporter construct which allows sorting of recombinant gene expression cells based on GFP fluorescence intensity. The disadvantage of cell sorting, however, is that the resulting population will be polyclonal with the danger of instability and overgrowth of low producers. In addition, GFP or its variants can be toxic to host cells at high concentrations, and thus may reduce growth and robustness of high producer cells or even cause them to become apoptotic. We have developed a new mammalian expression system in which a recombinant protein and a fluorescence protein, AcGFP1, are expressed on the same plasmid separated by an internal ribosome entry site (IRES). A signal peptide was incorporated upstream of AcGFP1 so that the fluorescent protein is secreted from cells, preventing cellular toxicity from intracellular accumulation and enabling convenient and accurate measurement of the protein. Expression tests of Ebola viral envelope GP1 and HIV gp120 proteins using this expression system in 293-H cells showed recombinant protein expression levels were closely correlated with AcGFP1 yield. Therefore, AcGFP1 can serve as an accurate reporter for recombinant protein expression and measuring AcGFP1 concentration provides a convenient, product independent and universal way for efficient clone screening.
Collapse
Affiliation(s)
- Zhongcheng Zou
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Matthew Spencer
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Peter D Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
4
|
Li GB, Pollard J, Liu R, Stevens RC, Quiroz J, Nelson MC, Manahan M, Murgolo N, Ehrick RS, Wallenstein EJ, Hughes J, Tsao YS, Zhao J, Du Z, Tugcu N, Pollard D. Retrospective assessment of clonality of a legacy cell line by analytical subcloning of the master cell bank. Biotechnol Prog 2021; 38:e3215. [PMID: 34586757 DOI: 10.1002/btpr.3215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022]
Abstract
In recent years, assurance of clonality of the production cell line has been emphasized by health authorities during review of regulatory submissions. When insufficient assurance of clonality is provided, augmented control strategies may be required for a commercial production process. In this study, we conducted a retrospective assessment of clonality of a legacy cell line through analysis of subclones from the master cell bank (MCB). Twenty-four subclones were randomly selected based on a predetermined acceptance sampling plan. All these subclones share a conserved integration junction, thus providing a high level of assurance that the cell population in the MCB was derived from a single progenitor cell. However, Southern blot analysis indicates that at least four subpopulations possibly exist in the MCB. Additional characterization of these four subpopulations demonstrated that the resulting changes in product quality attributes of some subclones are not related to the genetic heterogeneity observed in Southern blot hybridization. Furthermore, process consistency, process comparability, and analytical comparability have been demonstrated in batches produced across varying manufacturing processes, scales, facilities, cell banks, and cell ages. Finally, process and product consistency together with a high level of assurance of clonal origin of the MCB helped clear the hurdle for regulatory approval without requirement of additional control strategies.
Collapse
Affiliation(s)
- Guanghua Benson Li
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jennifer Pollard
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Ren Liu
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Richard C Stevens
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jorge Quiroz
- Research CMC Statistics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Michael C Nelson
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Matthew Manahan
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Nicholas Murgolo
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Robin S Ehrick
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Eric J Wallenstein
- Biologics Process Development & Commercialization, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jason Hughes
- Global Research IT, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Yung-Shyeng Tsao
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jia Zhao
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Zhimei Du
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Nihal Tugcu
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - David Pollard
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
5
|
Meyer KV, Siller IG, Schellenberg J, Gonzalez Salcedo A, Solle D, Matuszczyk J, Scheper T, Bahnemann J. Monitoring cell productivity for the production of recombinant proteins by flow cytometry: An effective application using the cold capture assay. Eng Life Sci 2021; 21:288-293. [PMID: 33976601 PMCID: PMC8092981 DOI: 10.1002/elsc.202000049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 11/07/2022] Open
Abstract
Due to the increasing economic and social relevance of biotherapeutics, their production processes are continually being reconsidered and reoptimized in an effort to secure higher product concentrations and qualities. Monitoring the productivity of cultured cells is therefore a critically important part of the cultivation process. Traditionally, this is achieved by determining the overall product titer by high performance liquid chromatography (HPLC), and then calculating the specific cell productivity based on this titer and an associated viable cell density. Unfortunately, this process is typically time-consuming and laborious. In this study, the productivity of Chinese Hamster Ovary (CHO) cells expressing a monoclonal antibody was analyzed over the course of the cultivation process. In addition to calculating the specific cell productivity based on the traditional product titer determined by HPLC analysis, culture productivity of single cells was also analyzed via flow cytometry using a cold capture assay. The cold capture assay is a cell surface labelling technique described by Brezinsky et al., which allows for the visualization of a product on the surface of the producing cell. The cell productivity results obtained via HPLC and the results of cold capture assay remained in great accordance over the whole cultivation process. Accordingly, our study demonstrates that the cold capture assay offers an interesting, comparatively time-effective, and potentially cheaper alternative for monitoring the productivity of a cell culture.
Collapse
Affiliation(s)
- Katharina V. Meyer
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Ina G. Siller
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Jana Schellenberg
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | | | - Dörte Solle
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | | | - Thomas Scheper
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Janina Bahnemann
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| |
Collapse
|
6
|
Weinguny M, Klanert G, Eisenhut P, Lee I, Timp W, Borth N. Subcloning induces changes in the DNA-methylation pattern of outgrowing Chinese hamster ovary cell colonies. Biotechnol J 2021; 16:e2000350. [PMID: 33484505 DOI: 10.1002/biot.202000350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most extensively used mammalian production system for biologics intended for use in humans. A critical step in the establishment of production cell lines is single cell cloning, with the objective of achieving high productivity and product quality. Despite general use, knowledge of the effects of this process is limited. Importantly, single cell cloned cells display a wide array of observed phenotypes, which so far was attributed to the instability and variability of the CHO genome. In this study we present data indicating that the emergence of diverse phenotypes during single cell cloning is associated with changes in DNA methylation patterns and transcriptomes that occur during the subcloning process. The DNA methylation pattern of each analyzed subclone, randomly picked from all outgrowing clones of the experiment, had unique changes preferentially found in regulatory regions of the genome such as enhancers, and de-enriched in actively transcribed sequences (not including the respective promoters), indicating that these changes resulted in adaptations of the relative gene expression pattern. The transcriptome of each subclone also had a significant number of individual changes. These results indicate that epigenetic regulation is a hidden, but important player in cell line development with a major role in the establishment of high performing clones with improved characteristics for bioprocessing.
Collapse
Affiliation(s)
- Marcus Weinguny
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Gerald Klanert
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Peter Eisenhut
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Isac Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - Nicole Borth
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
7
|
Aebischer-Gumy C, Moretti P, Ollier R, Ries Fecourt C, Rousseau F, Bertschinger M. SPLICELECT™: an adaptable cell surface display technology based on alternative splicing allowing the qualitative and quantitative prediction of secreted product at a single-cell level. MAbs 2021; 12:1709333. [PMID: 31955651 PMCID: PMC6973322 DOI: 10.1080/19420862.2019.1709333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We describe a mammalian expression construct (SPLICELECT™) that allows the redirection of a proportion of a secreted protein onto the cell surface using alternative splicing: whereas the majority of the RNA is spliced into a transcript encoding a secreted protein, a weak splice donor site yields a secondary transcript encoding, in addition, a C-terminal transmembrane domain. The different sequence elements can be modified in order to modulate the level of cell surface display and of secretion in an independent manner. In this work, we demonstrated that the cell surface display of stable cell lines is correlated with the level of the secreted protein of interest, but also with the level of heterodimerization in the case of a bispecific antibody. It was also shown that this construct may be useful for rapid screening of multiple antibody candidates in binding assays following transient transfection. Thus, the correlation of product quantity and quality of the secreted and of membrane-displayed product in combination with the flexibility of the construct with regards to cell surface display/secretion levels make SPLICELECT™ a valuable tool with many potential applications, not limited to industrial cell line development or antibody engineering.
Collapse
Affiliation(s)
- Christel Aebischer-Gumy
- Cell Sciences, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Pierre Moretti
- Cell Sciences, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Romain Ollier
- Antibody Engineering, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Christelle Ries Fecourt
- Antibody Engineering, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - François Rousseau
- Antibody Engineering, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Martin Bertschinger
- Cell Sciences, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| |
Collapse
|
8
|
Puente-Massaguer E, Grau-Garcia P, Strobl F, Grabherr R, Striedner G, Lecina M, Gòdia F. Accelerating HIV-1 VLP production using stable High Five insect cell pools. Biotechnol J 2020; 16:e2000391. [PMID: 33247883 DOI: 10.1002/biot.202000391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/21/2020] [Indexed: 12/25/2022]
Abstract
Stable cell pools are receiving a renewed interest as a potential alternative system to clonal cell lines. The shorter development timelines and the capacity to achieve high product yields make them an interesting approach for recombinant protein production. In this study, stable High Five cell pools are assessed for the production of a simple protein, mCherry, and the more complex HIV-1 Gag-eGFP virus-like particles (VLPs). Random integration coupled to fluorescence-activated cell sorting (FACS) in suspension conditions is applied to accelerate the stable cell pool generation process and enrich it with high producer cells. This methodology is successfully transferred to a bioreactor for VLP production, resulting in a 2-fold increase in VLP yields with respect to shake flask cultures. In these conditions, maximum viable cell concentration improves by 1.5-fold, and by-product formation is significantly reduced. Remarkably, a global increase in the uptake of amino acids in the Gag-eGFP stable cell pool is observed when compared with parental High Five cells, reflecting the additional metabolic burden associated with VLP production. These results suggest that stable High Five cell pools are a robust and powerful approach to produce VLPs and other recombinant proteins, and put the basis for future studies aiming to scale up this system.
Collapse
Affiliation(s)
- Eduard Puente-Massaguer
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Paula Grau-Garcia
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Florian Strobl
- Austrian Centre of Industrial Biotechnology (acib GmbH), Vienna, 1010, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Martí Lecina
- IQS School of Engineering, Universitat Ramón Llull, Barcelona, 08017, Spain
| | - Francesc Gòdia
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
9
|
Weinguny M, Klanert G, Eisenhut P, Jonsson A, Ivansson D, Lövgren A, Borth N. Directed evolution approach to enhance efficiency and speed of outgrowth during single cell subcloning of Chinese Hamster Ovary cells. Comput Struct Biotechnol J 2020; 18:1320-1329. [PMID: 32612755 PMCID: PMC7306589 DOI: 10.1016/j.csbj.2020.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023] Open
Abstract
Chinese Hamster Ovary (CHO) cells are the working horse of the pharmaceutical industry. To obtain high producing cell clones and to satisfy regulatory requirements single cell cloning is a necessary step in cell line development. However, it is also a tedious, labor intensive and expensive process. Here we show an easy way to enhance subclonability using subcloning by single cell sorting itself as the selection pressure, resulting in improved subcloning performance of three different host cell lines. These improvements in subclonability also lead to an enhanced cellular growth behavior during standard batch culture. RNA-seq was performed to shed light on the underlying mechanisms, showing that there is little overlap in differentially expressed genes or associated pathways between the cell lines, each finding their individual strategy for optimization. However, in all three cell lines pathways associated with the extracellular matrix were found to be enriched, indicating that cells struggle predominantly with their microenvironment and possibly lack of cell-to-cell contact. The observed small overlap may hint that there are multiple ways for a cell line to achieve a certain phenotype due to numerous genetic and subsequently metabolic redundancies.
Collapse
Key Words
- CHO
- CHO cells
- CHO, Chinese hamster ovary
- Cell line development
- Cell sorting
- Chinese Hamster Ovary Cells
- CoI, clusters of interest
- DE, directed evolved
- Directed Evolution
- ECM, extracellular matrix
- ES, enrichment score
- FACS
- FACS, fluorescent-activated cell sorting
- Fluorescent-activated cell sorting
- GSEA, gene set analysis
- Growth enhancement
- Growth improvement
- LDC, limiting dilution cloning
- NES, negative enrichment score
- PC, principal component
- PCA, principal component analysis
- POI, product of interest
- RNA Sequencing
- RNA-Seq
- RNA-Seq, RNA sequencing
- SCC, single cell cloning
- Single Cell Cloning
- Single Cell Subcloning
- Subcloning
- lfcSE, logfoldstandard error
Collapse
Affiliation(s)
- Marcus Weinguny
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Gerald Klanert
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Peter Eisenhut
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | | | | | | | - Nicole Borth
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
- Corresponding author at: Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
10
|
Rassouli H, Sayadmanesh A, Rezaeiani S, Ghezelayagh Z, Gharaati MR, Tahamtani Y. An Easy and Fast Method for Production of Chinese Hamster Ovary Cell Line Expressing and Secreting Human Recombinant Activin A. CELL JOURNAL 2019; 22:140-148. [PMID: 31721527 PMCID: PMC6874793 DOI: 10.22074/cellj.2020.6580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/10/2019] [Indexed: 11/25/2022]
Abstract
Objective Growth factors are key elements of embryonic stem cell (ESC) research. Cell line development in eukaryotes
is a time-consuming procedure which usually takes 12-18 months. Here, we report an easy and fast method with which
production of Chinese hamster ovary (CHO) cells that express and secrete recombinant Activin A, as a major growth
factor in endo/mesoderm differentiation of embryonic stem cells is achieved within 3-4 weeks.
Materials and Methods In this experimental study, we cloned human Activin A into the pDONR/Zeo gateway entry
vector using the BP reaction. Activin A was subcloned next into the pLIX_403 and pLenti6.3/TO/V5-DEST destination
vectors by the LR reaction. The result was the production of constructs with which 293T cells were finally transfected
for virus production. CHO cells were transduced using viral particles to produce a cell line that secretes the His6- Activin
A fusion protein.
Results We developed a quick protocol which saves up to 3-4 weeks of time for producing recombinant proteins in
CHO cells. The recombinant cell line produced 90 mg/L of functional Activin A measured in human ESC line Royan H5
(RH5), during in vitro differentiation into meso-endoderm and definitive endoderm.
Conclusion Our results showed no significant differences in functionality between commercial Activin A and the one
produced using our novel protocol. This approach can be easily used for producing recombinant proteins in CHO.
Collapse
Affiliation(s)
- Hassan Rassouli
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic Address: .,Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Ali Sayadmanesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic Address
| | - Siamak Rezaeiani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Ghezelayagh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mohammad Reza Gharaati
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran. Electronic Address:
| |
Collapse
|
11
|
Li X, Zhang Y, Jing L, Fu Z, Ma O, Ganguly J, Vaidya N, Sisson R, Naginskaya J, Chinthala A, Cui M, Yamagata R, Wilson M, Sanders M, Wang Z, Lo Surdo P, Bugno M. Integration of high-throughput analytics and cell imaging enables direct early productivity and product quality assessment during Chinese Hamster ovary cell line development for a complex multi-subunit vaccine antigen. Biotechnol Prog 2019; 36:e2914. [PMID: 31568688 DOI: 10.1002/btpr.2914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/14/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Mammalian cell line generation typically includes stable pool generation, single cell cloning and several rounds of clone selection based on cell growth, productivity and product quality criteria. Individual clone expansion and phenotype-based ranking is performed initially for hundreds or thousands of mini-scale cultures, representing the major operational challenge during cell line development. Automated cell culture and analytics systems have been developed to enable high complexity clone selection workflows; while ensuring traceability, safety, and quality of cell lines intended for biopharmaceutical applications. Here we show that comprehensive and quantitative assessment of cell growth, productivity, and product quality attributes are feasible at the 200-1,200 cell colony stage, within 14 days of the single cell cloning in static 96-well plate culture. The early cell line characterization performed prior to the clone expansion in suspension culture can be used for a single-step, direct selection of high quality clones. Such clones were comparable, both in terms of productivity and critical quality attributes (CQAs), to the top-ranked clones identified using an established iterative clone screening approach. Using a complex, multi-subunit antigen as a model protein, we observed stable CQA profiles independently of the cell culture format during the clonal expansion as well as in the batch and fed-batch processes. In conclusion, we propose an accelerated clone selection approach that can be readily incorporated into various cell line development workstreams, leading to significant reduction of the project timelines and resource requirements.
Collapse
Affiliation(s)
- Xiangming Li
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Yujian Zhang
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Li Jing
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Zongming Fu
- GSK, US Technical R&D, Analytical Research and Development, Rockville, Maryland
| | - Ou Ma
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Jishna Ganguly
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Nilesh Vaidya
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Richard Sisson
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | | | | | - Minggang Cui
- GSK, US Technical R&D, CMC Statistical Sciences, Rockville, Maryland
| | - Ryan Yamagata
- GSK, US Technical R&D, CMC Statistical Sciences, Rockville, Maryland
| | - Mark Wilson
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | | | - Zihao Wang
- GSK, US Technical R&D, Analytical Research and Development, Rockville, Maryland
| | - Paola Lo Surdo
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Marcin Bugno
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| |
Collapse
|
12
|
Optimized dual assay for the transgenes selection and screening in CHO cell line development for recombinant protein production. Biotechnol Lett 2019; 41:929-939. [PMID: 31321593 DOI: 10.1007/s10529-019-02711-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To develop a simple robust methodology of screening multiple CHO cell clones secreting recombinant proteins to assess their specific productivity. RESULTS We developed a dual assay based on immunoassay measurements of a recombinant protein expression combined with staining of viable cells with resazurin. Following this approach, colonies can be simultaneously assessed for cell growth rate and for production of a recombinant protein. Combination of these two assays enables to estimate productivity of a recombinant protein per cell from the very early stages of a cell line development process (CLD) and exclude poor producers from further steps. Comparison of the dual assay with a standard CLD protocol followed by only analysis of protein expression level showed at least 10-20% increase in the amount of clones that can be included into pool of high-producers at early stages. This shortens duration of a typical CLD scheme from 23 to 19 weeks. CONCLUSIONS Our method: (i) allows to include into workflow clones that demonstrate slow growth during single cell cloning but producing high amounts of a target protein, which otherwise would be lost in standard protocols of cells screening; (ii) can be applied for testing of DNA vectors for transfection and protein production; (iii) can be used for monitoring the heterogeneity of cell population and analysis of stable pools productivity.
Collapse
|
13
|
Pekle E, Smith A, Rosignoli G, Sellick C, Smales CM, Pearce C. Application of Imaging Flow Cytometry for the Characterization of Intracellular Attributes in Chinese Hamster Ovary Cell Lines at the Single-Cell Level. Biotechnol J 2019; 14:e1800675. [PMID: 30925020 DOI: 10.1002/biot.201800675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/21/2019] [Indexed: 11/07/2022]
Abstract
Biopharmaceutical manufacturing using Chinese hamster ovary (CHO) cells requires the generation of high-producing clonal cell lines. During cell line development, cell cloning using fluorescence-activated cell sorting (FACS) has the potential to combine isolation of single cells with sorting based on specific cellular attributes that correlate with productivity and/or growth, identifying cell lines with desirable phenotypes for manufacturing. This study describes the application of imaging flow cytometry (IFC) to characterize recombinant cell lines at the single-cell level to identify cell attributes predictive of productivity. IFC assays are developed to quantify the organelle content and recombinant heavy-chain (HC) and light-chain (LC) polypeptide as well as messenger RNA (mRNA) amounts in single cells. The assays are then validated against orthogonal standard flow cytometry, western blot, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) methods. The authors describe how these IFC assays may be used in cell line development and show how cellular properties can be correlated with productivity at the single-cell level, allowing the isolation of such cells during the cloning process. From the analysis, HC polypeptide and mRNA are found to be predictive of productivity early in the culture; however, specific organelle content did not show any correlation with productivity.
Collapse
Affiliation(s)
- Eva Pekle
- MedImmune, Granta Park, Cambridge, CB21 6GH, UK.,Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | | | | | - C M Smales
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | |
Collapse
|
14
|
Van der Weken H, Cox E, Devriendt B. Rapid production of a chimeric antibody-antigen fusion protein based on 2A-peptide cleavage and green fluorescent protein expression in CHO cells. MAbs 2019; 11:559-568. [PMID: 30694096 PMCID: PMC6512901 DOI: 10.1080/19420862.2019.1574531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/04/2019] [Accepted: 01/21/2019] [Indexed: 01/22/2023] Open
Abstract
To enable large-scale antibody production, the creation of a stable, high producer cell line is essential. This process often takes longer than 6 months using standard limited dilution techniques and is very labor intensive. The use of a tri-cistronic vector expressing green fluorescent protein (GFP) and both antibody chains, separated by a GT2A peptide sequence, allows expression of all proteins under a single promotor in equimolar ratios. By combining the advantages of 2A peptide cleavage and single cell sorting, a chimeric antibody-antigen fusion protein that contained the variable domains of mouse IgG with a porcine IgA constant domain fused to the FedF antigen could be produced in CHO-K1 cells. After transfection, a strong correlation was found between antibody production and GFP expression (r = 0.69) using image analysis of formed monolayer patches. This enables the rapid selection of GFP-positive clones using automated image analysis for the selection of high producer clones. This vector design allowed the rapid selection of high producer clones within a time-frame of 4 weeks after transfection. The highest producing clone had a specific antibody productivity of 2.32 pg/cell/day. Concentrations of 34 mg/L were obtained using shake-flask batch culture. The produced recombinant antibody showed stable expression, binding and minimal degradation. In the future, this antibody will be assessed for its effectiveness as an oral vaccine antigen.
Collapse
Affiliation(s)
- Hans Van der Weken
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| |
Collapse
|
15
|
Kaneyoshi K, Yamano-Adachi N, Koga Y, Uchiyama K, Omasa T. Analysis of the immunoglobulin G (IgG) secretion efficiency in recombinant Chinese hamster ovary (CHO) cells by using Citrine-fusion IgG. Cytotechnology 2019; 71:193-207. [PMID: 30610509 PMCID: PMC6368511 DOI: 10.1007/s10616-018-0276-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
Biopharmaceuticals represented by immunoglobulin G (IgG) are produced by the cultivation of recombinant animal cells, especially Chinese hamster ovary (CHO) cells. It is thought that the intracellular secretion process of IgG is a bottleneck in the production of biopharmaceuticals. Many studies on the regulation of endogenous secretory protein expression levels have shown improved productivity. However, these strategies have not universally improved the productivity of various proteins. A more rational and efficient establishment of high producer cells is required based on an understanding of the secretory processes in IgG producing CHO cells. In this study, a CHO cell line producing humanized IgG1, which was genetically fused with fluorescent proteins, was established to directly analyze intracellular secretion. The relationship between the amount of intracellular and secreted IgG was analyzed at the single cell level by an automated single-cell analysis and isolation system equipped with dual color fluorescent filters. The amounts of intracellular and secreted IgG showed a weak positive correlation. The amount of secreted IgG analyzed by the system showed a weak negative linear correlation with the specific growth of isolated clones. An immunofluorescent microscopy study showed that the established clones could be used to analyze the intracellular secretion bottleneck. This is the first study to report the use of fluorescent protein fusion IgG as a tool to analyze the secretion of recombinant CHO cells.
Collapse
Affiliation(s)
- Kohei Kaneyoshi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
- Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-Minamimachi, Kobe, Hyogo, 6500047, Japan
| | - Yuichi Koga
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Keiji Uchiyama
- The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 7708503, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan.
- Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-Minamimachi, Kobe, Hyogo, 6500047, Japan.
| |
Collapse
|
16
|
Ramezani A, Ghaderi A. Using a Dihydrofolate Reductase-Based Strategy for Producing the Biosimilar Version of Pertuzumab in CHO-S Cells. Monoclon Antib Immunodiagn Immunother 2018; 37:26-37. [DOI: 10.1089/mab.2017.0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Orellana CA, Marcellin E, Gray PP, Nielsen LK. Overexpression of the regulatory subunit of glutamate-cysteine ligase enhances monoclonal antibody production in CHO cells. Biotechnol Bioeng 2017; 114:1825-1836. [PMID: 28436007 DOI: 10.1002/bit.26316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/09/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023]
Abstract
For decades, Chinese hamster ovary (CHO) cells have been the preferred host for therapeutic monoclonal antibody (mAb) production; however, increasing mAb titer by rational engineering remains a challenge. Our previous proteomic analysis in CHO cells suggested that a higher content of glutathione (GSH) might be related to higher productivity. GSH is an important antioxidant, cell detoxifier, and is required to ensure the formation of native disulfide bonds in proteins. To investigate the involvement of GSH in mAb production, we generated stable CHO cell lines overexpressing genes involved in the first step of GSH synthesis; namely the glutamate-cysteine ligase catalytic subunit (Gclc) and the glutamate-cysteine ligase modifier subunit (Gclm). The two genes were reconstructed from our RNA-Seq de novo assembly and then were functionally annotated. Once the sequences of the genes were confirmed using proteogenomics, a transiently expressed mAb was introduced into cell lines overexpressing either Gclc or Gclm. The new cell lines were compared for mAb production to the parental cell line and changes at the proteome level were measured using SWATH. As per our previous proteomics observations, overexpressing Gclm improved productivity, titer, and the frequency of high producer clones by 70%. In contrast, overexpressing Gclc, which produced a higher amount of GSH, did not increase mAb production. We show that GSH cannot be linked to higher productivity and that Gclm may be controlling other cellular processes involved in mAb production yet to be elucidated. Biotechnol. Bioeng. 2017;114: 1825-1836. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Camila A Orellana
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter P Gray
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
18
|
Peng L, Xiong W, Cai Y, Chen Y, He Y, Yang J, Jin J, Li H. A simple, rapid method for evaluation of transfection efficiency based on fluorescent dye. Bioengineered 2017; 8:225-231. [PMID: 27676288 PMCID: PMC5470522 DOI: 10.1080/21655979.2016.1222995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/05/2016] [Accepted: 08/07/2016] [Indexed: 12/13/2022] Open
Abstract
Enhanced transfection efficiency of transient gene expression (TGE) and electroporation is a useful approach for improvement of recombinant therapeutic proteins in mammalian cells. A novel method is described here in which CHO cells expressing recombinant FVII (rFVII) were labeled with fluorescent dye and analyzed by confocal microscopy. Cells with or without rFVII encoding gene were detectable by flow cytometry. Thus, we were able to distinguish positive cells (with rFVII encoding gene) and quantify their percentages. We evaluated the effects of varying electroporation conditions (voltage, number of repetitions, plasmid amount, carrier DNA) in order to optimize transfection efficiency. The highest transfection efficiency achieved was ∼86%. The method described here allows rapid evaluation of transfection efficiency without co-expression of reporter genes. In combination with appropriate antibodies, the method can be extended to evaluation of transfection efficiency in cells expressing other recombinant proteins.
Collapse
Affiliation(s)
- Lin Peng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wendian Xiong
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Yanfei Cai
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Yun Chen
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Yang He
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianfeng Yang
- Cyrus Tang Hematology Center and Ministry of Education Engineering Center of Hematological Disease, Soochow University, Suzhou, China
| | - Jian Jin
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Huazhong Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Chen C, Liang H, Liao X, Pan J, Chen J, Zhao S, Xu Y, Wu Y, Ni J. A humanized chimeric antibody Hai178 targeted to the β subunit of F1F0 ATP synthase. Tumour Biol 2016; 37:10.1007/s13277-016-5423-1. [PMID: 27704358 DOI: 10.1007/s13277-016-5423-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 09/23/2016] [Indexed: 01/08/2023] Open
Abstract
Inhibition of tumor vasculature is an effective strategy for cancer therapy. Angiostatin could suppress tumor growth and metastasis by binding and inhibiting F1F0 ATP synthase on the endothelial cell surface. We previously screened a monoclonal antibody (McAb, McAb178-5G10), which specifically bound to ATPase on the surface of cells and showed an angiostatin-like activity. Here, we further generated a panel of CHO-mAb subclone stable expressing a humanized chimeric antibody from hybridoma cell McAb178-5G10 by gene engineer. And then, we successfully expressed the humanized antibody Hai178 at high level in a 5-L wave bioreactor. The vitro results showed that Hai178 retained the specific binding and antitumor activity of murine antibody. Furthermore, Hai178 also had a tumor therapeutic effect in tumor xenografts. These results paved the way for Hai178 as a therapeutic antibody in clinic.
Collapse
Affiliation(s)
- Chen Chen
- Translational Research Center, Second Hospital, The Second Clinical School, Nanjing Medical University, Nanjing, China
| | - Hui Liang
- Human Antibodomics Suzhou Industrial Park, Suzhou, China.
| | - Xinmei Liao
- Human Antibodomics Suzhou Industrial Park, Suzhou, China
| | - Jian Pan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jianhe Chen
- Human Antibodomics Suzhou Industrial Park, Suzhou, China
| | - Shibi Zhao
- Human Antibodomics Suzhou Industrial Park, Suzhou, China
| | - Yan Xu
- Human Antibodomics Suzhou Industrial Park, Suzhou, China
| | - Yun Wu
- Human Antibodomics Suzhou Industrial Park, Suzhou, China
| | - Jian Ni
- Translational Research Center, Second Hospital, The Second Clinical School, Nanjing Medical University, Nanjing, China.
- Human Antibodomics Suzhou Industrial Park, Suzhou, China.
| |
Collapse
|
20
|
Priola JJ, Calzadilla N, Baumann M, Borth N, Tate CG, Betenbaugh MJ. High-throughput screening and selection of mammalian cells for enhanced protein production. Biotechnol J 2016; 11:853-65. [DOI: 10.1002/biot.201500579] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/09/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Joseph J. Priola
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore MD USA
| | - Nathan Calzadilla
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore MD USA
| | | | - Nicole Borth
- Department of Biotechnology; Universität für Bodenkultur; Vienna Austria
| | | | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore MD USA
| |
Collapse
|
21
|
Lang S, Drewello D, Wichter J, Nommay A, Wilms B, Knopf HP, Jostock T. Surface display vectors for selective detection and isolation of high level antibody producing cells. Biotechnol Bioeng 2016; 113:2386-93. [DOI: 10.1002/bit.26000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/30/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Sabine Lang
- Integrated Biologics Profiling; Novartis Pharma AG; Postfach CH-4002, Basel Switzerland
| | - Delia Drewello
- Integrated Biologics Profiling; Novartis Pharma AG; Postfach CH-4002, Basel Switzerland
| | - Johannes Wichter
- GBW/H, White Biotechnology Research-Microbiology; BASF; Ludwigshafen Germany
| | - Audrey Nommay
- Integrated Biologics Profiling; Novartis Pharma AG; Postfach CH-4002, Basel Switzerland
| | - Burkhard Wilms
- Integrated Biologics Profiling; Novartis Pharma AG; Postfach CH-4002, Basel Switzerland
| | - Hans-Peter Knopf
- Integrated Biologics Profiling; Novartis Pharma AG; Postfach CH-4002, Basel Switzerland
| | - Thomas Jostock
- Integrated Biologics Profiling; Novartis Pharma AG; Postfach CH-4002, Basel Switzerland
| |
Collapse
|
22
|
Misaghi S, Shaw D, Louie S, Nava A, Simmons L, Snedecor B, Poon C, Paw JS, Gilmour-Appling L, Cupp JE. Slashing the timelines: Opting to generate high-titer clonal lines faster via viability-based single cell sorting. Biotechnol Prog 2015; 32:198-207. [DOI: 10.1002/btpr.2204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/28/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Shahram Misaghi
- Dept. of Early Stage Cell Culture; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | - David Shaw
- Dept. of Early Stage Cell Culture; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | - Salina Louie
- Dept. of Early Stage Cell Culture; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | - Adrian Nava
- Dept. of Early Stage Cell Culture; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | - Laura Simmons
- Dept. of Early Stage Cell Culture; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | - Brad Snedecor
- Dept. of Early Stage Cell Culture; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | - Chungkee Poon
- Dept. of Immunology; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | - Jonathan S. Paw
- Dept. of Immunology; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | | | - James E. Cupp
- Dept. of Immunology; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| |
Collapse
|
23
|
Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K. Cultivation strategies to enhance productivity of Pichia pastoris: A review. Biotechnol Adv 2015; 33:1177-93. [DOI: 10.1016/j.biotechadv.2015.05.008] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 05/11/2015] [Accepted: 05/25/2015] [Indexed: 12/14/2022]
|
24
|
Evans K, Albanetti T, Venkat R, Schoner R, Savery J, Miro-Quesada G, Rajan B, Groves C. Assurance of monoclonality in one round of cloning through cell sorting for single cell deposition coupled with high resolution cell imaging. Biotechnol Prog 2015; 31:1172-8. [PMID: 26195345 PMCID: PMC5054913 DOI: 10.1002/btpr.2145] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/08/2015] [Indexed: 12/17/2022]
Abstract
Regulatory authorities require that cell lines used in commercial production of recombinant proteins must be derived from a single cell progenitor or clone. The limiting dilution method of cell cloning required multiple rounds of low-density cell plating and microscopic observation of a single cell in order to provide evidence of monoclonality. Other cloning methods rely on calculating statistical probability of monoclonality rather than visual microscopic observation of cells. We have combined the single cell deposition capability of the Becton Dickinson Influx™ cell sorter with the microscopic imaging capability of the SynenTec Cellavista to create a system for producing clonal production cell lines. The efficiency of single cell deposition by the Influx™ was determined to be 98% using fluorescently labeled cells. The centrifugal force required to settle the deposited cells to the bottom of the microplate well was established to be 1,126g providing a 98.1% probability that all cells will be in the focal plane of the Cellavista imaging system. The probability that a single cell was deposited by the cell sorter combined with the probability of every cell settling into the focal plane of the imager yield a combined >99% probability of documented monoclonality.
Collapse
Affiliation(s)
- Krista Evans
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, MedImmune, Gaithersburg, MD , 20878
| | - Thomas Albanetti
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, MedImmune, Gaithersburg, MD , 20878
| | - Raghavan Venkat
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, MedImmune, Gaithersburg, MD , 20878
| | - Ronald Schoner
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, MedImmune, Gaithersburg, MD , 20878
| | - James Savery
- Data Management and Quantitative Sciences, MedImmune, Gaithersburg, MD , 20878
| | | | - Bhargavi Rajan
- Respiratory, Inflammation and Autoimmunity, MedImmune, Gaithersburg, MD , 20878
| | - Christopher Groves
- Respiratory, Inflammation and Autoimmunity, MedImmune, Gaithersburg, MD , 20878
| |
Collapse
|
25
|
Yu B, Wages JM, Larrick JW. Antibody-membrane switch (AMS) technology for facile cell line development. Protein Eng Des Sel 2014; 27:309-15. [DOI: 10.1093/protein/gzu039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Shi L, Chen X, Tang W, Li Z, Liu J, Gao F, Sang J. Combination of FACS and homologous recombination for the generation of stable and high-expression engineered cell lines. PLoS One 2014; 9:e91712. [PMID: 24646904 PMCID: PMC3960159 DOI: 10.1371/journal.pone.0091712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 02/14/2014] [Indexed: 11/30/2022] Open
Abstract
Traditionally, cell line generation requires several months and involves screening of over several hundred cell clones for high productivity before dozens are selected as candidate cell lines. Here, we have designed a new strategy for the generation of stable and high-expression cell lines by combining homologous recombination (HR) and fluorescence-activated cell sorting (FACS). High expression was indicated by the expression of secreted green fluorescent protein (SEGFP). Parental cell lines with the highest expression of SEGFP were then selected by FACS and identified by stability analysis. Consequently, HR vectors were constructed using the cassette for SEGFP as the HR region. After transfecting the HR vector, the cells with negative SEGFP expression were enriched by FACS. The complete exchange between SEGFP and target gene (TNFR-Fc) cassettes was demonstrated by DNA analysis. Compared with the traditional method, by integrating the cassette containing the gene of interest into the pre-selected site, the highest producing cells secreted a more than 8-fold higher titer of target protein. Hence, this new strategy can be applied to isolated stable cell lines with desirable expression of any gene of interest. The stable cell lines can rapidly produce proteins for researching protein structure and function and are even applicable in drug discovery.
Collapse
Affiliation(s)
- Lei Shi
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- R&D Department, AutekBio, Inc., Beijing, China
| | - Xuesi Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | - Zhenyi Li
- R&D Department, AutekBio, Inc., Beijing, China
| | - Jin Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Feng Gao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- R&D Department, AutekBio, Inc., Beijing, China
- * E-mail: (JS); (FG)
| | - Jianli Sang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- * E-mail: (JS); (FG)
| |
Collapse
|
27
|
Hou JJC, Hughes BS, Smede M, Leung KM, Levine K, Rigby S, Gray PP, Munro TP. High-throughput ClonePix FL analysis of mAb-expressing clones using the UCOE expression system. N Biotechnol 2014; 31:214-20. [PMID: 24518824 DOI: 10.1016/j.nbt.2014.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/21/2014] [Accepted: 02/02/2014] [Indexed: 10/25/2022]
Abstract
Therapeutic recombinant monoclonal antibodies (mAbs) are commonly produced by high-expressing, clonal, mammalian cells. Creation of these clones for manufacturing remains heavily reliant on stringent selection and gene amplification, which in turn can lead to genetic instability, variable expression, product heterogeneity and prolonged development timelines. Inclusion of cis-acting ubiquitous chromatin opening elements (UCOE™) in mammalian expression vectors has been shown to improve productivity and facilitate high-level gene expression irrespective of the chromosomal integration site without lengthy gene amplification protocols. In this study we have used high-throughput robotic clone selection in combination with UCOE™ containing expression vectors to develop a rapid, streamlined approach for early-stage cell line development and isolation of high-expressing clones for mAb production using Chinese hamster ovary (CHO) cells. Our results demonstrate that it is possible to go from transfection to stable clones in only 4 weeks, while achieving specific productivities exceeding 20 pg/cell/day. Furthermore, we have used this approach to quickly screen several process-crucial parameters including IgG subtype, enhancer-promoter combination and UCOE™ length. The use of UCOE™-containing vectors in combination with automated robotic selection provides a rapid method for the selection of stable, high-expressing clones.
Collapse
Affiliation(s)
- Jeff Jia Cheng Hou
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia.
| | - Ben S Hughes
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia
| | - Matthew Smede
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia
| | - Kar Man Leung
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia
| | - Kara Levine
- Pharm Chemical Solution (PCS), EMD Millipore, 2 Gill Street, Woburn, MA 01801, USA
| | - Susan Rigby
- Pharm Chemical Solution (PCS), EMD Millipore, 2 Gill Street, Woburn, MA 01801, USA
| | - Peter P Gray
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia
| | - Trent P Munro
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia
| |
Collapse
|
28
|
|
29
|
Mammalian Cell Line Developments in Speed and Efficiency. MAMMALIAN CELL CULTURES FOR BIOLOGICS MANUFACTURING 2013; 139:11-33. [DOI: 10.1007/10_2013_260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Ojala JRM, Pikkarainen T, Domogatskaya A, Tryggvason K, Rodin S. A novel scavenger receptor 5-based antibiotic-independent selection method for generation of stable recombinant protein-producing mammalian cell lines especially suitable for proteins affecting cell adhesion. Biotechniques 2012; 53:221-30. [DOI: 10.2144/0000113936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/24/2012] [Indexed: 11/23/2022] Open
Abstract
The establishment of stable recombinant protein-producing mammalian cell lines is an expensive, time-consuming, tedious procedure. In some cases, expressed recombinant proteins have adverse effects on host cell function, including cell adhesion. Based on the adhesive properties of SCARA5, a scavenger receptor (SR) of the class A SR family, we developed a method for selection of stable recombinant protein-producing cell clones that relies on an internal ribosome entry site (IRES) vector where the protein of interest is expressed in the same messenger RNA as SCARA5, resulting in improved adhesion and increased cell viability of recombinant protein-producing cells in serum-free media. This method does not depend on antibiotics, complicated selective cell culture media or equipment, and thus offers the advantages of being inexpensive, environmentally friendly, and simple.
Collapse
Affiliation(s)
- Juha Risto Matias Ojala
- Divisions of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Timo Pikkarainen
- Divisions of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Anna Domogatskaya
- Divisions of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Karl Tryggvason
- Divisions of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sergey Rodin
- Divisions of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
31
|
Kirchhoff J, Raven N, Boes A, Roberts JL, Russell S, Treffenfeldt W, Fischer R, Schinkel H, Schiermeyer A, Schillberg S. Monoclonal tobacco cell lines with enhanced recombinant protein yields can be generated from heterogeneous cell suspension cultures by flow sorting. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:936-44. [PMID: 22758383 DOI: 10.1111/j.1467-7652.2012.00722.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant cell suspension cultures can be used for the production of recombinant pharmaceutical proteins, but their potential is limited by modest production levels that may be unstable over long culture periods, reflecting initial culture heterogeneity and subsequent genetic and epigenetic changes. We used flow sorting to generate highly productive monoclonal cell lines from a heterogeneous population of tobacco BY-2 cells expressing the human antibody M12 by selecting the co-expressed fluorescent marker protein DsRed located on the same T-DNA. Separation yielded ∼35% wells containing single protoplasts and ∼15% wells with monoclonal microcolonies that formed within 2 weeks. Thus, enriching the population of fluorescent cells from initially 24% to 90-96% in the six monoclonal lines resulted in an up to 13-fold increase in M12 production that remained stable for 10-12 months. This is the first straightforward procedure allowing the generation of monoclonal plant cell suspension cultures by flow sorting, greatly increasing the potential of plant cells as an economical platform for the manufacture of recombinant pharmaceutical proteins.
Collapse
Affiliation(s)
- Janina Kirchhoff
- Plant Biotechnology Department, Fraunhofer Institute for Molecular Biology and Applied Ecology, Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dorvignit D, Palacios JL, Merino M, Hernández T, Sosa K, Casaco A, López-Requena A, Mateo de Acosta C. Expression and biological characterization of an anti-CD20 biosimilar candidate antibody: a case study. MAbs 2012; 4:488-96. [PMID: 22647435 DOI: 10.4161/mabs.20761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The CD20 molecule is a non-glycosylated protein expressed mainly on the surface of B lymphocytes. In some pathogenic B cells, it shows an increased expression, thus becoming an attractive target for diagnosis and therapy. Rituximab is a chimeric antibody that specifically recognizes the human CD20 molecule. This antibody is indicated for the treatment of non-Hodgkin lymphomas and autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. In this work, we describe the stable expression and biological evaluation of an anti-CD20 biosimilar antibody. While rituximab is produced in fed-batch culture of recombinant Chinese hamster ovary (CHO) cells, our biosimilar antibody expression process consists of continuous culture of recombinant murine NS0 myeloma cells. The ability of the purified biosimilar antibody to recognize the CD20 molecule on human tumor cell lines, as well as on peripheral blood mononuclear cells from humans and primates, was demonstrated by flow cytometry. The biosimilar antibody induced complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity and apoptosis on human cell lines with high expression of CD20. In addition, this antibody depleted CD20-positive B lymphocytes from peripheral blood in monkeys. These results indicate that the biological properties of the biosimilar antibody compare favorably with those of the innovator product, and that it should be evaluated in future clinical trials.
Collapse
Affiliation(s)
- Denise Dorvignit
- Immunobiology Department, Center of Molecular Immunology, Havana, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim YG, Park B, Ahn JO, Jung JK, Lee HW, Lee EG. New cell line development for antibody-producing Chinese hamster ovary cells using split green fluorescent protein. BMC Biotechnol 2012; 12:24. [PMID: 22587529 PMCID: PMC3428690 DOI: 10.1186/1472-6750-12-24] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/30/2012] [Indexed: 11/21/2022] Open
Abstract
Background The establishment of high producer is an important issue in Chinese hamster ovary (CHO) cell culture considering increased heterogeneity by the random integration of a transfected foreign gene and the altered position of the integrated gene. Fluorescence-activated cell sorting (FACS)-based cell line development is an efficient strategy for the selection of CHO cells in high therapeutic protein production. Results An internal ribosome entry site (IRES) was introduced for using two green fluorescence protein (GFP) fragments as a reporter to both antibody chains, the heavy chain and the light chain. The cells co-transfected with two GFP fragments showed the emission of green fluorescence by the reconstitution of split GFP. The FACS-sorted pool with GFP expression had a higher specific antibody productivity (qAb) than that of the unsorted pool. The qAb was highly correlated with the fluorescence intensity with a high correlation coefficient, evidenced from the analysis of median GFP and qAb in individual selected clones. Conclusions This study proved that the fragment complementation for split GFP could be an efficient indication for antibody production on the basis of high correlation of qAb with reconstitution of GFP. Taken together, we developed an efficient FACS-based screening method for high antibody-producing CHO cells with the benefits of the split GFP system.
Collapse
Affiliation(s)
- Yeon-Gu Kim
- Process Engineering Center, KRIBB, Daejeon 305-806, Korea
| | | | | | | | | | | |
Collapse
|
34
|
Kumar N, Borth N. Flow-cytometry and cell sorting: an efficient approach to investigate productivity and cell physiology in mammalian cell factories. Methods 2012; 56:366-74. [PMID: 22426008 DOI: 10.1016/j.ymeth.2012.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/26/2012] [Accepted: 03/05/2012] [Indexed: 01/07/2023] Open
Abstract
The performance of cell lines used for the production of biotherapeutic proteins typically depends on the number of cells in culture, their specific growth rate, their viability and the cell specific productivity (qP). Therefore both cell line development and process development are trying to (a) improve cell proliferation to reduce lag-phase and achieve high number of cells; (b) delay cell death to prolong the production phase and improve culture longevity; (c) and finally, increase qP. All of these factors, when combined in an optimised process, concur to increase the final titre and yield of the recombinant protein. As cellular performance is at the centre of any improvement, analysis methods that enable the characterisation of individual cells in their entirety can help in identifying cell types and culture conditions that perform exceptionally well. This observation of cells and their complexity is reflected by the term "cytomics" and flow cytometry is one of the methods used for this purpose. With its ability to analyse the distribution of physiological properties within a population and to isolate rare outliers with exceptional properties, flow cytometry ideally complements other methods used for optimisation, including media design and cell engineering. In the present review we describe approaches that could be used, directly or indirectly, to analyse and sort cellular phenotypes characterised by improved growth behaviour, reduced cell death or high qP and outline their potential use for cell line and process optimisation.
Collapse
Affiliation(s)
- Niraj Kumar
- Department of Biotechnology, BOKU University Vienna, Austria
| | | |
Collapse
|
35
|
Abstract
Many therapeutically relevant proteins, like IgG antibodies, are highly complex, multimeric glycoproteins that are difficult to express in microbial systems and thus usually produced in mammalian host cells. During the past two decades, stable mammalian expression technologies have made huge progress resulting in highly increased speed of cell line development and yield of manufacturing processes. Here, we give an overview of technologies that are applied at different stages of state-of-the-art cell line development processes for biomanufacturing.
Collapse
|
36
|
Park S, Han J, Kim W, Lee GM, Kim HS. Rapid selection of single cells with high antibody production rates by microwell array. J Biotechnol 2011; 156:197-202. [DOI: 10.1016/j.jbiotec.2011.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/10/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
|
37
|
Munro TP, Mahler SM, Huang EP, Chin DY, Gray PP. Bridging the gap: facilities and technologies for development of early stage therapeutic mAb candidates. MAbs 2011; 3:440-52. [PMID: 21822050 DOI: 10.4161/mabs.3.5.16968] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) currently dominate the biologics marketplace. Development of a new therapeutic mAb candidate is a complex, multistep process and early stages of development typically begin in an academic research environment. Recently, a number of facilities and initiatives have been launched to aid researchers along this difficult path and facilitate progression of the next mAb blockbuster. Complementing this, there has been a renewed interest from the pharmaceutical industry to reconnect with academia in order to boost dwindling pipelines and encourage innovation. In this review, we examine the steps required to take a therapeutic mAb from discovery through early stage preclinical development and toward becoming a feasible clinical candidate. Discussion of the technologies used for mAb discovery, production in mammalian cells and innovations in single-use bioprocessing is included. We also examine regulatory requirements for product quality and characterization that should be considered at the earliest stages of mAb development. We provide details on the facilities available to help researchers and small-biotech build value into early stage product development, and include examples from within our own facility of how technologies are utilized and an analysis of our client base.
Collapse
Affiliation(s)
- Trent P Munro
- The University of Queensland, Australian Institute of Bioengineering and Nanotechnology, Brisbane, QLD Australia.
| | | | | | | | | |
Collapse
|
38
|
Nguyen Q, Qi YM, Wu Y, Chan LC, Nielsen LK, Reid S. In vitro production of Helicoverpa baculovirus biopesticides—Automated selection of insect cell clones for manufacturing and systems biology studies. J Virol Methods 2011; 175:197-205. [DOI: 10.1016/j.jviromet.2011.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/02/2011] [Accepted: 05/10/2011] [Indexed: 01/09/2023]
|
39
|
Cairns VR, DeMaria CT, Poulin F, Sancho J, Liu P, Zhang J, Campos-Rivera J, Karey KP, Estes S. Utilization of non-AUG initiation codons in a flow cytometric method for efficient selection of recombinant cell lines. Biotechnol Bioeng 2011; 108:2611-22. [DOI: 10.1002/bit.23219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/13/2011] [Accepted: 05/05/2011] [Indexed: 11/08/2022]
|
40
|
Generation and screening of Pichia pastoris strains with enhanced protein production by use of microengraving. Appl Environ Microbiol 2011; 77:3154-6. [PMID: 21378037 DOI: 10.1128/aem.00104-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The selection of highly productive cell lines remains a key step for manufacturing therapeutic proteins. Microengraving was used to screen chemically mutagenized populations of Pichia pastoris for increased production of an Fc fragment. Clones retrieved following three rounds of mutagenesis yielded titers 2.65-fold greater than those of the parental strain.
Collapse
|
41
|
|
42
|
Oberbek A, Matasci M, Hacker DL, Wurm FM. Generation of stable, high-producing CHO cell lines by lentiviral vector-mediated gene transfer in serum-free suspension culture. Biotechnol Bioeng 2010; 108:600-10. [PMID: 20967750 DOI: 10.1002/bit.22968] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 09/22/2010] [Accepted: 09/30/2010] [Indexed: 12/13/2022]
Abstract
Lentivirus-derived vectors (LVs) were studied for the generation of stable recombinant Chinese hamster ovary (CHO) cell lines. Stable pools and clones expressing the enhanced green fluorescent protein (eGFP) were selected via fluorescence-activated cell sorting (FACS). For comparison, cell pools and cell lines were also generated by transfection, using the LV transfer plasmid alone. The level and stability of eGFP expression was greater in LV-transduced cell lines and pools than in those established by transfection. CHO cells were also infected at two different multiplicities of infection with an LV co-expressing eGFP and a tumor necrosis factor receptor:Fc fusion protein (TNFR:Fc). At 2-day post-infection, clonal cell lines with high eGFP-specific fluorescence were recovered by FACS. These clones co-expressed TNFR:Fc with yields of 50-250 mg/L in 4-day cultures. The recovered cell lines maintained stable expression over 3 months in serum-free suspension culture without selection. In conclusion, LV-mediated gene transfer provided an efficient alternative to plasmid transfection for the generation of stable and high-producing recombinant cell lines.
Collapse
Affiliation(s)
- Agata Oberbek
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Cellular Biotechnology, Lausanne, Switzerland
| | | | | | | |
Collapse
|
43
|
Codamo J, Munro TP, Hughes BS, Song M, Gray PP. Enhanced CHO Cell-Based Transient Gene Expression with the Epi-CHO Expression System. Mol Biotechnol 2010; 48:109-15. [DOI: 10.1007/s12033-010-9351-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the Dhfr-based CHO cell selection system. Biotechnol Adv 2010; 28:673-81. [DOI: 10.1016/j.biotechadv.2010.04.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/24/2010] [Accepted: 04/14/2010] [Indexed: 11/18/2022]
|
45
|
Rapid monitoring of recombinant antibody production by mammalian cell cultures using fourier transform infrared spectroscopy and chemometrics. Biotechnol Bioeng 2010; 106:432-42. [PMID: 20198655 DOI: 10.1002/bit.22707] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fourier transform infrared (FT-IR) spectroscopy combined with multivariate statistical analyses was investigated as a physicochemical tool for monitoring secreted recombinant antibody production in cultures of Chinese hamster ovary (CHO) and murine myeloma non-secreting 0 (NS0) cell lines. Medium samples were taken during culture of CHO and NS0 cells lines, which included both antibody-producing and non-producing cell lines, and analyzed by FT-IR spectroscopy. Principal components analysis (PCA) alone, and combined with discriminant function analysis (PC-DFA), were applied to normalized FT-IR spectroscopy datasets and showed a linear trend with respect to recombinant protein production. Loadings plots of the most significant spectral components showed a decrease in the C-O stretch from polysaccharides and an increase in the amide I band during culture, respectively, indicating a decrease in sugar concentration and an increase in protein concentration in the medium. Partial least squares regression (PLSR) analysis was used to predict antibody titers, and these regression models were able to predict antibody titers accurately with low error when compared to ELISA data. PLSR was also able to predict glucose and lactate amounts in the medium samples accurately. This work demonstrates that FT-IR spectroscopy has great potential as a tool for monitoring cell cultures for recombinant protein production and offers a starting point for the application of spectroscopic techniques for the on-line measurement of antibody production in industrial scale bioreactors.
Collapse
|
46
|
Pilbrough W, Munro TP, Gray P. Intraclonal protein expression heterogeneity in recombinant CHO cells. PLoS One 2009; 4:e8432. [PMID: 20037651 PMCID: PMC2793030 DOI: 10.1371/journal.pone.0008432] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 12/02/2009] [Indexed: 11/19/2022] Open
Abstract
Therapeutic glycoproteins have played a major role in the commercial success of biotechnology in the post-genomic era. But isolating recombinant mammalian cell lines for large-scale production remains costly and time-consuming, due to substantial variation and unpredictable stability of expression amongst transfected cells, requiring extensive clone screening to identify suitable high producers. Streamlining this process is of considerable interest to industry yet the underlying phenomena are still not well understood. Here we examine an antibody-expressing Chinese hamster ovary (CHO) clone at single-cell resolution using flow cytometry and vectors, which couple light and heavy chain transcription to fluorescent markers. Expression variation has traditionally been attributed to genetic heterogeneity arising from random genomic integration of vector DNA. It follows that single cell cloning should yield a homogeneous cell population. We show, in fact, that expression in a clone can be surprisingly heterogeneous (standard deviation 50 to 70% of the mean), approaching the level of variation in mixed transfectant pools, and each antibody chain varies in tandem. Phenotypic variation is fully developed within just 18 days of cloning, yet is not entirely explained by measurement noise, cell size, or the cell cycle. By monitoring the dynamic response of subpopulations and subclones, we show that cells also undergo slow stochastic fluctuations in expression (half-life 2 to 11 generations). Non-genetic diversity may therefore play a greater role in clonal variation than previously thought. This also has unexpected implications for expression stability. Stochastic gene expression noise and selection bias lead to perturbations from steady state at the time of cloning. The resulting transient response as clones reestablish their expression distribution is not ordinarily accounted for but can contribute to declines in median expression over timescales of up to 50 days. Noise minimization may therefore be a novel strategy to reduce apparent expression instability and simplify cell line selection.
Collapse
Affiliation(s)
- Warren Pilbrough
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Trent P. Munro
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
- ACYTE Biotech Pty Ltd, Brisbane, Queensland, Australia
- * E-mail:
| | - Peter Gray
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
- ACYTE Biotech Pty Ltd, Brisbane, Queensland, Australia
| |
Collapse
|
47
|
Caron AW, Nicolas C, Gaillet B, Ba I, Pinard M, Garnier A, Massie B, Gilbert R. Fluorescent labeling in semi-solid medium for selection of mammalian cells secreting high-levels of recombinant proteins. BMC Biotechnol 2009; 9:42. [PMID: 19432976 PMCID: PMC2689207 DOI: 10.1186/1472-6750-9-42] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 05/11/2009] [Indexed: 11/10/2022] Open
Abstract
Background Despite the powerful impact in recent years of gene expression markers like the green fluorescent protein (GFP) to link the expression of recombinant protein for selection of high producers, there is a strong incentive to develop rapid and efficient methods for isolating mammalian cell clones secreting high levels of marker-free recombinant proteins. Recently, a method combining cell colony growth in methylcellulose-based medium with detection by a fluorescently labeled secondary antibody or antigen has shown promise for the selection of Chinese Hamster Ovary (CHO) cell lines secreting recombinant antibodies. Here we report an extension of this method referred to as fluorescent labeling in semi-solid medium (FLSSM) to detect recombinant proteins significantly smaller than antibodies, such as IGF-E5, a 25 kDa insulin-like growth factor derivative. Results CHO cell clones, expressing 300 μg/ml IGF-E5 in batch culture, were isolated more easily and quickly compared to the classic limiting dilution method. The intensity of the detected fluorescent signal was found to be proportional to the amount of IGF-E5 secreted, thus allowing the highest producers in the population to be identified and picked. CHO clones producing up to 9.5 μg/ml of Tissue-Plasminogen Activator (tPA, 67 kDa) were also generated using FLSSM. In addition, IGF-E5 high-producers were isolated from 293SF transfectants, showing that cell selection in semi-solid medium is not limited to CHO and lymphoid cells. The best positive clones were collected with a micromanipulator as well as with an automated colony picker, thus demonstrating the method's high throughput potential. Conclusion FLSSM allows rapid visualization of the high secretors from transfected pools prior to picking, thus eliminating the tedious task of screening a high number of cell isolates. Because of its rapidity and its simplicity, FLSSM is a versatile method for the screening of high producers for research and industry.
Collapse
Affiliation(s)
- Antoine W Caron
- Institut de Recherche en Biotechnologie, Conseil National de Recherches du Canada, Montréal, QC, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lindgren K, Salmén A, Lundgren M, Bylund L, Ebler A, Fäldt E, Sörvik L, Fenge C, Skoging-Nyberg U. Automation of cell line development. Cytotechnology 2009; 59:1-10. [PMID: 19306069 DOI: 10.1007/s10616-009-9187-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 02/20/2009] [Indexed: 11/30/2022] Open
Abstract
An automated platform for development of high producing cell lines for biopharmaceutical production has been established in order to increase throughput and reduce development costs. The concept is based on the Cello robotic system (The Automation Partnership) and covers screening for colonies and expansion of static cultures. In this study, the glutamine synthetase expression system (Lonza Biologics) for production of therapeutic monoclonal antibodies in Chinese hamster ovary cells was used for evaluation of the automation approach. It is shown that the automated procedure is capable of producing cell lines of equal quality to the traditionally generated cell lines in terms of colony detection following transfection and distribution of IgG titer in the screening steps. In a generic fed-batch evaluation in stirred tank bioreactors, IgG titers of 4.7 and 5.0 g/L were obtained for best expressing cell lines. We have estimated that the number of completed cell line development projects can be increased up to three times using the automated process without increasing manual workload, compared to the manual process. Correlation between IgG titers obtained in early screens and titers achieved in fed-batch cultures in shake flasks was found to be poor. This further implies the benefits of utilizing a high throughput system capable of screening and expanding a high number of transfectants. Two concentrations, 56 and 75 muM, of selection agent, methionine sulphoximine (MSX), were applied to evaluate the impact on the number of colonies obtained post transfection. When applying selection medium containing 75 muM MSX, fewer low producing transfectants were obtained, compared to cell lines selected with 56 muM MSX, but an equal number of high producing cell lines were found. By using the higher MSX concentration, the number of cell line development projects run in parallel could be increased and thereby increasing the overall capacity of the automated platform process.
Collapse
Affiliation(s)
- Kristina Lindgren
- BioProcess R&D, AstraZeneca (now Recipharm Biologics AB), Gärtunavägen 10, 152 57, Södertälje, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Browne SM, Al-Rubeai M. Selection Methods for High-Producing Mammalian Cell Lines. CELL ENGINEERING 2009. [DOI: 10.1007/978-90-481-2245-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
Engineering Mammalian Cells for Recombinant Monoclonal Antibody Production. CELL ENGINEERING 2009. [DOI: 10.1007/978-90-481-2245-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|