1
|
Digital Proxy of a Bio-Reactor (DIYBOT) combines sensor data and data analytics to improve greywater treatment and wastewater management systems. Sci Rep 2020; 10:8015. [PMID: 32415099 PMCID: PMC7229150 DOI: 10.1038/s41598-020-64789-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/14/2020] [Indexed: 02/01/2023] Open
Abstract
Technologies to treat wastewater in decentralized systems are critical for sustainable development. Bioreactors are suitable for low-energy removal of inorganic and organic compounds, particularly for non-potable applications where a small footprint is required. One of the main problems associated with bioreactor use is sporadic spikes of chemical toxins, including nanoparticles. Here, we describe the development of DIYBOT (Digital Proxy of a Bio-Reactor), which enables remote monitoring of bioreactors and uses the data to inform decisions related to systems management. To test DIYBOT, a household-scale membrane aerated bioreactor with real-time water quality sensors was used to treat household greywater simulant. After reaching steady-state, silver nanoparticles (AgNP) representative of the mixture found in laundry wastewater were injected into the system to represent a chemical contamination. Measurements of carbon metabolism, effluent water quality, biofilm sloughing rate, and microbial diversity were characterized after nanoparticle exposure. Real-time sensor data were analyzed to reconstruct phase-space dynamics and extrapolate a phenomenological digital proxy to evaluate system performance. The management implication of the stable-focus dynamics, reconstructed from observed data, is that the bioreactor self-corrects in response to contamination spikes at AgNP levels below 2.0 mg/L. DIYBOT may help reduce the frequency of human-in-the-loop corrective management actions for wastewater processing.
Collapse
|
2
|
Gupta S, Otero JJ, Sundaresan VB, Czeisler CM. Near field non-invasive electrophysiology of retrotrapezoid nucleus using amperometric cation sensor. Biosens Bioelectron 2019; 151:111975. [PMID: 31999582 DOI: 10.1016/j.bios.2019.111975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022]
Abstract
Central chemoreception is the process whereby the brainstem senses blood gas levels and adjusts homeostatic functions such as breathing and cardiovascular tone accordingly. Rodent evidence suggests that the retrotrapezoid nucleus (RTN) is a master regulator of central chemoreception, in particular, through direct sensation of acidosis induced by CO2 levels. The oscillatory dynamics caused by pH changes as sensed by the RTN surface and its relationship to the fluctuations in cation flux is not clearly understood due to the current limitations of electrophysiology tools and this article presents our investigations to address this need. A cation selective sensor fabricated from polypyrrole doped with dodecyl benzenesulfonate (PPy (DBS)) is placed over RTN in an ex-vivo en bloc brain and changes in cation concentration in the diffusion limited region above the RTN is measured due to changes in externally imposed basal pH. The novelty of this technique lies in its feasibility to detect cation fluxes from the cells in the RTN region without having to access either sides of the cell membrane. Owing to the placement of the sensor in close proximity to the tissue, we refer to this technique as near-field electrophysiology. It is observed that lowering the pH in the physiological range (7.4-7.2) results in a significant increase in cation concentration in the vicinity of RTN with a median value of ~5 μM. The utilization of such quantifiable measurement techniques to detect sub-threshold brain activity may help provide a platform for future neural network architectures. Findings from this paper present a quantifiable, sensitive, and robust electrophysiology technique with minimal damage to the underlying tissue.
Collapse
Affiliation(s)
- Sujasha Gupta
- Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19(th) Ave, Columbus, 43210, Ohio, United States.
| | - José Javier Otero
- Department of Pathology, Neuropathology, The Ohio State University, 333 W 10(th) Ave, Columbus, 43210, Ohio, United States.
| | - Vishnu Baba Sundaresan
- Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19(th) Ave, Columbus, 43210, Ohio, United States.
| | - Catherine Miriam Czeisler
- Division of Department of Pathology, The Ohio State University, 333 W 10(th) Ave, Columbus, 43210, Ohio, United States.
| |
Collapse
|
3
|
Nitric Oxide Enhances Cytotoxicity of Lead by Modulating the Generation of Reactive Oxygen Species and Is Involved in the Regulation of Pb 2+ and Ca 2+ Fluxes in Tobacco BY-2 Cells. PLANTS 2019; 8:plants8100403. [PMID: 31600951 PMCID: PMC6843202 DOI: 10.3390/plants8100403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
Lead is a heavy metal known to be toxic to both animals and plants. Nitric oxide (NO) was reported to participate in plant responses to different heavy metal stresses. In this study, we analyzed the function of exogenous and endogenous NO in Pb-induced toxicity in tobacco BY-2 cells, focusing on the role of NO in the generation of reactive oxygen species (ROS) as well as Pb2+ and Ca2+ fluxes using non-invasive micro-test technology (NMT). Pb treatment induced BY-2 cell death and rapid NO and ROS generation, while NO burst occurred earlier than ROS accumulation. The elimination of NO by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) resulted in a decrease of ROS, and the supplementation of NO by sodium nitroprusside (SNP) caused an increased accumulation of ROS. Furthermore, the addition of exogenous NO stimulated Pb2+ influx, thus promoting Pb uptake in cells and aggravating Pb-induced toxicity in cells, whereas the removal of endogenous NO produced the opposite effect. Moreover, we also found that both exogenous and endogenous NO enhanced Pb-induced Ca2+ effluxes and calcium homeostasis disorder. These results suggest that exogenous and endogenous NO played a critical regulatory role in BY-2 cell death induced by Pb stress by promoting Pb2+ influx and accumulation and disturbing calcium homeostasis.
Collapse
|
4
|
Garland NT, McLamore ES, Cavallaro ND, Mendivelso-Perez D, Smith EA, Jing D, Claussen JC. Flexible Laser-Induced Graphene for Nitrogen Sensing in Soil. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39124-39133. [PMID: 30284450 DOI: 10.1021/acsami.8b10991] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flexible graphene electronics are rapidly gaining interest, but their widespread implementation has been impeded by challenges with ink preparation, ink printing, and postprint annealing processes. Laser-induced graphene (LIG) promises a facile alternative by creating flexible graphene electronics on polyimide substrates through the one-step laser writing fabrication method. Herein, we demonstrate the use of LIG, created with a low-cost UV laser, for electrochemical ion-selective sensing of plant-available nitrogen (i.e., both ammonium and nitrate ions: NH4+ and NO3-) in soil samples. The laser used to create the LIG was operated at distinct pulse widths (10, 20, 30, 40, and 50 ms) to maximize the LIG electrochemical reactivity. Results illustrated that a laser pulse width of 20 ms led to a high percentage of sp2 carbon (77%) and optimal peak oxidation current of 120 μA during cyclic voltammetry of ferro/ferricyanide. Therefore, LIG electrodes created with a 20 ms pulse width were consequently functionalized with distinct ionophores specific to NH4+ (nonactin) or NO3- (tridodecylmethylammonium nitrate) within poly(vinyl chloride)-based membranes to create distinct solid contact ion-selective electrodes (SC-ISEs) for NH4+ and NO3- ion sensing, respectively. The LIG SC-ISEs displayed near Nernstian sensitivities of 51.7 ± 7.8 mV/dec (NH4+) and -54.8 ± 2.5 mV/dec (NO3-), detection limits of 28.2 ± 25.0 μM (NH4+) and 20.6 ± 14.8 μM (NO3-), low long-term drift of 0.93 mV/h (NH4+ sensors) and -5.3 μV/h (NO3- sensors), and linear sensing ranges of 10-5-10-1 M for both sensors. Moreover, soil slurry sensing was performed, and recovery percentages of 96% and 95% were obtained for added NH4+ and NO3-, respectively. These results, combined with a facile fabrication that does not require metallic nanoparticle decoration, make these LIG electrochemical sensors appealing for a wide range of in-field or point-of-service applications for soil health management.
Collapse
Affiliation(s)
| | - Eric S McLamore
- Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences , University of Florida , Gainesville , Florida 32611 , United States
| | - Nicholas D Cavallaro
- Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences , University of Florida , Gainesville , Florida 32611 , United States
| | | | | | | | | |
Collapse
|
5
|
Integrative cytological analysis of the effects of Ca 2+ and vitamin D 3 on extracellular Ca 2+ flux and intracellular Ca 2+ reserves in the mantle of the pearl oyster (Hyriopsis cumingii Lea). Comp Biochem Physiol B Biochem Mol Biol 2018; 227:50-55. [PMID: 30236454 DOI: 10.1016/j.cbpb.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 11/22/2022]
Abstract
To examine Ca2+ absorption and transportation in the freshwater pearl oyster, Hyriopsis cumingii Lea, we studied the effects of different levels of either extracellular Ca2+ or 1,25(OH)2D3 on extracellular Ca2+ flux and intracellular Ca2+ concentrations in mantle cells using the non-invasive micro-test technique and laser scanning confocal microscopy. The inner and outer mantle (IM and OM) cells from mussels were cultured and then treated with different concentrations of Ca2+ and 1,25(OH)2D3. Extracellular Ca2+ flux and intracellular Ca2+ reserves were analyzed. The results showed that both extracellular Ca2+ and 1,25(OH)2D3 had significant effects on Ca2+ flux and reserves in mantle cells, especially in IM cells (P < .05). The increase in extracellular Ca2+ concentrations resulted in the conversion of extracellular Ca2+ flux into influx with an increase in flow rate (P < .05). The calcium ion fluorescence intensity of OM cells was higher than that of IM cells (P < .05). 1,25(OH)2D3 addition also significantly increased the influx rate of extracellular Ca2+, especially in IM cells, which were more sensitive to 1,25(OH)2D3 addition and had significantly higher Ca2+ influx rates than did OM cells (P < .05). Fluorescence intensities of intracellular Ca2+ first increased and then decreased with increasing 1,25(OH)2D3 levels. The study showed that IM cells play an important role in absorbing Ca2+ from the environment, while OM cells mainly function in the temporary storage and transportation of Ca2+ in the body. The current results suggested that high levels of extracellular Ca2+ (1.25 mM) or 1,25(OH)2D3 (over 100 IU/L) were favorable for Ca2+ uptake and maintenance in the body.
Collapse
|
6
|
Measuring Spatial and Temporal Oxygen Flux Near Plant Tissues Using a Self-Referencing Optrode. Methods Mol Biol 2017. [PMID: 28871551 DOI: 10.1007/978-1-4939-7292-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Self-referencing optrodic microsensing is a noninvasive method for measuring oxygen transport into/from tissues. The sensing mechanism is based on fluorescence quenching by molecular oxygen at the tip of a fiber-optic probe, and facilitates microscale spatial mapping and continuous monitoring at 100-350 mHz sampling frequency. Over the last decade, this technique has been applied for plant tissues, including roots, seeds, leaves, and flowers in both liquid and air. Here, we describe the operating principle of self-referencing optrodic microsensing for the study of plant tissues with a specific focus on juvenile roots.
Collapse
|
7
|
Xu W, Hong SJ, Zhong A, Xie P, Jia S, Xie Z, Zeitchek M, Niknam-Bienia S, Zhao J, Porterfield DM, Surmeier DJ, Leung KP, Galiano RD, Mustoe TA. Sodium channel Nax is a regulator in epithelial sodium homeostasis. Sci Transl Med 2016; 7:312ra177. [PMID: 26537257 DOI: 10.1126/scitranslmed.aad0286] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanisms by which the epidermis responds to disturbances in barrier function and restores homeostasis are unknown. With a perturbation of the epidermal barrier, water is lost, resulting in an increase in extracellular sodium concentration. We demonstrate that the sodium channel Nax functions as a sodium sensor. With increased extracellular sodium, Nax up-regulates prostasin, which results in activation of the sodium channel ENaC, resulting in increased sodium flux and increased downstream mRNA synthesis of inflammatory mediators. Nax is present in multiple epithelial tissues, and up-regulation of its downstream genes is found in hypertrophic scars. In animal models, blocking Nax expression results in improvement in scarring and atopic dermatitis-like symptoms, both of which are pathological conditions characterized by perturbations in barrier function. These findings support an important role for Nax in maintaining epithelial homeostasis.
Collapse
Affiliation(s)
- Wei Xu
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Seok Jong Hong
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aimei Zhong
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ping Xie
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shengxian Jia
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zhong Xie
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michael Zeitchek
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Solmaz Niknam-Bienia
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jingling Zhao
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. Department of Burns, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - D Marshall Porterfield
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - D James Surmeier
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kai P Leung
- Microbiology Branch, U.S. Army Dental and Trauma Research Detachment, Institute of Surgical Research, JB Fort Sam Houston, San Antonio, TX 78234, USA
| | - Robert D Galiano
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Thomas A Mustoe
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Cheng L, House MW, Weiss WJ, Banks MK. Monitoring sulfide-oxidizing biofilm activity on cement surfaces using non-invasive self-referencing microsensors. WATER RESEARCH 2016; 89:321-329. [PMID: 26707733 DOI: 10.1016/j.watres.2015.11.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/15/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
Microbially influenced corrosion (MIC) in concrete results in significant cost for infrastructure maintenance. Prior studies have employed molecular techniques to identify microbial community species in corroded concrete, but failed to explore bacterial activity and functionality during deterioration. In this study, biofilms of different sulfur-oxidizing bacteria compositions were developed on the surface of cement paste samples to simulate the natural ecological succession of microbial communities during MIC processes. Noninvasive, self-referencing (SR) microsensors were used to quantify real time changes of oxygen, hydrogen ion and calcium ion flux for the biofilm to provide more information about bacterial behavior during deterioration. Results showed higher transport rates in oxygen consumption, and hydrogen ion at 4 weeks than 2 weeks, indicating increased bacterial activity over time. Samples with five species biofilm had the highest hydrogen ion and calcium ion transport rates, confirming attribution of acidophilic sulfur-oxidizing microorganisms (ASOM). Differences in transport rates between three species samples and two species samples confirmed the diversity between Thiomonas intermedia and Starkeya novella. The limitations of SR sensors in corrosion application could be improved in future studies when combined with molecular techniques to identify the roles of major bacterial species in the deterioration process.
Collapse
Affiliation(s)
- Liqiu Cheng
- Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136, USA.
| | - Mitch W House
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA
| | - W Jason Weiss
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA; Bindley Bioscience Center, Physiological Sensing Facility, Discovery Park, Purdue University, 1203 W. State Street, West Lafayette, IN 47907-2057, USA
| | - M Katherine Banks
- Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136, USA
| |
Collapse
|
9
|
Taguchi M, Schwalb N, Rong Y, Vanegas DC, Garland N, Tan M, Yamaguchi H, Claussen JC, McLamore ES. pulSED: pulsed sonoelectrodeposition of fractal nanoplatinum for enhancing amperometric biosensor performance. Analyst 2016; 141:3367-78. [DOI: 10.1039/c6an00069j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A technique for deposition of fractal nanometal as a transducer in electrochemical sensing is described. The effect(s) of duty cycle and deposition time were explored, and two sensors are demonstrated.
Collapse
Affiliation(s)
- M. Taguchi
- Department of Agricultural & Biological Engineering
- Institute of Food & Agricultural Sciences
- University of Florida
- USA
| | - N. Schwalb
- Department of Agricultural & Biological Engineering
- Institute of Food & Agricultural Sciences
- University of Florida
- USA
| | - Y. Rong
- Department of Agricultural & Biological Engineering
- Institute of Food & Agricultural Sciences
- University of Florida
- USA
| | - D. C. Vanegas
- Department of Agricultural & Biological Engineering
- Institute of Food & Agricultural Sciences
- University of Florida
- USA
- Department of Food Engineering
| | - N. Garland
- Department of Mechanical Engineering
- Iowa State University
- USA
| | - M. Tan
- Department of Mechanical and Aerospace Engineering
- University of Florida
- USA
| | - H. Yamaguchi
- Department of Mechanical and Aerospace Engineering
- University of Florida
- USA
| | - J. C. Claussen
- Department of Mechanical Engineering
- Iowa State University
- USA
| | - E. S. McLamore
- Department of Agricultural & Biological Engineering
- Institute of Food & Agricultural Sciences
- University of Florida
- USA
| |
Collapse
|
10
|
Vanegas DC, Clark G, Cannon AE, Roux S, Chaturvedi P, McLamore ES. A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems. Biosens Bioelectron 2015; 74:37-44. [PMID: 26094038 DOI: 10.1016/j.bios.2015.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/09/2015] [Accepted: 05/09/2015] [Indexed: 01/28/2023]
Abstract
The objective of this study was to develop a self-referencing electrochemical biosensor for the direct measurement of ATP flux into the extracellular matrix by living cells/organisms. The working mechanism of the developed biosensor is based on the activity of glycerol kinase and glycerol-3-phosphate oxidase. A stratified bi-enzyme nanocomposite was created using a protein-templated silica sol gel encapsulation technique on top of graphene-modified platinum electrodes. The biosensor exhibited excellent electrochemical performance with a sensitivity of 2.4±1.8 nA/µM, a response time of 20±13 s and a lower detection limit of 1.3±0.7 nM. The self-referencing biosensor was used to measure exogenous ATP efflux by (i) germinating Ceratopteris spores and (ii) growing Zea mays L. roots. This manuscript demonstrates the first development of a non-invasive ATP micro-biosensor for the direct measurement of eATP transport in living tissues. Before this work, assays of eATP have not been able to record the temporally transient movement of ATP at physiological levels (nM and sub-nM). The method demonstrated here accurately measured [eATP] flux in the immediate vicinity of plant cells. Although these proof of concept experiments focus on plant tissues, the technique developed herein is applicable to any living tissue, where nanomolar concentrations of ATP play a critical role in signaling and development. This tool will be invaluable for conducting hypothesis-driven life science research aimed at understanding the role of ATP in the extracellular environment.
Collapse
Affiliation(s)
- Diana C Vanegas
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, USA; Food Engineering Department, Universidad del Valle, Cali, Colombia
| | - Greg Clark
- Department of Molecular Biosciences, University of Texas, Austin, USA
| | - Ashley E Cannon
- Department of Molecular Biosciences, University of Texas, Austin, USA
| | - Stanley Roux
- Department of Molecular Biosciences, University of Texas, Austin, USA
| | - Prachee Chaturvedi
- Department of Mechanical Engineering, University of Colorado, Denver, USA
| | - Eric S McLamore
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, USA.
| |
Collapse
|
11
|
Marvasi M, Durie IA, McLamore ES, Vanegas DC, Chaturvedi P. Salmonella enterica biofilm-mediated dispersal by nitric oxide donors in association with cellulose nanocrystal hydrogels. AMB Express 2015; 5:28. [PMID: 26020015 PMCID: PMC4441645 DOI: 10.1186/s13568-015-0114-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/04/2015] [Indexed: 11/10/2022] Open
Abstract
Protected by extracellular polymers, microbes within biofilms are significantly more resistant to disinfectants. Current research has been instrumental in identifying nitric oxide donors and hydrogels as potential disinfectant additives. Nitric oxide (NO) donors are considered a very promising molecule as biofilm dispersal agents and hydrogels have recently attracted a lot of interest due to their biocompatible properties and ability to form stable thin films. When the NO donor MAHMA NONOate was dissolved in phosphate saline buffer, it was able to reduce the biomass of well-established biofilms up to 15% for at least 24 h of contact time. Encapsulation of MAHMA NONOate and molsidomine within a hydrogel composed of cellulose nanocrystals (CNC) has shown a synergistic effect in dispersing well-established biofilms: after 2 h of exposure, moderate but significant dispersion was measured. After 6 h of exposure, the number of cells transitioning from the biofilm to the planktonic state was up to 0.6 log higher when compared with non-treated biofilms. To further explore the transport processes of NO donors within hydrogels, we measured the nitric oxide flux from gels, at 25°C for a composite of 0.1 µM MAHMA NONOate-CNC. Nitric oxide diffuses up to 500 µm from the hydrogel surface, with flux decreasing according to Fick's law. 60% of NO was released from the hydrogel composite during the first 23 min. These data suggest that the combined treatments with nitric oxide donor and hydrogels may allow for new sustainable cleaning strategies.
Collapse
|
12
|
Zhou XH, Huang BC, Zhou T, Liu YC, Shi HC. Aggregation behavior of engineered nanoparticles and their impact on activated sludge in wastewater treatment. CHEMOSPHERE 2015; 119:568-576. [PMID: 25127355 DOI: 10.1016/j.chemosphere.2014.07.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
The ever-increasing daily use of engineered nanoparticles will lead to heightened levels of these materials in the environment. These nanomaterials will eventually go into the wastewater treatment plant (WWTP), therefore, resulting into a pressing need for information on their aggregation behavior and kinetics in the wastewater aqueous matrix. In this work, we dispersed two different metal oxide nanoparticles (ZnO and TiO2) into the influent of two different WWTPs. Through the time-resolved dynamic light scattering analysis and transmission electron microscopy, the metal oxide nanoparticles (NPs) were quite stably existed in the wastewater matrix with aggregates of diameter 300-400 nm after 4.5h or more suspension. We confirmed that the dissolved organic matters (DOMs) attributed to the stability of nanoparticles. No propensity of NPs to aggregate were observed in the presence of both monovalent and divalent electrolytes even at high concentrations up to 0.15 M in NaCl or 0.025 M in CaCl2, indicating that the destabilization of nanoparticles in the complicated wastewater matrix was not achieved by the compression of electrical double layer, therefore, their aggregation kinetics cannot be simply predicted by the classic Derjaguin-Landau-Verwey-Overbeek theory of colloidal stability. However, obvious aggregation of nanoparticles in the Al2(SO4)3 solution system was observed with the likely mechanism of bridging of the metal oxide nanoparticles and aggregates due to the formation of hydrous alumina (Al(OH)3·H2O) in the Al2(SO4)3 solution. In the wastewater matrix, we used the noninvasive measurement technology to detect the O2 flux of activated sludge before and after treatment with 1, 10 and 100 mg L(-1) NPs. The results confirmed that both ZnO and TiO2 NPs showed an adverse impact on the O2 uptake of activated sludge when the exposure time extended to 4.5 h.
Collapse
Affiliation(s)
- Xiao-Hong Zhou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Bao-Cheng Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Zhou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yan-Chen Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Han-Chang Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Stensberg MC, Zeitchek MA, Inn K, McLamore ES, Porterfield DM, Sepúlveda MS. Comparative study of non-invasive methods for assessing Daphnia magna embryo toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10803-10814. [PMID: 24888613 DOI: 10.1007/s11356-014-3058-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Embryos, unlike adults, are typically sessile, which allows for an increase in the available metrics that can be used to assess chemical toxicity. We investigate Daphnia magna development rate and oxygen consumption as toxicity metrics and compare them to arrested embryo development using four different techniques with potassium cyanide (KCN) as a common toxicant. The EC50 (95 % CI) for arrested development was 2,535 (1,747-3,677) μg/L KCN. Using pixel intensity changes, recorded with difference imaging, we semi-quantitatively assessed a decrease in development rate at 200 μg/L KCN, threefold lower than the arrested development lowest observed effect concentration (LOEC). Respirometry and self-referencing (SR) microsensors were two unique techniques used to assess oxygen consumption. Using respirometry, an increase in oxygen consumption was found in the 5 μg/L KCN treatment and a decrease for 148 μg/L, but no change was found for the 78 μg/L KCN treatment. Whereas, with SR microsensors, we were able to detect significant changes in oxygen consumption for all three treatments: 5, 78, and 148 μg/L KCN. While SR offered the highest sensitivity, the respirometry platform developed for this study was much easier to use to measure the same endpoint. Oxygen consumption may be subject to change during the development process, meaning consumption assessment techniques may only be useful only for short-term experiments. Development rate was a more sensitive endpoint though was only reliable four of the six embryonic developmental stages examined. Despite being the least sensitive endpoint, arrested embryo development was the only technique capable of assessing the embryos throughout all developmental stages. In conclusion, each metric has advantages and limitations, but because all are non-invasive, it is possible to use any combination of the three.
Collapse
Affiliation(s)
- Matthew C Stensberg
- Department of Agriculture and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | | |
Collapse
|
14
|
Jaroch DB, Lu J, Madangopal R, Stull ND, Stensberg M, Shi J, Kahn JL, Herrera-Perez R, Zeitchek M, Sturgis J, Robinson JP, Yoder MC, Porterfield DM, Mirmira RG, Rickus JL. Mouse and human islets survive and function after coating by biosilicification. Am J Physiol Endocrinol Metab 2013; 305:E1230-40. [PMID: 24002572 PMCID: PMC3840215 DOI: 10.1152/ajpendo.00081.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Inorganic materials have properties that can be advantageous in bioencapsulation for cell transplantation. Our aim was to engineer a hybrid inorganic/soft tissue construct by inducing pancreatic islets to grow an inorganic shell. We created pancreatic islets surrounded by porous silica, which has potential application in the immunoprotection of islets in transplantation therapies for type 1 diabetes. The new method takes advantage of the islet capsule surface as a template for silica formation. Mouse and human islets were exposed to medium containing saturating silicic acid levels for 9-15 min. The resulting tissue constructs were then cultured for up to 4 wk under normal conditions. Scanning electron microscopy and energy dispersive X-ray spectroscopy was used to monitor the morphology and elemental composition of the material at the islet surface. A cytokine assay was used to assess biocompatibility with macrophages. Islet survival and function were assessed by confocal microscopy, glucose-stimulated insulin release assays, oxygen flux at the islet surface, expression of key genes by RT-PCR, and syngeneic transplant into diabetic mice.
Collapse
Affiliation(s)
- David B Jaroch
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Stensberg MC, Madangopal R, Yale G, Wei Q, Ochoa-Acuña H, Wei A, Mclamore ES, Rickus J, Porterfield DM, Sepúlveda MS. Silver nanoparticle-specific mitotoxicity inDaphnia magna. Nanotoxicology 2013; 8:833-42. [DOI: 10.3109/17435390.2013.832430] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
16
|
Shi J, McLamore ES, Marshall Porterfield D. Nanomaterial based self-referencing microbiosensors for cell and tissue physiology research. Biosens Bioelectron 2013; 40:127-34. [PMID: 22889647 PMCID: PMC3604890 DOI: 10.1016/j.bios.2012.06.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 12/11/2022]
Abstract
Physiological studies require sensitive tools to directly quantify transport kinetics in the cell/tissue spatial domain under physiological conditions. Although biosensors are capable of measuring concentration, their applications in physiological studies are limited due to the relatively low sensitivity, excessive drift/noise, and inability to quantify analyte transport. Nanomaterials significantly improve the electrochemical transduction of microelectrodes, and make the construction of highly sensitive microbiosensors possible. Furthermore, a novel biosensor modality, self-referencing (SR), enables direct measurement of real-time flux and drift/noise subtraction. SR microbiosensors based on nanomaterials have been used to measure the real-time analyte transport in several cell/tissue studies coupled with various stimulators/inhibitors. These studies include: glucose uptake in pancreatic β cells, cancer cells, muscle tissues, intestinal tissues and P. Aeruginosa biofilms; glutamate flux near neuronal cells; and endogenous indole-3-acetic acid flux near the surface of Zea mays roots. Results from the SR studies provide important insights into cancer, diabetes, nutrition, neurophysiology, environmental and plant physiology studies under dynamic physiological conditions, demonstrating that the SR microbiosensors are an extremely valuable tool for physiology research.
Collapse
Affiliation(s)
- Jin Shi
- Birck-Bindley Physiological Sensing Facility, Purdue University, USA
| | | | | |
Collapse
|
17
|
Shi J, Zhang H, Snyder A, Wang MX, Xie J, Porterfield DM, Stanciu LA. An aqueous media based approach for the preparation of a biosensor platform composed of graphene oxide and Pt-black. Biosens Bioelectron 2012; 38:314-20. [PMID: 22748962 PMCID: PMC3420981 DOI: 10.1016/j.bios.2012.06.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 02/01/2023]
Abstract
The combination of Pt nanoparticles and graphene was more effective in enhancing biosensing than either nanomaterial alone according to previous reports. Based on the structural similarities between water soluble graphene oxide (GrO(x)) and graphene, we report the fabrication of an aqueous media based GrO(x)/Pt-black nanocomposite for biosensing enhancement. In this approach GrO(x) acted as a nanoscale molecular template for the electrodeposition of Pt-black, an amorphously nanopatterned isoform of platinum metal. Scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy (EDS) showed that Pt-black was growing along GrO(x). The effective surface area and electrocatalytic activity towards H(2)O(2) oxidation of GrO(x)/Pt-black microelectrodes were significantly higher than for Pt-black microelectrodes. When used to prepare a bio-nanocomposite based on protein functionalization with the enzyme glucose oxidase (GOx), the GrO(x)/Pt-black microbiosensors exhibited improved sensitivity over the Pt-black microbiosensors. This suggested that the GrO(x)/Pt-black nanocomposite facilitated an increase in electron transfer, and/or minimized mass transport limitations as compared to Pt-black used alone. Glucose microbiosensors based on GrO(x)/Pt-black exhibited high sensitivity (465.9 ± 48.0 nA/mM), a low detection limit of 1 μM, a linear response range of 1 μM-2mM, and response time of ≈ 4s. Additionally the sensor was stable and highly selective over potential interferents.
Collapse
Affiliation(s)
- Jin Shi
- Birck-Bindley Physiological Sensing Facility, Purdue University, 1203 W. State Street, West Lafayette, IN 47907
- Department of Agricultural & Biological Engineering, Purdue University, 225 S. University Street, West Lafayette, IN 47907
| | - Hangyu Zhang
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Alexandra Snyder
- School of Materials Engineering, Purdue University, 701 W. Stadium Avenue, West Lafayette, IN 47907
| | - Mei-xian Wang
- Department of Mechanical Engineering, Purdue School of Engineering and Technology, IUPUI, 723 W. Michigan Street, Room SL 260 M Indianapolis, IN 46202
| | - Jian Xie
- Department of Mechanical Engineering, Purdue School of Engineering and Technology, IUPUI, 723 W. Michigan Street, Room SL 260 M Indianapolis, IN 46202
| | - D. Marshall Porterfield
- Birck-Bindley Physiological Sensing Facility, Purdue University, 1203 W. State Street, West Lafayette, IN 47907
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907
- Department of Agricultural & Biological Engineering, Purdue University, 225 S. University Street, West Lafayette, IN 47907
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907
| | - Lia A. Stanciu
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907
- School of Materials Engineering, Purdue University, 701 W. Stadium Avenue, West Lafayette, IN 47907
| |
Collapse
|
18
|
Huang Z, McLamore ES, Chuang HS, Zhang W, Wereley S, Leon JLC, Banks MK. Shear-induced detachment of biofilms from hollow fiber silicone membranes. Biotechnol Bioeng 2012; 110:525-34. [PMID: 22886926 DOI: 10.1002/bit.24631] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/23/2012] [Accepted: 07/26/2012] [Indexed: 11/06/2022]
Abstract
A suite of techniques was utilized to evaluate the correlation between biofilm physiology, fluid-induced shear stress, and detachment in hollow fiber membrane aerated bioreactors. Two monoculture species biofilms were grown on silicone fibers in a hollow fiber membrane aerated bioreactors (HfMBR) to assess detachment under laminar fluid flow conditions. Both physiology (biofilm thickness and roughness) and nutrient mass transport data indicated the presence of a steady state mature biofilm after 3 weeks of development. Surface shear stress proved to be an important parameter for predicting passive detachment for the two biofilms. The average shear stress at the surface of Nitrosomonas europaea biofilms (54.5 ± 3.2 mPa) was approximately 20% higher than for Pseudomonas aeruginosa biofilms (45.8 ± 7.7 mPa), resulting in higher biomass detachment. No significant difference in shear stress was measured between immature and mature biofilms of the same species. There was a significant difference in detached biomass for immature vs. mature biofilms in both species. However, there was no difference in detachment rate between the two species.
Collapse
Affiliation(s)
- Z Huang
- School of Civil Engineering, Purdue University, 550 Stadium Mall Dr., West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Stensberg MC, Wei Q, McLamore ES, Porterfield DM, Wei A, Sepúlveda MS. Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine (Lond) 2011; 6:879-98. [PMID: 21793678 DOI: 10.2217/nnm.11.78] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Silver nanoparticles (Ag NPs) are becoming increasingly prevalent in consumer products as antibacterial agents. The increased use of Ag NP-enhanced products may lead to an increase in toxic levels of environmental silver, but regulatory control over the use or disposal of such products is lagging due to insufficient assessment on the toxicology of Ag NPs and their rate of release into the environment. In this article we discuss recent research on the transport, activity and fate of Ag NPs at the cellular and organismic level, in conjunction with traditional and recently established methods of nanoparticle characterization. We include several proposed mechanisms of cytotoxicity based on such studies, as well as new opportunities for investigating the uptake and fate of Ag NPs in living systems.
Collapse
Affiliation(s)
- Matthew Charles Stensberg
- Department of Agricultural & Biological Engineering, Purdue University, 225 S University St., West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
20
|
Ben-Yoav H, Freeman A, Sternheim M, Shacham-Diamand Y. An electrochemical impedance model for integrated bacterial biofilms. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2010.12.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Jaroch D, McLamore E, Zhang W, Shi J, Garland J, Banks MK, Porterfield DM, Rickus JL. Cell-mediated deposition of porous silica on bacterial biofilms. Biotechnol Bioeng 2011; 108:2249-60. [DOI: 10.1002/bit.23195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/11/2011] [Accepted: 04/22/2011] [Indexed: 11/07/2022]
|
22
|
McLamore ES, Porterfield DM. Non-invasive tools for measuring metabolism and biophysical analyte transport: self-referencing physiological sensing. Chem Soc Rev 2011; 40:5308-20. [DOI: 10.1039/c0cs00173b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Shi J, McLamore ES, Jaroch D, Claussen JC, Mirmira RG, Rickus JL, Porterfield DM. Oscillatory glucose flux in INS 1 pancreatic β cells: a self-referencing microbiosensor study. Anal Biochem 2010; 411:185-93. [PMID: 21167120 DOI: 10.1016/j.ab.2010.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 12/27/2022]
Abstract
Signaling and insulin secretion in β cells have been reported to demonstrate oscillatory modes, with abnormal oscillations associated with type 2 diabetes. We investigated cellular glucose influx in β cells with a self-referencing (SR) microbiosensor based on nanomaterials with enhanced performance. Dose-response analyses with glucose and metabolic inhibition studies were used to study oscillatory patterns and transporter kinetics. For the first time, we report a stable and regular oscillatory uptake of glucose (averaged period 2.9±0.6 min), which corresponds well with an oscillator model. This oscillatory behavior is part of the feedback control pathway involving oxygen, cytosolic Ca(2+)/ATP, and insulin secretion (periodicity approximately 3 min). Glucose stimulation experiments show that the net Michaelis-Menten constant (6.1±1.5 mM) is in between GLUT2 and GLUT9. Phloretin inhibition experiments show an EC(50) value of 28±1.6 μM phloretin for class I GLUT proteins and a concentration of 40±0.6 μM phloretin caused maximum inhibition with residual nonoscillating flux, suggesting that the transporters not inhibited by phloretin are likely responsible for the remaining nonoscillatory uptake, and that impaired uptake via GLUT2 may be the cause of the oscillation loss in type 2 diabetes. Transporter studies using the SR microbiosensor will contribute to diabetes research and therapy development by exploring the nature of oscillatory transport mechanisms.
Collapse
Affiliation(s)
- Jin Shi
- Physiological Sensing Facility, 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
McLamore ES, Jaroch D, Chatni MR, Porterfield DM. Self-referencing optrodes for measuring spatially resolved, real-time metabolic oxygen flux in plant systems. PLANTA 2010; 232:1087-99. [PMID: 20697740 DOI: 10.1007/s00425-010-1234-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 07/16/2010] [Indexed: 05/08/2023]
Abstract
The ability to non-invasively measure metabolic oxygen flux is a very important tool for physiologists interested in a variety of questions ranging from basic metabolism, growth/development, and stress adaptation. Technologies for measuring oxygen concentration near the surface of cells/tissues include electrochemical and optical techniques. A wealth of knowledge was gained using these tools for quantifying real-time physiology. Fiber-optic microprobes (optrodes) have recently been developed for measuring oxygen in a variety of biomedical and environmental applications. We have adopted the use of these optical microsensors for plant physiology applications, and used the microsensors in an advanced sensing modality known as self-referencing. Self-referencing is a non-invasive microsensor technique used for measuring real-time flux of analytes. This paper demonstrates the use of optical microsensors for non-invasively measuring rhizosphere oxygen flux associated with respiration in plant roots, as well as boundary layer oxygen flux in phytoplankton mats. Highly sensitive/selective optrodes had little to no hysteresis/calibration drift during experimentation, and an extremely high signal-to-noise ratio. We have used this new tool to compare various aspects of rhizosphere oxygen flux for roots of Glycine max, Zea mays, and Phaseolus vulgaris, and also mapped developmentally relevant profiles and distinct temporal patterns. We also characterized real-time respiratory patterns during inhibition of cytochrome and alternative oxidase pathways via pharmacology. Boundary layer oxygen flux was also measured for a phytoplankton mat during dark:light cycling and exposure to pharamacological inhibitors. This highly sensitive technology enables non-invasive study of oxygen transport in plant systems under physiologically relevant conditions.
Collapse
|
25
|
McLamore ES, Shi J, Jaroch D, Claussen JC, Uchida A, Jiang Y, Zhang W, Donkin SS, Banks MK, Buhman KK, Teegarden D, Rickus JL, Porterfield DM. A self referencing platinum nanoparticle decorated enzyme-based microbiosensor for real time measurement of physiological glucose transport. Biosens Bioelectron 2010; 26:2237-45. [PMID: 20965716 DOI: 10.1016/j.bios.2010.09.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/31/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Glucose is the central molecule in many biochemical pathways, and numerous approaches have been developed for fabricating micro biosensors designed to measure glucose concentration in/near cells and/or tissues. An inherent problem for microsensors used in physiological studies is a low signal-to-noise ratio, which is further complicated by concentration drift due to the metabolic activity of cells. A microsensor technique designed to filter extraneous electrical noise and provide direct quantification of active membrane transport is known as self-referencing. Self-referencing involves oscillation of a single microsensor via computer-controlled stepper motors within a stable gradient formed near cells/tissues (i.e., within the concentration boundary layer). The non-invasive technique provides direct measurement of trans-membrane (or trans-tissue) analyte flux. A glucose micro biosensor was fabricated using deposition of nanomaterials (platinum black, multiwalled carbon nanotubes, Nafion) and glucose oxidase on a platinum/iridium microelectrode. The highly sensitive/selective biosensor was used in the self-referencing modality for cell/tissue physiological transport studies. Detailed analysis of signal drift/noise filtering via phase sensitive detection (including a post-measurement analytical technique) are provided. Using this highly sensitive technique, physiological glucose uptake is demonstrated in a wide range of metabolic and pharmacological studies. Use of this technique is demonstrated for cancer cell physiology, bioenergetics, diabetes, and microbial biofilm physiology. This robust and versatile biosensor technique will provide much insight into biological transport in biomedical, environmental, and agricultural research applications.
Collapse
Affiliation(s)
- E S McLamore
- Bindley Bioscience Center, Physiological Sensing Facility, Purdue University, 1203 W, State Street, West Lafayette, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
McLamore ES, Zhang W, Porterfield DM, Banks MK. Membrane-aerated biofilm proton and oxygen flux during chemical toxin exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7050-7057. [PMID: 20735036 DOI: 10.1021/es1012356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bioreactors containing sessile bacteria (biofilms) grown on hollow fiber membranes have been used for treatment of many wastestreams. Real time operational control of bioreactor performance requires detailed knowledge of the relationship between bulk liquid water quality and physiological transport at the biofilm-liquid interface. Although large data sets exist describing membrane-aerated bioreactor effluent quality, very little real time data is available characterizing boundary layer transport under physiological conditions. A noninvasive, microsensor technique was used to quantify real time (≈1.5 s) changes in oxygen and proton flux for mature Nitrosomonas europaea and Pseudomonas aeruginosa biofilms in membrane-aerated bioreactors following exposure to environmental toxins. Stress response was characterized during exposure to toxins with known mode of action (chlorocarbonyl cyanide phenyl-hydrazone and potassium cyanide), and four environmental toxins (rotenone, 2,4-dinitrophenol, cadmium chloride, and pentachlorophenol). Exposure to sublethal concentrations of all environmental toxins caused significant increases in O(2) and/or H(+) flux (depending on the mode of action). These real time microscale signatures (i.e., fingerprints) of O(2) and H(+) flux can be coupled with bulk liquid analysis to improve our understanding of physiology in counter-diffusion biofilms found within membrane aerated bioreactors; leading to enhanced monitoring/modeling strategies for bioreactor control.
Collapse
Affiliation(s)
- E S McLamore
- Physiological Sensing Facility, Purdue University, 1203 West State Street, West Lafayette, Indiana 47907-2057, USA.
| | | | | | | |
Collapse
|
27
|
McLamore ES, Diggs A, Calvo Marzal P, Shi J, Blakeslee JJ, Peer WA, Murphy AS, Porterfield DM. Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:1004-16. [PMID: 20626658 DOI: 10.1111/j.1365-313x.2010.04300.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Indole-3-acetic acid (IAA) is a primary phytohormone that regulates multiple aspects of plant development. Because polar transport of IAA is an essential determinant of organogenesis and dynamic tropic growth, methods to monitor IAA movement in vivo are in demand. A self-referencing electrochemical microsensor was optimized to non-invasively measure endogenous IAA flux near the surface of Zea mays roots without the addition of exogenous IAA. Enhanced sensor surface modification, decoupling of acquired signals, and integrated flux analyses were combined to provide direct, real time quantification of endogenous IAA movement in B73 maize inbred and brachytic2 (br2) auxin transport mutant roots. BR2 is localized in epidermal and hypodermal tissues at the root apex. br2 roots exhibit reduced shootward IAA transport at the root apex in radiotracer experiments and reduced gravitropic growth. IAA flux data indicates that maximal transport occurs in the distal elongation zone of maize roots, and net transport in/out of br2 roots was decreased compared to B73. Integration of short term real time flux data in this zone revealed oscillatory patterns, with B73 exhibiting shorter oscillatory periods and greater amplitude than br2. IAA efflux and influx were inhibited using 1-N-naphthylphthalamic acid (NPA), and 2-naphthoxyacetic acid (NOA), respectively. A simple harmonic oscillation model of these data produced a correlation between modeled and measured values of 0.70 for B73 and 0.69 for br2. These results indicate that this technique is useful for real-time IAA transport monitoring in surface tissues and that this approach can be performed simultaneously with current live imaging techniques.
Collapse
Affiliation(s)
- Eric S McLamore
- Birck-Bindley Physiological Sensing Facility, Purdue University, West Lafayette, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
McLamore ES, Mohanty S, Shi J, Claussen J, Jedlicka SS, Rickus JL, Porterfield DM. A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux. J Neurosci Methods 2010; 189:14-22. [PMID: 20298719 DOI: 10.1016/j.jneumeth.2010.03.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/14/2010] [Accepted: 03/02/2010] [Indexed: 01/21/2023]
Abstract
Quantification of neurotransmitter transport dynamics is hindered by a lack of sufficient tools to directly monitor bioactive flux under physiological conditions. Traditional techniques for studying neurotransmitter release/uptake require inferences from non-selective electrical recordings, are invasive/destructive, and/or suffer from poor temporal resolution. Recent advances in electrochemical biosensors have enhanced in vitro and in vivo detection of neurotransmitter concentration under physiological/pathophysiological conditions. The use of enzymatic biosensors with performance enhancing materials (e.g., carbon nanotubes) has been a major focus for many of these advances. However, these techniques are not used as mainstream neuroscience research tools, due to relatively low sensitivity, excessive drift/noise, low signal-to-noise ratio, and inability to quantify rapid neurochemical kinetics during synaptic transmission. A sensing technique known as self-referencing overcomes many of these problems, and allows non-invasive quantification of biophysical transport. This work presents a self-referencing CNT modified glutamate oxidase biosensor for monitoring glutamate flux near neural/neuronal cells. Concentration of basal glutamate was similar to other in vivo and in vitro measurements. The biosensor was used in self-referencing (oscillating) mode to measure net glutamate flux near neural cells during electrical stimulation. Prior to stimulation, the average influx was 33.9+/-6.4 fmol cm(-2)s(-1)). Glutamate efflux took place immediately following stimulation, and was always followed by uptake in the 50-150 fmol cm(-2)s(-1) range. Uptake was inhibited using threo-beta-benzyloxyaspartate, and average surface flux in replicate cells (1.1+/-7.4 fmol cm(-2)s(-1)) was significantly lower than uninhibited cells. The technique is extremely valuable for studying neuropathological conditions related to neurotransmission under dynamic physiological conditions.
Collapse
Affiliation(s)
- E S McLamore
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | | | | | | | | | | | | |
Collapse
|