1
|
Di Lisa D, Andolfi A, Masi G, Uras G, Ferrari PF, Martinoia S, Pastorino L. Impact of perfusion on neuronal development in human derived neuronal networks. APL Bioeng 2024; 8:046102. [PMID: 39364213 PMCID: PMC11446581 DOI: 10.1063/5.0221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Advanced in vitro models of the brain have evolved in recent years from traditional two-dimensional (2D) ones, based on rodent derived cells, to three-dimensional (3D) ones, based on human neurons derived from induced pluripotent stem cells. To address the dynamic changes of the tissue microenvironment, bioreactors are used to control the in vitro microenvironment for viability, repeatability, and standardization. However, in neuronal tissue engineering, bioreactors have primarily been used for cell expansion purposes, while microfluidic systems have mainly been employed for culturing organoids. In this study, we explored the use of a commercial perfusion bioreactor to control the culture microenvironment of neuronal cells in both 2D and 3D cultures. Namely, neurons differentiated from human induced pluripotent stem cells (iNeurons) were cultured in 2D under different constant flow rates for 72 h. The impact of different flow rates on early-stage neuronal development and synaptogenesis was assessed by morphometric characterization and synaptic analysis. Based on these results, two involving variable flow rates were developed and applied again in 2D culture. The most effective protocol, in terms of positive impact on neuronal development, was then used for a preliminary study on the application of dynamic culturing conditions to neuronal cells in 3D. To this purpose, both iNeurons, co-cultured with astrocytes, and the human neuroblastoma cells SH-SY5Y were embedded into a hydrogel and maintained under perfusion for up to 28 days. A qualitative evaluation by immunocytochemistry and confocal microscopy was carried out to assess cell morphology and the formation of a 3D neuronal network.
Collapse
Affiliation(s)
| | - Andrea Andolfi
- DIBRIS, Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, 16145 Genoa, Italy
| | - Giacomo Masi
- DIBRIS, Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, 16145 Genoa, Italy
| | | | | | | | | |
Collapse
|
2
|
Choinière W, Petit È, Monfette V, Pelletier S, Godbout-Lavoie C, Lauzon MA. Dynamic three-dimensional coculture model: The future of tissue engineering applied to the peripheral nervous system. J Tissue Eng 2024; 15:20417314241265916. [PMID: 39139455 PMCID: PMC11320398 DOI: 10.1177/20417314241265916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/18/2024] [Indexed: 08/15/2024] Open
Abstract
Traumatic injuries to the peripheral nervous system (PNI) can lead to severe consequences such as paralysis. Unfortunately, current treatments rarely allow for satisfactory functional recovery. The high healthcare costs associated with PNS injuries, worker disability, and low patient satisfaction press for alternative solutions that surpass current standards. For the treatment of injuries with a deficit of less than 30 mm to bridge, the use of synthetic nerve conduits (NGC) is favored. However, to develop such promising therapeutic strategies, in vitro models that more faithfully mimic nerve physiology are needed. The absence of a clinically scaled model with essential elements such as a three-dimension environment and dynamic coculture has hindered progress in this field. The presented research focuses on the development of an in vitro coculture model of the peripheral nervous system (PNS) involving the use of functional biomaterial which microstructure replicates nerve topography. Initially, the behavior of neuron-derived cell lines (N) and Schwann cells (SC) in contact with a short section of biomaterial (5 mm) was studied. Subsequent investigations, using fluorescent markers and survival assays, demonstrated the synergistic effects of coculture. These optimized parameters were then applied to longer biomaterials (30 mm), equivalent to clinically used NGC. The results obtained demonstrated the possibility of maintaining an extended coculture of SC and N over a 7-day period on a clinically scaled biomaterial, observing some functionality. In the long term, the knowledge gained from this work will contribute to a better understanding of the PNS regeneration process and promote the development of future therapeutic approaches while reducing reliance on animal experimentation. This model can be used for drug screening and adapted for personalized medicine trials. Ultimately, this work fills a critical gap in current research, providing a transformative approach to study and advance treatments for PNS injuries.
Collapse
Affiliation(s)
- William Choinière
- Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ève Petit
- Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vincent Monfette
- Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Samuel Pelletier
- Department of Electrical and Informatics Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Catherine Godbout-Lavoie
- Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marc-Antoine Lauzon
- Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Center on Aging, CIUSS de l’ESTRIE-CHUS, Sherbrooke, QC, Canada
- The Quebec Network for Research on Protein Function, Engineering, and Applications, Montréal, QC, Canada
| |
Collapse
|
3
|
Gong B, Zhang X, Zahrani AA, Gao W, Ma G, Zhang L, Xue J. Neural tissue engineering: From bioactive scaffolds and in situ monitoring to regeneration. EXPLORATION (BEIJING, CHINA) 2022; 2:20210035. [PMID: 37323703 PMCID: PMC10190951 DOI: 10.1002/exp.20210035] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/09/2022] [Indexed: 06/17/2023]
Abstract
Peripheral nerve injury is a large-scale problem that annually affects more than several millions of people all over the world. It remains a great challenge to effectively repair nerve defects. Tissue engineered nerve guidance conduits (NGCs) provide a promising platform for peripheral nerve repair through the integration of bioactive scaffolds, biological effectors, and cellular components. Herein, we firstly describe the pathogenesis of peripheral nerve injuries at different orders of severity to clarify their microenvironments and discuss the clinical treatment methods and challenges. Then, we discuss the recent progress on the design and construction of NGCs in combination with biological effectors and cellular components for nerve repair. Afterward, we give perspectives on imaging the nerve and/or the conduit to allow for the in situ monitoring of the nerve regeneration process. We also cover the applications of different postoperative intervention treatments, such as electric field, magnetic field, light, and ultrasound, to the well-designed conduit and/or the nerve for improving the repair efficacy. Finally, we explore the prospects of multifunctional platforms to promote the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Bowen Gong
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| | - Xindan Zhang
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| | - Ahmed Al Zahrani
- Department of Mechanical and Materials EngineeringUniversity of JeddahJeddahSaudi Arabia
| | - Wenwen Gao
- Department of RadiologyChina–Japan Friendship HospitalBeijingChina
| | - Guolin Ma
- Department of RadiologyChina–Japan Friendship HospitalBeijingChina
| | - Liqun Zhang
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| | - Jiajia Xue
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
4
|
Carvalho E, Morais M, Ferreira H, Silva M, Guimarães S, Pêgo A. A paradigm shift: Bioengineering meets mechanobiology towards overcoming remyelination failure. Biomaterials 2022; 283:121427. [DOI: 10.1016/j.biomaterials.2022.121427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
5
|
Olăreț E, Drăgușin DM, Serafim A, Lungu A, Șelaru A, Dobranici A, Dinescu S, Costache M, Boerașu I, Vasile BȘ, Steinmüller-Nethl D, Iovu H, Stancu IC. Electrospinning Fabrication and Cytocompatibility Investigation of Nanodiamond Particles-Gelatin Fibrous Tubular Scaffolds for Nerve Regeneration. Polymers (Basel) 2021; 13:polym13030407. [PMID: 33514051 PMCID: PMC7865256 DOI: 10.3390/polym13030407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
This paper reports the electrospinning fabrication of flexible nanostructured tubular scaffolds, based on fish gelatin (FG) and nanodiamond nanoparticles (NDs), and their cytocompatibility with murine neural stem cells. The effects of both nanofiller and protein concentration on the scaffold morphology, aqueous affinity, size modification at rehydration, and degradation are assessed. Our findings indicate that nanostructuring with low amounts of NDs may modify the fiber properties, including a certain regional parallel orientation of fiber segments. NE-4C cells form dense clusters that strongly adhere to the surface of FG50-based scaffolds, while also increasing FG concentration and adding NDs favor cellular infiltration into the flexible fibrous FG70_NDs nanocomposite. This research illustrates the potential of nanostructured NDs-FG fibers as scaffolds for nerve repair and regeneration. We also emphasize the importance of further understanding the effect of the nanofiller-protein interphase on the microstructure and properties of electrospun fibers and on cell-interactivity.
Collapse
Affiliation(s)
- Elena Olăreț
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
| | - Diana-Maria Drăgușin
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
| | - Andrada Serafim
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
| | - Adriana Lungu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
| | - Aida Șelaru
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (A.Ș.); (A.D.); (S.D.); (M.C.)
- Department of Immunology, National Institute for Research and Development in Biomedical Pathology and Biomedical Sciences “Victor Babes”, 050096 Bucharest, Romania
| | - Alexandra Dobranici
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (A.Ș.); (A.D.); (S.D.); (M.C.)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (A.Ș.); (A.D.); (S.D.); (M.C.)
- The Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (A.Ș.); (A.D.); (S.D.); (M.C.)
- The Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| | - Iulian Boerașu
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (I.B.); (B.Ș.V.)
| | - Bogdan Ștefan Vasile
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (I.B.); (B.Ș.V.)
- National Research Center for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | | | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
| | - Izabela-Cristina Stancu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
- Correspondence:
| |
Collapse
|
6
|
Advanced 3D Cell Culture Techniques in Micro-Bioreactors, Part I: A Systematic Analysis of the Literature Published between 2000 and 2020. Processes (Basel) 2020. [DOI: 10.3390/pr8121656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bioreactors have proven useful for a vast amount of applications. Besides classical large-scale bioreactors and fermenters for prokaryotic and eukaryotic organisms, micro-bioreactors, as specialized bioreactor systems, have become an invaluable tool for mammalian 3D cell cultures. In this systematic review we analyze the literature in the field of eukaryotic 3D cell culture in micro-bioreactors within the last 20 years. For this, we define complexity levels with regard to the cellular 3D microenvironment concerning cell–matrix-contact, cell–cell-contact and the number of different cell types present at the same time. Moreover, we examine the data with regard to the micro-bioreactor design including mode of cell stimulation/nutrient supply and materials used for the micro-bioreactors, the corresponding 3D cell culture techniques and the related cellular microenvironment, the cell types and in vitro models used. As a data source we used the National Library of Medicine and analyzed the studies published from 2000 to 2020.
Collapse
|
7
|
Grossemy S, Chan PP, Doran PM. Stimulation of cell growth and neurogenesis using protein-functionalized microfibrous scaffolds and fluid flow in bioreactors. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Leberfinger AN, Dinda S, Wu Y, Koduru SV, Ozbolat V, Ravnic DJ, Ozbolat IT. Bioprinting functional tissues. Acta Biomater 2019; 95:32-49. [PMID: 30639351 PMCID: PMC6625952 DOI: 10.1016/j.actbio.2019.01.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022]
Abstract
Despite the numerous lives that have been saved since the first successful procedure in 1954, organ transplant has several shortcomings which prevent it from becoming a more comprehensive solution for medical care than it is today. There is a considerable shortage of organ donors, leading to patient death in many cases. In addition, patients require lifelong immunosuppression to prevent graft rejection postoperatively. With such issues in mind, recent research has focused on possible solutions for the lack of access to donor organs and rejections, with the possibility of using the patient's own cells and tissues for treatment showing enormous potential. Three-dimensional (3D) bioprinting is a rapidly emerging technology, which holds great promise for fabrication of functional tissues and organs. Bioprinting offers the means of utilizing a patient's cells to design and fabricate constructs for replacement of diseased tissues and organs. It enables the precise positioning of cells and biologics in an automated and high throughput manner. Several studies have shown the promise of 3D bioprinting. However, many problems must be overcome before the generation of functional tissues with biologically-relevant scale is possible. Specific focus on the functionality of bioprinted tissues is required prior to clinical translation. In this perspective, this paper discusses the challenges of functionalization of bioprinted tissue under eight dimensions: biomimicry, cell density, vascularization, innervation, heterogeneity, engraftment, mechanics, and tissue-specific function, and strives to inform the reader with directions in bioprinting complex and volumetric tissues. STATEMENT OF SIGNIFICANCE: With thousands of patients dying each year waiting for an organ transplant, bioprinted tissues and organs show the potential to eliminate this ever-increasing organ shortage crisis. However, this potential can only be realized by better understanding the functionality of the organ and developing the ability to translate this to the bioprinting methodologies. Considering the rate at which the field is currently expanding, it is reasonable to expect bioprinting to become an integral component of regenerative medicine. For this purpose, this paper discusses several factors that are critical for printing functional tissues including cell density, vascularization, innervation, heterogeneity, engraftment, mechanics, and tissue-specific function, and inform the reader with future directions in bioprinting complex and volumetric tissues.
Collapse
Affiliation(s)
- Ashley N Leberfinger
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Shantanab Dinda
- Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yang Wu
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Srinivas V Koduru
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Veli Ozbolat
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Ceyhan Engineering Faculty, Cukurova University, Ceyhan, Adana 01950, Turkey
| | - Dino J Ravnic
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ibrahim T Ozbolat
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
9
|
Grossemy S, Chan PPY, Doran PM. Electrical stimulation of cell growth and neurogenesis using conductive and nonconductive microfibrous scaffolds. Integr Biol (Camb) 2019; 11:264-279. [DOI: 10.1093/intbio/zyz022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/01/2019] [Accepted: 06/12/2019] [Indexed: 11/13/2022]
Abstract
Abstract
The effect of exogenous electrical stimulation on cell viability, attachment, growth, and neurogenesis was examined using PC12 cells in microfibrous viscose-rayon scaffolds immersed in culture medium. The scaffolds were applied either in their nonconductive state or after coating the fibres with 200 nm of gold to give a scaffold sheet resistivity of (13 ± 1.3) Ω square−1. The cells were treated for 12 days using direct current electrical stimulation of 2 h per day. No cytotoxic effects were observed when up to 500 mV (8.3 mV mm−1) was applied to the scaffolds without gold, or when up to 100 mV (1.7 mV mm−1) was applied to the scaffolds with gold. Compared with unstimulated cells, whereas electrical stimulation significantly enhanced cell growth and attachment in the nonconductive scaffolds without gold, similar effects were not found for the conductive scaffolds with gold. Neural differentiation in the presence of nerve growth factor was improved by electrical stimulation in both scaffolds; however, neurite development and the expression of key differentiation markers were greater in the nonconductive scaffolds without gold than in the scaffolds with gold. Application of the same current to scaffolds with and without gold led to much higher levels of neurogenesis in the scaffolds without gold. This work demonstrates that substantial benefits in terms of cell growth and neural differentiation can be obtained using electric fields exerted across nonconductive microfibrous scaffolds, and that this approach to electrical stimulation can be more effective than when the stimulus is applied to cells on conductive scaffolds.
Collapse
Affiliation(s)
- Simon Grossemy
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Australia
| | - Peggy P Y Chan
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Australia
| | - Pauline M Doran
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Australia
| |
Collapse
|
10
|
Mobini S, Song YH, McCrary MW, Schmidt CE. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering. Biomaterials 2019; 198:146-166. [PMID: 29880219 PMCID: PMC6957334 DOI: 10.1016/j.biomaterials.2018.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023]
Abstract
The technologies related to ex vivo models and lab-on-a-chip devices for studying the regeneration of brain, spinal cord, and peripheral nerve tissues are essential tools for neural tissue engineering and regenerative medicine research. The need for ex vivo systems, lab-on-a-chip technologies and disease models for neural tissue engineering applications are emerging to overcome the shortages and drawbacks of traditional in vitro systems and animal models. Ex vivo models have evolved from traditional 2D cell culture models to 3D tissue-engineered scaffold systems, bioreactors, and recently organoid test beds. In addition to ex vivo model systems, we discuss lab-on-a-chip devices and technologies specifically for neural tissue engineering applications. Finally, we review current commercial products that mimic diseased and normal neural tissues, and discuss the future directions in this field.
Collapse
Affiliation(s)
- Sahba Mobini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Huang L, Xu F, Guo B, Ma J, Zhao J. Morphological study of dynamic culture of thermosensitive collagen hydrogel in constructing tissue engineering complex. Bioengineered 2016; 7:266-73. [PMID: 27459597 DOI: 10.1080/21655979.2016.1197741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
ABSTACT The purpose of this study is to research the morphologies and functional characteristics of the cell-scaffold complex in vitro constructed under dynamic culture conditions. BMSCs were isolated from the long bones of Fischer344 rats, and performed in vitro amplification to the third generation as seed cells, together with thermosensitive collagen hydrogel (TCH) as cell adhesion matrix, and poly-L-lactic acid (PLLA) as scaffold, to construct cell-scaffold complex. The cell-scaffold complexes in the experiment group and the control group were then performed dynamic culture and static culture. After 7 d of in vitro culture, the complexes in the 2 groups were performed gross observation and SEM; meanwhile, the total DNA content in the complex was detected on D0,1,3, and 7 of culture. After cultured using these 2 ways, collagen could both wrap the PLLA scaffold, forming dense film-like structures on the PLLA surface. The total DNA contents in the cell-scaffold complex of the experiment group on D1,3, and 7 were significantly higher than the control group (P < 0.05). Compared with D0, the total DNA contents on D1,3, and 7 in both groups were gradually increased, but only the total DNA contents on D7 showed statistically significant difference than D0 (P < 0.05). TCH -PLLA fiber joint-constructed complex extracellular matrix had good biocompatibility, and dynamic culture could promote the distribution of BMSCs on the surface and inside the structure, thus promoting cell proliferation, so it could be used for the in vitro construction of tissue engineering complex.
Collapse
Affiliation(s)
- Lanfeng Huang
- a Department of Orthopedics , The Second Hospital of Jilin University , Changchun , China
| | - Feixiang Xu
- a Department of Orthopedics , The Second Hospital of Jilin University , Changchun , China
| | - Bin Guo
- a Department of Orthopedics , The Second Hospital of Jilin University , Changchun , China
| | - Jianchao Ma
- a Department of Orthopedics , The Second Hospital of Jilin University , Changchun , China
| | - Jinsong Zhao
- b Department of Ophthalmology , The Second Hospital of Jilin University , Changchun , China
| |
Collapse
|
12
|
|
13
|
Antoni D, Burckel H, Josset E, Noel G. Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 2015; 16:5517-27. [PMID: 25768338 PMCID: PMC4394490 DOI: 10.3390/ijms16035517] [Citation(s) in RCA: 741] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/13/2015] [Accepted: 03/05/2015] [Indexed: 12/11/2022] Open
Abstract
Cell culture is an important tool for biological research. Two-dimensional cell culture has been used for some time now, but growing cells in flat layers on plastic surfaces does not accurately model the in vivo state. As compared to the two-dimensional case, the three-dimensional (3D) cell culture allows biological cells to grow or interact with their surroundings in all three dimensions thanks to an artificial environment. Cells grown in a 3D model have proven to be more physiologically relevant and showed improvements in several studies of biological mechanisms like: cell number monitoring, viability, morphology, proliferation, differentiation, response to stimuli, migration and invasion of tumor cells into surrounding tissues, angiogenesis stimulation and immune system evasion, drug metabolism, gene expression and protein synthesis, general cell function and in vivo relevance. 3D culture models succeed thanks to technological advances, including materials science, cell biology and bioreactor design.
Collapse
Affiliation(s)
- Delphine Antoni
- Radiotherapy Department, Paul Strauss Cancer Center, 3, rue de la Porte de l'Hôpital, 67065 Strasbourg Cedex, France.
- Radiobiology Laboratory, EA 3430, Strasbourg University, Paul Strauss Cancer Center, 3, rue de la Porte de l'Hôpital, 67065 Strasbourg Cedex, France.
| | - Hélène Burckel
- Radiobiology Laboratory, EA 3430, Strasbourg University, Paul Strauss Cancer Center, 3, rue de la Porte de l'Hôpital, 67065 Strasbourg Cedex, France.
| | - Elodie Josset
- Radiobiology Laboratory, EA 3430, Strasbourg University, Paul Strauss Cancer Center, 3, rue de la Porte de l'Hôpital, 67065 Strasbourg Cedex, France.
| | - Georges Noel
- Radiotherapy Department, Paul Strauss Cancer Center, 3, rue de la Porte de l'Hôpital, 67065 Strasbourg Cedex, France.
- Radiobiology Laboratory, EA 3430, Strasbourg University, Paul Strauss Cancer Center, 3, rue de la Porte de l'Hôpital, 67065 Strasbourg Cedex, France.
| |
Collapse
|
14
|
Huang L, Li R, Liu W, Dai J, Du Z, Wang X, Ma J, Zhao J. Dynamic culture of a thermosensitive collagen hydrogel as an extracellular matrix improves the construction of tissue-engineered peripheral nerve. Neural Regen Res 2014; 9:1371-8. [PMID: 25221594 PMCID: PMC4160868 DOI: 10.4103/1673-5374.137590] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2014] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, but cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydrogel was used as an extracellular matrix in this study and combined with bone marrow mesenchymal stem cells to construct tissue-engineered peripheral nerve composites in vitro. Dynamic culture was performed at an oscillating frequency of 0.5 Hz and 35° swing angle above and below the horizontal plane. The results demonstrated that bone marrow mesenchymal stem cells formed membrane-like structures around the poly-L-lactic acid scaffolds and exhibited regular alignment on the composite surface. Collagen was used to fill in the pores, and seeded cells adhered onto the poly-L-lactic acid fibers. The DNA content of the bone marrow mesenchymal stem cells was higher in the composites constructed with a thermosensitive collagen hydrogel compared with that in collagen I scaffold controls. The cellular DNA content was also higher in the thermosensitive collagen hydrogel composites constructed with the thermosensitive collagen hydrogel in dynamic culture than that in static culture. These results indicate that tissue-engineered composites formed with thermosensitive collagen hydrogel in dynamic culture can maintain larger numbers of seeded cells by avoiding cell loss during the initial adhesion stage. Moreover, seeded cells were distributed throughout the material.
Collapse
Affiliation(s)
- Lanfeng Huang
- Department of Joint Surgery, Orthopedics Hospital of the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rui Li
- Centre of Hand & Foot Surgery and Reparative & Reconstructive Surgery, Orthopedics Hospital of the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wanguo Liu
- Department of Orthopedics Surgery, the Third Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jin Dai
- Department of Joint Surgery, Orthopedics Hospital of the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhenwu Du
- Institute of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaonan Wang
- Department of Joint Surgery, Orthopedics Hospital of the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jianchao Ma
- Department of Joint Surgery, Orthopedics Hospital of the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jinsong Zhao
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
15
|
Preparation and biological evaluation of chitosan–collagen–icariin composite scaffolds for neuronal regeneration. Neurol Sci 2012; 34:941-7. [DOI: 10.1007/s10072-012-1165-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/13/2012] [Indexed: 12/28/2022]
|
16
|
Zelzer M, Alexander MR, Russell NA. Hippocampal cell response to substrates with surface chemistry gradients. Acta Biomater 2011; 7:4120-30. [PMID: 21839185 DOI: 10.1016/j.actbio.2011.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/08/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
Surface chemical gradients are valuable tools for the high-throughput screening of cell-surface interactions. However, it has yet to be shown if biological data obtained from gradient surfaces are transferable to substrates with uniform properties. To explore this question, the response of hippocampal neurons to three different sample formats was compared. We fabricated samples of uniform surface wettability and samples with a linear or radial gradient in surface wettability by depositing plasma-polymerized hexane (hydrophobic) on oxygen-etched glass (hydrophilic). Differences in cell density, growth and viability of the neural cultures are found between the uniform and the gradient samples. The nature of the gradient (linear or radial) has only a small effect on the cell density of adhered hippocampal neurons.
Collapse
|
17
|
|
18
|
Abstract
Cell culture in two dimensions has been routinely and diligently undertaken in thousands of laboratories worldwide for the past four decades. However, the culture of cells in two dimensions is arguably primitive and does not reproduce the anatomy or physiology of a tissue for informative or useful study. Creating a third dimension for cell culture is clearly more relevant, but requires a multidisciplinary approach and multidisciplinary expertise. When entering the third dimension, investigators need to consider the design of scaffolds for supporting the organisation of cells or the use of bioreactors for controlling nutrient and waste product exchange. As 3D culture systems become more mature and relevant to human and animal physiology, the ability to design and develop co-cultures becomes possible as does the ability to integrate stem cells. The primary objectives for developing 3D cell culture systems vary widely - and range from engineering tissues for clinical delivery through to the development of models for drug screening. The intention of this review is to provide a general overview of the common approaches and techniques for designing 3D culture models.
Collapse
Affiliation(s)
- John W Haycock
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
19
|
Straley KS, Foo CWP, Heilshorn SC. Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma 2010; 27:1-19. [PMID: 19698073 DOI: 10.1089/neu.2009.0948] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The highly debilitating nature of spinal cord injuries has provided much inspiration for the design of novel biomaterials that can stimulate cellular regeneration and functional recovery. Many experts agree that the greatest hope for treatment of spinal cord injuries will involve a combinatorial approach that integrates biomaterial scaffolds, cell transplantation, and molecule delivery. This manuscript presents a comprehensive review of biomaterial-scaffold design strategies currently being applied to the development of nerve guidance channels and hydrogels that more effectively stimulate spinal cord tissue regeneration. To enhance the regenerative capacity of these two scaffold types, researchers are focusing on optimizing the mechanical properties, cell-adhesivity, biodegradability, electrical activity, and topography of synthetic and natural materials, and are developing mechanisms to use these scaffolds to deliver cells and biomolecules. Developing scaffolds that address several of these key design parameters will lead to more successful therapies for the regeneration of spinal cord tissue.
Collapse
Affiliation(s)
- Karin S Straley
- Chemical Engineering Department, Stanford University, Stanford, California 4305-4045, USA
| | | | | |
Collapse
|
20
|
Mishra G, Easton CD, McArthur SL. Physical vs photolithographic patterning of plasma polymers: an investigation by ToF-SSIMS and multivariate analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3720-3730. [PMID: 19950941 PMCID: PMC2827625 DOI: 10.1021/la902930z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Physical and photolithographic techniques are commonly used to create chemical patterns for a range of technologies including cell culture studies, bioarrays and other biomedical applications. In this paper, we describe the fabrication of chemical micropatterns from commonly used plasma polymers. Atomic force microscopy (AFM) imaging, time-of-flight static secondary ion mass spectrometry (ToF-SSIMS) imaging, and multivariate analysis have been employed to visualize the chemical boundaries created by these patterning techniques and assess the spatial and chemical resolution of the patterns. ToF-SSIMS analysis demonstrated that well-defined chemical and spatial boundaries were obtained from photolithographic patterning, while the resolution of physical patterning via a transmission electron microscopy (TEM) grid varied depending on the properties of the plasma system including the substrate material. In general, physical masking allowed diffusion of the plasma species below the mask and bleeding of the surface chemistries. Multivariate analysis techniques including principal component analysis (PCA) and region of interest (ROI) assessment were used to investigate the ToF-SSIMS images of a range of different plasma polymer patterns. In the most challenging case, where two strongly reacting polymers, allylamine and acrylic acid were deposited, PCA confirmed the fabrication of micropatterns with defined spatial resolution. ROI analysis allowed for the identification of an interface between the two plasma polymers for patterns fabricated using the photolithographic technique which has been previously overlooked. This study clearly demonstrated the versatility of photolithographic patterning for the production of multichemistry plasma polymer arrays and highlighted the need for complementary characterization and analytical techniques during the fabrication plasma polymer micropatterns.
Collapse
Affiliation(s)
- Gautam Mishra
- Department of Engineering Materials, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK
| | | | | |
Collapse
|
21
|
Secasanu VP, Giardina CK, Wang Y. A novel electrospinning target to improve the yield of uniaxially aligned fibers. Biotechnol Prog 2009; 25:1169-75. [PMID: 19562742 DOI: 10.1002/btpr.163] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Electrospinning is a useful technique that can generate micro and nanometer-sized fibers. Modification of the electrospinning parameters, such as deposition target geometry, can generate uniaxially aligned fibers for use in diverse applications ranging from tissue engineering to material fabrication. For example, meshes of fibers have been shown to mimic the extracellular matrix networks for use in smooth muscle cell proliferation. Further, aligned fibers can guide neurites to grow along the direction of the fibers. Here we present a novel electrospinning deposition target that combines the benefits of two previously reported electrodes: the standard parallel electrodes and the spinning wheel with a sharpened edge. This new target design significantly improves aligned fiber yield. Specifically, the target consists of two parallel aluminum plates with sharpened edges containing a bifurcating angle of 26 degrees. Electric field computations show a larger probable area of aligned electric field vectors. This new deposition target allows fibers to deposit on a larger cross-sectional area relative to the existing parallel electrode and at least doubles the yield of uniaxially aligned fibers. Further, fiber alignment and morphology are preserved after collection from the deposition target.
Collapse
Affiliation(s)
- Virgil P Secasanu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
22
|
Fowler GJ, Mishra G, Easton CD, McArthur SL. A ToF-SSIMS study of plasma polymer-based patterned metal affinity surfaces. POLYMER 2009. [DOI: 10.1016/j.polymer.2009.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|