1
|
Liu Y, Islam MS, Bakker A, Li Z, Ajam A, Kruzic JJ, Kilian KA. Improving the bioactivity and mechanical properties of poly(ethylene glycol)-based hydrogels through a supramolecular support network. J Mater Chem B 2025; 13:1286-1295. [PMID: 39789987 DOI: 10.1039/d4tb02002b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Most synthetic hydrogels are formed through radical polymerization to yield a homogenous covalent meshwork. In contrast, natural hydrogels form through mechanisms involving both covalent assembly and supramolecular interactions. In this communication, we expand the capabilities of covalent poly(ethylene glycol) (PEG) networks through co-assembly of supramolecular peptide nanofibers. Using a peptide hydrogelator derived from the tryptophan zipper (Trpzip) motif, we demonstrate how in situ formation of nanofiber networks can tune the stiffness of PEG-based hydrogels, while also imparting shear thinning, stress relaxation, and self-healing properties. The hybrid networks show enhanced toughness and durability under tension, providing scope for use in load bearing applications. A small quantity of Trpzip peptide renders the non-adhesive PEG network adhesive, supporting adipose derived stromal cell adhesion, elongation, and growth. The integration of supramolecular networks into covalent meshworks expands the versatility of these materials, opening up new avenues for applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Yuzhu Liu
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Md Shariful Islam
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Anna Bakker
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Zihao Li
- Australian Centre for NanoMedicine, School of Chemistry, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Alaa Ajam
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
- Australian Centre for NanoMedicine, School of Chemistry, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Wang Z, Zhai B, Sun J, Zhang X, Zou J, Shi Y, Guo D. Recent advances of injectable in situ-forming hydrogels for preventing postoperative tumor recurrence. Drug Deliv 2024; 31:2400476. [PMID: 39252545 PMCID: PMC11389645 DOI: 10.1080/10717544.2024.2400476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
The unavoidable residual tumor tissue from surgery and the strong aggressiveness of tumor cells pose challenges to the postoperative treatment of tumor patients, accompanied by in situ tumor recurrence and decreased quality of life. Therefore, there is an urgent need to explore appropriate postoperative therapeutic strategies to remove residual tumor cells after surgery to inhibit tumor recurrence and metastasis after surgery. In recent years, with the rapid development of biomedical materials, the study of local delivery systems as postoperative delivery of therapeutic agents has gradually attracted the attention of researchers. Injectable in situ-forming hydrogel is a locally administered agent injected in situ as a solution that can be loaded with various therapeutic agents and rapidly gels to form a semi-solid gel at the treatment site. This type of hydrogel tightly fills the surgical site and covers irregular excision surfaces. In this paper, we review the recent advances in the application of injectable in situ-forming hydrogels in postoperative therapy, focusing on the matrix materials of this type of hydrogel and its application in the postoperative treatment of different types of tumors, as well as discussing the challenges and prospects of its clinical application.
Collapse
Affiliation(s)
- Zhanpeng Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Bingtao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Junbo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
3
|
Elmounedi N, Bahloul W, Keskes H. Current Therapeutic Strategies of Intervertebral Disc Regenerative Medicine. Mol Diagn Ther 2024; 28:745-775. [PMID: 39158834 DOI: 10.1007/s40291-024-00729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/20/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the most frequent causes of low back pain. No treatment is currently available to delay the progression of IDD. Conservative treatment or surgical interventions is only used to target the symptoms of IDD rather than treat the underlying cause. Currently, numerous potential therapeutic strategies are available, including molecular therapy, gene therapy, and cell therapy. However, the hostile environment of degenerated discs is a major problem that has hindered the clinical applicability of such approaches. In this regard, the design of drugs using alternative delivery systems (macro-, micro-, and nano-sized particles) may resolve this problem. These can protect and deliver biomolecules along with helping to improve the therapeutic effect of drugs via concentrating, protecting, and prolonging their presence in the degenerated disc. This review summarizes the research progress of diagnosis and the current options for treating IDD.
Collapse
Affiliation(s)
- Najah Elmounedi
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia.
| | - Walid Bahloul
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Hassib Keskes
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
4
|
Pei W, Yu Y, Wang P, Zheng L, Lan K, Jin Y, Yong Q, Huang C. Research trends of bio-application of major components in lignocellulosic biomass (cellulose, hemicellulose and lignin) in orthopedics fields based on the bibliometric analysis: A review. Int J Biol Macromol 2024; 267:131505. [PMID: 38631574 DOI: 10.1016/j.ijbiomac.2024.131505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Cellulose, hemicellulose, and lignin are the major bio-components in lignocellulosic biomass (BC-LB), which possess excellent biomechanical properties and biocompatibility to satisfy the demands of orthopedic applications. To understand the basis and trends in the development of major bio-components in BC-LB in orthopedics, the bibliometric technology was applied to get unique insights based on the published papers (741) in the Web of Science (WOS) database from January 1st, 2001, to February 14th, 2023. The analysis includes the annual distributions of publications, keywords co-linearity, research hotspots exploration, author collaboration networks, published journals, and clustering of co-cited literature. The results reveal a steady growth in publications focusing on the application of BC-LB in orthopedics, with China and the United States leading in research output. The "International Journal of Biological Macromolecules" was identified as the most cited journal for BC-LB research in orthopedics. The research hotspots encompassed bone tissue engineering, cartilage tissue engineering, and drug delivery systems, indicating the fundamental research and potential development in these areas. This study also highlights the challenges associated with the clinical application of BC-LB in orthopedics and provides valuable insights for future advancements in the field.
Collapse
Affiliation(s)
- Wenhui Pei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310000, PR China
| | - Kai Lan
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Yongcan Jin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Montheil T, Simon M, Noël D, Mehdi A, Subra G, Echalier C. Silylated biomolecules: Versatile components for bioinks. Front Bioeng Biotechnol 2022; 10:888437. [PMID: 36304899 PMCID: PMC9592925 DOI: 10.3389/fbioe.2022.888437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Physical hydrogels prepared from natural biopolymers are the most popular components for bioinks. However, to improve the mechanical properties of the network, in particular its durability for long-lasting tissue engineering applications or its stiffness for bone/cartilage applications, covalent chemical hydrogels have to be considered. For that purpose, biorthogonal reactions are required to allow the inclusion of living cells within the bioink reservoir before the 3D printing procedure. Interestingly, such reactions also unlock the possibility to further multifunctionalize the network, adding bioactive moieties to tune the biological properties of the resulting printed biomaterial. Surprisingly, compared to the huge number of studies disclosing novel bioink compositions, no extensive efforts have been made by the scientific community to develop new chemical reactions meeting the requirements of both cell encapsulation, chemical orthogonality and versatile enough to be applied to a wide range of molecular components, including fragile biomolecules. That could be explained by the domination of acrylate photocrosslinking in the bioprinting field. On the other hand, proceeding chemoselectively and allowing the polymerization of any type of silylated molecules, the sol-gel inorganic polymerization was used as a crosslinking reaction to prepare hydrogels. Recent development of this strategy includes the optimization of biocompatible catalytic conditions and the silylation of highly attractive biomolecules such as amino acids, bioactive peptides, proteins and oligosaccharides. When one combines the simplicity and the versatility of the process, with the ease of functionalization of any type of relevant silylated molecules that can be combined in an infinite manner, it was obvious that a family of bioinks could emerge quickly. This review presents the sol-gel process in biocompatible conditions and the various classes of relevant silylated molecules that can be used as bioink components. The preparation of hydrogels and the kinetic considerations of the sol-gel chemistry which at least allowed cell encapsulation and extrusion-based bioprinting are discussed.
Collapse
Affiliation(s)
- Titouan Montheil
- IBMM, University Montpellier, CNRS, ENSCM, Montpellier, France
- ICGM, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - Matthieu Simon
- IBMM, University Montpellier, CNRS, ENSCM, Montpellier, France
- IRMB, University Montpellier, INSERM, CHU, Montpellier, France
| | - Danièle Noël
- IRMB, University Montpellier, INSERM, CHU, Montpellier, France
| | - Ahmad Mehdi
- ICGM, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - Gilles Subra
- IBMM, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - Cécile Echalier
- IBMM, University Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
6
|
Levingstone TJ, Sheehy EJ, Moran CJ, Cunniffe GM, Diaz Payno PJ, Brady RT, Almeida HV, Carroll SF, O’Byrne JM, Kelly DJ, Brama PAJ, O’ Brien FJ. Evaluation of a co-culture of rapidly isolated chondrocytes and stem cells seeded on tri-layered collagen-based scaffolds in a caprine osteochondral defect model. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100066. [PMID: 36824377 PMCID: PMC9934472 DOI: 10.1016/j.bbiosy.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022] Open
Abstract
Cartilage has poor regenerative capacity and thus damage to the joint surfaces presents a major clinical challenge. Recent research has focussed on the development of tissue-engineered and cell-based approaches for the treatment of cartilage and osteochondral injuries, with current clinically available cell-based approaches including autologous chondrocyte implantation and matrix-assisted autologous chondrocyte implantation. However, these approaches have significant disadvantages due to the requirement for a two-stage surgical procedure and an in vitro chondrocyte expansion phase which increases logistical challenges, hospital times and costs. In this study, we hypothesized that seeding biomimetic tri-layered scaffolds, with proven regenerative potential, with chondrocyte/infrapatellar fat pad stromal cell co-cultures would improve their regenerative capacity compared to scaffolds implanted cell-free. Rapid cell isolation techniques, without the requirement for long term in vitro culture, were utilised to achieve co-cultures of chondrocytes and stromal cells and thus overcome the limitations of existing cell-based techniques. Cell-free and cell-seeded scaffolds were implanted in osteochondral defects, created within the femoral condyle and trochlear ridge, in a translational large animal goat model. While analysis showed trends towards delayed subchondral bone healing in the cell-seeded scaffold group, by the 12 month timepoint the cell-free and cell-seeded groups yield cartilage and bone tissue with comparable quality and quantity. The results of the study reinforce the potential of the biomimetic tri-layered scaffold to repair joint defects but failed to demonstrate a clear benefit from the addition of the CC/FPMSC co-culture to this scaffold. Taking into consideration the additional cost and complexity associated with the cell-seeded scaffold approach, this study demonstrates that the treatment of osteochondral defects using cell-free tri-layered scaffolds may represent a more prudent clinical approach.
Collapse
Affiliation(s)
- Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland,Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin 9, Ireland,Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland,Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123St. Stephen's Green, Dublin 2, Ireland,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland
| | - Eamon J. Sheehy
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123St. Stephen's Green, Dublin 2, Ireland,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland,Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | - Conor J. Moran
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123St. Stephen's Green, Dublin 2, Ireland,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland
| | - Gráinne M. Cunniffe
- Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland,National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Pedro J. Diaz Payno
- Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Robert T. Brady
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123St. Stephen's Green, Dublin 2, Ireland,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland
| | - Henrique V. Almeida
- Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland,iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Simon F. Carroll
- Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - John M. O’Byrne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123St. Stephen's Green, Dublin 2, Ireland,Cappagh National Orthopaedic Hospital, Finglas, Dublin 11, Ireland
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Pieter AJ. Brama
- Section Veterinary Clinical Sciences, School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Fergal J. O’ Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123St. Stephen's Green, Dublin 2, Ireland,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland,Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland,Corresponding author at: Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123St. Stephen's Green, Ireland
| |
Collapse
|
7
|
Demarquay C, Moussa L, Réthoré G, Milliat F, Weiss P, Mathieu N. Embedding MSCs in Si-HPMC hydrogel decreased MSC-directed host immune response and increased the regenerative potential of macrophages. Regen Biomater 2022; 9:rbac022. [PMID: 35784096 PMCID: PMC9245650 DOI: 10.1093/rb/rbac022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 11/14/2022] Open
Abstract
Embedding mesenchymal stromal cells (MSCs) in biomaterial is a subject of increasing interest in the field of Regenerative Medicine. Speeding up the clinical use of MSCs is dependent on the use of non-syngeneic models in accordance with Good Manufacturing Practices (GMP) requirements and on costs. To this end, in this study, we analyzed the in vivo host immune response following local injection of silanized hydroxypropyl methylcellulose (Si-HPMC)-embedded human MSCs in a rat model developing colorectal damage induced by ionizing radiation. Plasma and lymphocytes from mesenteric lymph nodes were harvested in addition to colonic tissue. We set up tests, using flow cytometry and a live imaging system, to highlight the response to specific antibodies and measure the cytotoxicity of lymphocytes against injected MSCs. We demonstrated that Si-HPMC protects MSCs from specific antibodies production and from apoptosis by lymphocytes. We also observed that Si-HPMC does not modify innate immune response infiltrate in vivo, and that in vitro co-culture of Si-HPMC-embedded MSCs impacts macrophage inflammatory response depending on the microenvironment but, more importantly, increases the macrophage regenerative response through Wnt-family and VEGF gene expression. This study furthers our understanding of the mechanisms involved, with a view to improving the therapeutic benefits of biomaterial-assisted cell therapy by modulating the host immune response. The decrease in specific immune response against injected MSCs protected by Si-HPMC also opens up new possibilities for allogeneic clinical use.
Collapse
Affiliation(s)
- Christelle Demarquay
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, Fontenay-aux-Roses 92262, France
| | - Lara Moussa
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, Fontenay-aux-Roses 92262, France
| | - Gildas Réthoré
- Faculté de Chirurgie Dentaire, Regenerative Medicine and Skeleton (RMeS) Laboratory, Université de Nantes, Nantes 44042, France
| | - Fabien Milliat
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, Fontenay-aux-Roses 92262, France
| | - Pierre Weiss
- Faculté de Chirurgie Dentaire, Regenerative Medicine and Skeleton (RMeS) Laboratory, Université de Nantes, Nantes 44042, France
| | | |
Collapse
|
8
|
Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels 2022; 8:179. [PMID: 35323292 PMCID: PMC8948717 DOI: 10.3390/gels8030179] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) printing is well acknowledged to constitute an important technology in tissue engineering, largely due to the increasing global demand for organ replacement and tissue regeneration. In 3D bioprinting, which is a step ahead of 3D biomaterial printing, the ink employed is impregnated with cells, without compromising ink printability. This allows for immediate scaffold cellularization and generation of complex structures. The use of cell-laden inks or bio-inks provides the opportunity for enhanced cell differentiation for organ fabrication and regeneration. Recognizing the importance of such bio-inks, the current study comprehensively explores the state of the art of the utilization of bio-inks based on natural polymers (biopolymers), such as cellulose, agarose, alginate, decellularized matrix, in 3D bioprinting. Discussions regarding progress in bioprinting, techniques and approaches employed in the bioprinting of natural polymers, and limitations and prospects concerning future trends in human-scale tissue and organ fabrication are also presented.
Collapse
Affiliation(s)
- Ahmed Fatimi
- Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
- ERSIC, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Julia Siminska-Stanny
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| |
Collapse
|
9
|
Bao Y, He J, Song K, Guo J, Zhou X, Liu S. Functionalization and Antibacterial Applications of Cellulose-Based Composite Hydrogels. Polymers (Basel) 2022; 14:polym14040769. [PMID: 35215680 PMCID: PMC8879376 DOI: 10.3390/polym14040769] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Pathogens, especially drug-resistant pathogens caused by the abuse of antibiotics, have become a major threat to human health and public health safety. The exploitation and application of new antibacterial agents is extremely urgent. As a natural biopolymer, cellulose has recently attracted much attention due to its excellent hydrophilicity, economy, biocompatibility, and biodegradability. In particular, the preparation of cellulose-based hydrogels with excellent structure and properties from cellulose and its derivatives has received increasing attention thanks to the existence of abundant hydrophilic functional groups (such as hydroxyl, carboxy, and aldehyde groups) within cellulose and its derivatives. The cellulose-based hydrogels have broad application prospects in antibacterial-related biomedical fields. The latest advances of preparation and antibacterial application of cellulose-based hydrogels has been reviewed, with a focus on the antibacterial applications of composite hydrogels formed from cellulose and metal nanoparticles; metal oxide nanoparticles; antibiotics; polymers; and plant extracts. In addition, the antibacterial mechanism and antibacterial characteristics of different cellulose-based antibacterial hydrogels were also summarized. Furthermore, the prospects and challenges of cellulose-based antibacterial hydrogels in biomedical applications were also discussed.
Collapse
Affiliation(s)
- Yunhui Bao
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
| | - Jian He
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Ke Song
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Jie Guo
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Xianwu Zhou
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Shima Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
- Correspondence: ; Tel.: +86-0744-8231386
| |
Collapse
|
10
|
Alizadeh Sardroud H, Wanlin T, Chen X, Eames BF. Cartilage Tissue Engineering Approaches Need to Assess Fibrocartilage When Hydrogel Constructs Are Mechanically Loaded. Front Bioeng Biotechnol 2022; 9:787538. [PMID: 35096790 PMCID: PMC8790514 DOI: 10.3389/fbioe.2021.787538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Chondrocytes that are impregnated within hydrogel constructs sense applied mechanical force and can respond by expressing collagens, which are deposited into the extracellular matrix (ECM). The intention of most cartilage tissue engineering is to form hyaline cartilage, but if mechanical stimulation pushes the ratio of collagen type I (Col1) to collagen type II (Col2) in the ECM too high, then fibrocartilage can form instead. With a focus on Col1 and Col2 expression, the first part of this article reviews the latest studies on hyaline cartilage regeneration within hydrogel constructs that are subjected to compression forces (one of the major types of the forces within joints) in vitro. Since the mechanical loading conditions involving compression and other forces in joints are difficult to reproduce in vitro, implantation of hydrogel constructs in vivo is also reviewed, again with a focus on Col1 and Col2 production within the newly formed cartilage. Furthermore, mechanotransduction pathways that may be related to the expression of Col1 and Col2 within chondrocytes are reviewed and examined. Also, two recently-emerged, novel approaches of load-shielding and synchrotron radiation (SR)–based imaging techniques are discussed and highlighted for future applications to the regeneration of hyaline cartilage. Going forward, all cartilage tissue engineering experiments should assess thoroughly whether fibrocartilage or hyaline cartilage is formed.
Collapse
Affiliation(s)
- Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Hamed Alizadeh Sardroud,
| | - Tasker Wanlin
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - B. Frank Eames
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Levingstone TJ, Moran C, Almeida HV, Kelly DJ, O'Brien FJ. Layer-specific stem cell differentiation in tri-layered tissue engineering biomaterials: Towards development of a single-stage cell-based approach for osteochondral defect repair. Mater Today Bio 2021; 12:100173. [PMID: 34901823 PMCID: PMC8640516 DOI: 10.1016/j.mtbio.2021.100173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022] Open
Abstract
Successful repair of osteochondral defects is challenging, due in part to their complex gradient nature. Tissue engineering approaches have shown promise with the development of layered scaffolds that aim to promote cartilage and bone regeneration within the defect. The clinical potential of implanting these scaffolds cell-free has been demonstrated, whereby cells from the host bone marrow MSCs infiltrate the scaffolds and promote cartilage and bone regeneration within the required regions of the defect. However, seeding the cartilage layer of the scaffold with a chondrogenic cell population prior to implantation may enhance cartilage tissue regeneration, thus enabling the treatment of larger defects. Here the development of a cell seeding approach capable of enhancing articular cartilage repair without the requirement for in vitro expansion of the cell population is explored. The intrinsic ability of a tri-layered scaffold previously developed in our group to direct stem cell differentiation in each layer of the scaffold was first demonstrated. Following this, the optimal chondrogenic cell seeding approach capable of enhancing the regenerative capacity of the tri-layered scaffold was demonstrated with the highest levels of chondrogenesis achieved with a co-culture of rapidly isolated infrapatellar fat pad MSCs (FPMSCs) and chondrocytes (CCs). The addition of FPMSCs to a relatively small number of CCs led to a 7.8-fold increase in the sGAG production over chondrocytes in mono-culture. This cell seeding approach has the potential to be delivered within a single-stage approach, without the requirement for costly in vitro expansion of harvested cells, to achieve rapid repair of osteochondral defects. Tri-layered scaffold capable of directing layer specific stem cell differentiation. Potential of cell seeding regimes to enhance chondrogenic repair explored. Optimal cell seeding regime was an infrapatellar fat pad MSC:chondrocyte coculture. Adding infrapatellar fat pad MSCs to chondrocytes led to >7-fold increase in sGAG. This cell-seeded scaffold has potential for rapid repair of osteochondral defects.
Collapse
Affiliation(s)
- Tanya J. Levingstone
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin, 2, Ireland
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, 9, Ireland
- Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin, 9, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin, 9, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | - Conor Moran
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin, 2, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | - Henrique V. Almeida
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, 2, Ireland
| | - Daniel J. Kelly
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, 9, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, 2, Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin, 2, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
- Corresponding author. Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin, 2, Ireland.
| |
Collapse
|
12
|
Mellati A, Hasanzadeh E, Gholipourmalekabadi M, Enderami SE. Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112489. [PMID: 34857275 DOI: 10.1016/j.msec.2021.112489] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Hydrogels have attracted much attention for biomedical and pharmaceutical applications due to the similarity of their biomimetic structure to the extracellular matrix of natural living tissues, tunable soft porous microarchitecture, superb biomechanical properties, proper biocompatibility, etc. Injectable hydrogels are an exciting type of hydrogels that can be easily injected into the target sites using needles or catheters in a minimally invasive manner. The more comfortable use, less pain, faster recovery period, lower costs, and fewer side effects make injectable hydrogels more attractive to both patients and clinicians in comparison to non-injectable hydrogels. However, it is difficult to achieve an ideal injectable hydrogel using just a single material (i.e., polymer). This challenge can be overcome by incorporating nanofillers into the polymeric matrix to engineer injectable nanocomposite hydrogels with combined or synergistic properties gained from the constituents. This work aims to critically review injectable nanocomposite hydrogels, their preparation methods, properties, functionalities, and versatile biomedical and pharmaceutical applications such as tissue engineering, drug delivery, and cancer labeling and therapy. The most common natural and synthetic polymers as matrices together with the most popular nanomaterials as reinforcements, including nanoceramics, carbon-based nanostructures, metallic nanomaterials, and various nanosized polymeric materials, are highlighted in this review.
Collapse
Affiliation(s)
- Amir Mellati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Elham Hasanzadeh
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ehsan Enderami
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
13
|
Szustak M, Gendaszewska-Darmach E. Nanocellulose-Based Scaffolds for Chondrogenic Differentiation and Expansion. Front Bioeng Biotechnol 2021; 9:736213. [PMID: 34485266 PMCID: PMC8415884 DOI: 10.3389/fbioe.2021.736213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Nanocellulose deserves special attention among the large group of biocompatible biomaterials. It exhibits good mechanical properties, which qualifies it for potential use as a scaffold imitating cartilage. However, the reconstruction of cartilage is a big challenge due to this tissue's limited regenerative capacity resulting from its lack of vascularization, innervations, and sparsely distributed chondrocytes. This feature restricts the infiltration of progenitor cells into damaged sites. Unfortunately, differentiated chondrocytes are challenging to obtain, and mesenchymal stem cells have become an alternative approach to promote chondrogenesis. Importantly, nanocellulose scaffolds induce the differentiation of stem cells into chondrocyte phenotypes. In this review, we present the recent progress of nanocellulose-based scaffolds promoting the development of cartilage tissue, especially within the emphasis on chondrogenic differentiation and expansion.
Collapse
Affiliation(s)
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
14
|
Nouri-Felekori M, Nezafati N, Moraveji M, Hesaraki S, Ramezani T. Bioorthogonal hydroxyethyl cellulose-based scaffold crosslinked via click chemistry for cartilage tissue engineering applications. Int J Biol Macromol 2021; 183:2030-2043. [PMID: 34097959 DOI: 10.1016/j.ijbiomac.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023]
Abstract
In this study, azide and alkyne moieties were introduced to the structure of citric acid-modified hydroxyethyl cellulose (HEC) and then through a bioorthogonal click chemistry method: Strain-promoted azide-alkyne cycloaddition, a novel crosslinked HEC scaffold (click sample) was obtained. Chemical modifications and successful crosslinking of the samples were assessed with FTIR and 1H NMR spectroscopy. Lyophilized samples exhibited a porous interconnected microarchitecture with desirable features for commensurate cartilage tissue engineering applications. As the stability of scaffolds improved upon crosslinking, considerable water uptake and swelling degree of ~650% could still be measured for the click sample. Offering Young's modulus of ~10 MPa and tensile strength of ~0.43 MPa, the mechanical characteristics of click sample were comparable with those of normal cartilage tissue. Various in vitro biological assays, including MTT analysis, cellular attachment, histological staining with safranin O, and real-time PCR decisively approved significant biocompatibility, chondrogenic ability, and bioorthogonal features of click sample.
Collapse
Affiliation(s)
- Mohammad Nouri-Felekori
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran
| | - Nader Nezafati
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran.
| | - Marzie Moraveji
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran
| | - Saeed Hesaraki
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran
| | - Tayebe Ramezani
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran
| |
Collapse
|
15
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
He T, Li B, Colombani T, Joshi-Navare K, Mehta S, Kisiday J, Bencherif SA, Bajpayee AG. Hyaluronic Acid-Based Shape-Memory Cryogel Scaffolds for Focal Cartilage Defect Repair. Tissue Eng Part A 2021; 27:748-760. [PMID: 33108972 DOI: 10.1089/ten.tea.2020.0264] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traumatic joint injuries can result in significant cartilage defects, which can greatly increase the risk of osteoarthritis development. Due to the limited self-healing capacity of avascular cartilage, tissue engineering approaches are required for filling defects and promoting cartilage regeneration. Current approaches utilize invasive surgical procedures for extraction and implantation of autologous chondrocytes; therefore, injectable biomaterials have gained interest to minimize the risk of infection as well as patient pain and discomfort. In this study, we engineered biomimetic, hyaluronic acid (HA)-based cryogel scaffolds that possess shape-memory properties as they contract and regain their shape after syringe injection to noninvasively fill cartilage defects. The cryogels, fabricated with HA and glycidyl methacrylate at -20°C, resulted in an elastic, macroporous, and highly interconnected network that provided a conducive microenvironment for chondrocytes to remain viable and metabolically active after injection through a syringe needle. Chondrocytes seeded within cryogels and cultured for 15 days exhibited enhanced cell proliferation, metabolism, and production of cartilage extracellular matrix glycosaminoglycans compared with HA-based hydrogels. Furthermore, immunohistochemical staining revealed production of collagen type II from chondrocyte-seeded cryogels, indicating the maintenance of cell phenotype. These results demonstrate the potential of chondrocyte-seeded, HA-based, injectable cryogel scaffolds to promote regeneration of cartilage tissue for nonsurgically invasive defect repair. Impact statement Hyaluronic acid-based shape-memory cryogels provide a conducive microenvironment for chondrocyte adhesion, proliferation, and matrix biosynthesis for use in repair of cartilage defects. Due to their sponge-like elastic properties, cryogels can fully recover their original shape back after injection while not impacting metabolism or viability of encapsulated cells. Clinically, they provide an opportunity for filling focal cartilage defects by using a single, minimally invasive injection of a cell encapsulating biocompatible three-dimensional scaffold that can return to its original structure to fit the defect geometry and enable matrix regeneration.
Collapse
Affiliation(s)
- Tengfei He
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA
| | - Boting Li
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Kasturi Joshi-Navare
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Shikhar Mehta
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA
| | - John Kisiday
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sidi A Bencherif
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA.,Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Ambika G Bajpayee
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA.,Department of Mechanical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Rogina A, Pušić M, Štefan L, Ivković A, Urlić I, Ivanković M, Ivanković H. Characterization of Chitosan-Based Scaffolds Seeded with Sheep Nasal Chondrocytes for Cartilage Tissue Engineering. Ann Biomed Eng 2021; 49:1572-1586. [PMID: 33409853 DOI: 10.1007/s10439-020-02712-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022]
Abstract
The treatment of cartilage defect remains a challenging issue in clinical practice. Chitosan-based materials have been recognized as a suitable microenvironment for chondrocyte adhesion, proliferation and differentiation forming articular cartilage. The use of nasal chondrocytes to culture articular cartilage on an appropriate scaffold emerged as a promising novel strategy for cartilage regeneration. Beside excellent properties, chitosan lacks in biological activity, such as RGD-sequences. In this work, we have prepared pure and protein-modified chitosan scaffolds of different deacetylation degree and molecular weight as platforms for the culture of sheep nasal chondrocytes. Fibronectin (FN) was chosen as an adhesive protein for the improvement of chitosan bioactivity. Prepared scaffolds were characterised in terms of microstructure, physical and biodegradation properties, while FN interactions with different chitosans were investigated through adsorption-desorption studies. The results indicated faster enzymatic degradation of chitosan scaffolds with lower deacetylation degree, while better FN interactions with material were achieved on chitosan with higher number of amine groups. Histological and immunohistochemical analysis of in vitro engineered cartilage grafts showed presence of hyaline cartilage produced by nasal chondrocytes.
Collapse
Affiliation(s)
- Anamarija Rogina
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001, Zagreb, Croatia.
| | - Maja Pušić
- Faculty of Science, University of Zagreb, Horvatovac102a, 10001, Zagreb, Croatia.
| | - Lucija Štefan
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001, Zagreb, Croatia
| | - Alan Ivković
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Šalata 3, 10001, Zagreb, Croatia
- Department of Orthopaedic Surgery, University Hospital Sveti Duh, Sveti Duh 64, 10001, Zagreb, Croatia
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
- University of Applied Health Sciences, Mlinarska cesta 38, 10001, Zagreb, Croatia
| | - Inga Urlić
- Faculty of Science, University of Zagreb, Horvatovac102a, 10001, Zagreb, Croatia
| | - Marica Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001, Zagreb, Croatia
| | - Hrvoje Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001, Zagreb, Croatia
| |
Collapse
|
18
|
Emara A, Shah R. Recent update on craniofacial tissue engineering. J Tissue Eng 2021; 12:20417314211003735. [PMID: 33959245 PMCID: PMC8060749 DOI: 10.1177/20417314211003735] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
The craniofacial region consists of several different tissue types. These tissues are quite commonly affected by traumatic/pathologic tissue loss which has so far been traditionally treated by grafting procedures. With the complications and drawbacks of grafting procedures, the emerging field of regenerative medicine has proved potential. Tissue engineering advancements and the application in the craniofacial region is quickly gaining momentum although most research is still at early in vitro/in vivo stages. We aim to provide an overview on where research stands now in tissue engineering of craniofacial tissue; namely bone, cartilage muscle, skin, periodontal ligament, and mucosa. Abstracts and full-text English articles discussing techniques used for tissue engineering/regeneration of these tissue types were summarized in this article. The future perspectives and how current technological advancements and different material applications are enhancing tissue engineering procedures are also highlighted. Clinically, patients with craniofacial defects need hybrid reconstruction techniques to overcome the complexity of these defects. Cost-effectiveness and cost-efficiency are also required in such defects. The results of the studies covered in this review confirm the potential of craniofacial tissue engineering strategies as an alternative to avoid the problems of currently employed techniques. Furthermore, 3D printing advances may allow for fabrication of patient-specific tissue engineered constructs which should improve post-operative esthetic results of reconstruction. There are on the other hand still many challenges that clearly require further research in order to catch up with engineering of other parts of the human body.
Collapse
Affiliation(s)
- Aala’a Emara
- OMFS Department, Faculty of Dentistry,
Cairo University, Cairo, Egypt
- Division of Craniofacial and Surgical
Care, University of North Carolina (UNC) School of Dentistry, Chapel Hill, NC,
USA
| | - Rishma Shah
- Division of Craniofacial and Surgical
Care, University of North Carolina (UNC) School of Dentistry, Chapel Hill, NC,
USA
| |
Collapse
|
19
|
Réthoré G, Boyer C, Kouadio K, Toure A, Lesoeur J, Halgand B, Jordana F, Guicheux J, Weiss P. Silanization of Chitosan and Hydrogel Preparation for Skeletal Tissue Engineering. Polymers (Basel) 2020; 12:polym12122823. [PMID: 33261192 PMCID: PMC7761294 DOI: 10.3390/polym12122823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering is a multidisciplinary field that relies on the development of customized biomaterial to support cell growth, differentiation and matrix production. Toward that goal, we designed the grafting of silane groups onto the chitosan backbone (Si-chito) for the preparation of in situ setting hydrogels in association with silanized hydroxypropyl methylcellulose (Si-HPMC). Once functionalized, the chitosan was characterized, and the presence of silane groups and its ability to gel were demonstrated by rheology that strongly suggests the presence of silane groups. Throughout physicochemical investigations, the Si-HPMC hydrogels containing Si-chito were found to be stiffer with an injection force unmodified. The presence of chitosan within the hydrogel has demonstrated a higher adhesion of the hydrogel onto the surface of tissues. The results of cell viability assays indicated that there was no cytotoxicity of Si-chito hydrogels in 2D and 3D culture of human SW1353 cells and human adipose stromal cells, respectively. Moreover, Si-chito allows the transplantation of human nasal chondrocytes in the subcutis of nude mice while maintaining their viability and extracellular matrix secretory activity. To conclude, Si-chito mixed with Si-HPMC is an injectable, self-setting and cytocompatible hydrogel able to support the in vitro and in vivo viability and activity of hASC.
Collapse
Affiliation(s)
- Gildas Réthoré
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
- CHU Nantes, PHU4 OTONN, F-44093 Nantes, France
| | - Cécile Boyer
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
| | - Kouakou Kouadio
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
| | - Amadou Toure
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
- Department of Odontology, Faculty of Medicine, Pharmacy and Odontology, University Cheikh Anta DIOP, 12500 Dakar, Senegal
| | - Julie Lesoeur
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
| | - Boris Halgand
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
- CHU Nantes, PHU4 OTONN, F-44093 Nantes, France
| | - Fabienne Jordana
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
- CHU Nantes, PHU4 OTONN, F-44093 Nantes, France
| | - Jérôme Guicheux
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
- CHU Nantes, PHU4 OTONN, F-44093 Nantes, France
| | - Pierre Weiss
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
- CHU Nantes, PHU4 OTONN, F-44093 Nantes, France
- Correspondence:
| |
Collapse
|
20
|
Flegeau K, Toquet C, Rethore G, d'Arros C, Messager L, Halgand B, Dupont D, Autrusseau F, Lesoeur J, Veziers J, Bordat P, Bresin A, Guicheux J, Delplace V, Gautier H, Weiss P. In Situ Forming, Silanized Hyaluronic Acid Hydrogels with Fine Control Over Mechanical Properties and In Vivo Degradation for Tissue Engineering Applications. Adv Healthc Mater 2020; 9:e2000981. [PMID: 32864869 DOI: 10.1002/adhm.202000981] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/09/2020] [Indexed: 12/19/2022]
Abstract
In situ forming hydrogels that can be injected into tissues in a minimally-invasive fashion are appealing as delivery vehicles for tissue engineering applications. Ideally, these hydrogels should have mechanical properties matching those of the host tissue, and a rate of degradation adapted for neo-tissue formation. Here, the development of in situ forming hyaluronic acid hydrogels based on the pH-triggered condensation of silicon alkoxide precursors into siloxanes is reported. Upon solubilization and pH adjustment, the low-viscosity precursor solutions are easily injectable through fine-gauge needles prior to in situ gelation. Tunable mechanical properties (stiffness from 1 to 40 kPa) and associated tunable degradability (from 4 days to more than 3 weeks in vivo) are obtained by varying the degree of silanization (from 4.3% to 57.7%) and molecular weight (120 and 267 kDa) of the hyaluronic acid component. Following cell encapsulation, high cell viability (> 80%) is obtained for at least 7 days. Finally, the in vivo biocompatibility of silanized hyaluronic acid gels is verified in a subcutaneous mouse model and a relationship between the inflammatory response and the crosslink density is observed. Silanized hyaluronic acid hydrogels constitute a tunable hydrogel platform for material-assisted cell therapies and tissue engineering applications.
Collapse
Affiliation(s)
- Killian Flegeau
- UFR Odontologie Université de Nantes Nantes F‐44042 France
- HTL S.A.S 7 Rue Alfred Kastler Javené 35133 France
| | - Claire Toquet
- Department of Pathology University Hospital of Nantes Nantes F‐44042 France
| | - Gildas Rethore
- Université de Nantes ONIRIS INSERM Regenerative Medicine and Skeleton, RMeS, UMR 1229 1 Pl A Ricordeau Nantes F‐44042 France
- UFR Odontologie Université de Nantes Nantes F‐44042 France
- CHU Nantes PHU4 OTONN Nantes F‐44042 France
| | - Cyril d'Arros
- Université de Nantes ONIRIS INSERM Regenerative Medicine and Skeleton, RMeS, UMR 1229 1 Pl A Ricordeau Nantes F‐44042 France
- UFR Odontologie Université de Nantes Nantes F‐44042 France
| | - Léa Messager
- HTL S.A.S 7 Rue Alfred Kastler Javené 35133 France
| | - Boris Halgand
- Université de Nantes ONIRIS INSERM Regenerative Medicine and Skeleton, RMeS, UMR 1229 1 Pl A Ricordeau Nantes F‐44042 France
- UFR Odontologie Université de Nantes Nantes F‐44042 France
- CHU Nantes PHU4 OTONN Nantes F‐44042 France
| | - Davy Dupont
- HTL S.A.S 7 Rue Alfred Kastler Javené 35133 France
| | - Florent Autrusseau
- Université de Nantes ONIRIS INSERM Regenerative Medicine and Skeleton, RMeS, UMR 1229 1 Pl A Ricordeau Nantes F‐44042 France
- UFR Odontologie Université de Nantes Nantes F‐44042 France
| | - Julie Lesoeur
- Université de Nantes ONIRIS INSERM Regenerative Medicine and Skeleton, RMeS, UMR 1229 1 Pl A Ricordeau Nantes F‐44042 France
- UFR Odontologie Université de Nantes Nantes F‐44042 France
- SC3M SFR Santé F. Bonamy FED 4203 UMS Inserm 016 CNRS 3556 Nantes F‐44042 France
| | - Joëlle Veziers
- Université de Nantes ONIRIS INSERM Regenerative Medicine and Skeleton, RMeS, UMR 1229 1 Pl A Ricordeau Nantes F‐44042 France
- CHU Nantes PHU4 OTONN Nantes F‐44042 France
- SC3M SFR Santé F. Bonamy FED 4203 UMS Inserm 016 CNRS 3556 Nantes F‐44042 France
| | | | | | - Jérôme Guicheux
- Université de Nantes ONIRIS INSERM Regenerative Medicine and Skeleton, RMeS, UMR 1229 1 Pl A Ricordeau Nantes F‐44042 France
- UFR Odontologie Université de Nantes Nantes F‐44042 France
- CHU Nantes PHU4 OTONN Nantes F‐44042 France
| | - Vianney Delplace
- Université de Nantes ONIRIS INSERM Regenerative Medicine and Skeleton, RMeS, UMR 1229 1 Pl A Ricordeau Nantes F‐44042 France
- UFR Odontologie Université de Nantes Nantes F‐44042 France
| | - Hélène Gautier
- Université de Nantes ONIRIS INSERM Regenerative Medicine and Skeleton, RMeS, UMR 1229 1 Pl A Ricordeau Nantes F‐44042 France
- UFR Odontologie Université de Nantes Nantes F‐44042 France
- Université de Nantes Faculté de Pharmacie Laboratoire de Pharmacie Galénique Nantes F‐44042 France
| | - Pierre Weiss
- Université de Nantes ONIRIS INSERM Regenerative Medicine and Skeleton, RMeS, UMR 1229 1 Pl A Ricordeau Nantes F‐44042 France
- UFR Odontologie Université de Nantes Nantes F‐44042 France
- CHU Nantes PHU4 OTONN Nantes F‐44042 France
| |
Collapse
|
21
|
Khalilzadeh MA, Hosseini S, Rad AS, Venditti RA. Synthesis of Grafted Nanofibrillated Cellulose-Based Hydrogel and Study of Its Thermodynamic, Kinetic, and Electronic Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8710-8719. [PMID: 32633505 DOI: 10.1021/acs.jafc.0c03500] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hydrogels were synthesized by a copolymerization reaction of nanofibrillated cellulose (CNF) with acrylic acid (AA) and acrylamide (AM) and N,N-methylene-bis-acrylamide (MBA) as a cross-linker and their absorption performance as a function of composition was determined. Hydrogels with 4% by weight CNF had swelling of about 250 g/g and with 7% CNF about 200 g/g for water. Thermodynamic and kinetic studies of the reaction pathways and the electronic properties of the cellulose and monomers were investigated through density functional theory calculations. Thermodynamic investigations revealed that the radical formation of cellulose that initiates the hydrogel process can occur through the breaking of the homolytic covalent bonds C6-OH and C3-OH. The results show that the reaction of CNF with monomers is thermodynamically favorable in the decreasing order of AM, AA, and MBA. The kinetic study also indicates that the reaction kinetics of CNF with AM is faster than with AA which is much faster than with MBA. Overall, this study has elucidated some of the key chemical characteristics that impact the derivatization of nanocellulose structures to produce advanced renewable bioproducts.
Collapse
Affiliation(s)
- Mohammad A Khalilzadeh
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh 27695-8005, North Carolina, United States
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr 47651-61964, Iran
| | - Shahrbano Hosseini
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr 47651-61964, Iran
| | - Ali Shokuhi Rad
- Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr 47651-61964, Iran
| | - Richard A Venditti
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh 27695-8005, North Carolina, United States
| |
Collapse
|
22
|
Montheil T, Maumus M, Valot L, Lebrun A, Martinez J, Amblard M, Noël D, Mehdi A, Subra G. Inorganic Sol-Gel Polymerization for Hydrogel Bioprinting. ACS OMEGA 2020; 5:2640-2647. [PMID: 32095687 PMCID: PMC7033675 DOI: 10.1021/acsomega.9b03100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/20/2019] [Indexed: 05/14/2023]
Abstract
An inorganic sol-gel polymerization process was used as a cross-linking reaction during three-dimensional (3D) bioprinting of cell-containing hydrogel scaffolds. Hybrid hydroxypropyl methyl cellulose (HPMC), with a controlled ratio of silylation, was prepared and isolated as a 3D-network precursor. When dissolved in a biological buffer containing human mesenchymal stem cells, it yields a bioink that can be printed during polymerization by extrusion. It is worth noting that the sol-gel process proceeded at pH 7.4 using biocompatible mode of catalysis (NaF and glycine). The printing window was determined by rheology and viscosity measurements. The physicochemical properties of hydrogels were studied. Covalent functionalization of the network can be easily performed by adding a triethoxysilyl-containing molecule; a fluorescent hybrid molecule was used as a proof of concept.
Collapse
Affiliation(s)
- Titouan Montheil
- IBMM,
University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Marie Maumus
- IRMB,
University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Laurine Valot
- IBMM,
University of Montpellier, CNRS, ENSCM, Montpellier, France
- ICGM,
University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Aurélien Lebrun
- IBMM,
University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean Martinez
- IBMM,
University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Muriel Amblard
- IBMM,
University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Danièle Noël
- IRMB,
University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Clinical
Immunology and Osteoarticular Diseases Therapeutic Unit, Hopital Lapeyronie, Montpellier, France
| | - Ahmad Mehdi
- ICGM,
University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Gilles Subra
- IBMM,
University of Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
23
|
Jung EY, Lee DY, Kim OY, Lee SY, Yim DG, Hur SJ. Subacute feeding toxicity of low-sodium sausages manufactured with sodium substitutes and biopolymer-encapsulated saltwort (Salicornia herbacea) in a mouse model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:794-802. [PMID: 31612484 DOI: 10.1002/jsfa.10087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Low-sodium sausages were manufactured using sodium substitution and biopolymer encapsulation. A diet comprising 10% treatment sausages (six treatment groups: C (100% NaCl), T1 (55% sodium substitute + 45% saltwort salt), T2 (55% sodium substitute + 45% saltwort salt with chitosan), T3 (55% sodium substitute + 45% saltwort salt with cellulose), T4 (55% sodium substitute + 45% saltwort salt with dextrin), and T5 (55% sodium substitute + 45% saltwort salt with pectin)) was added to a 90% commercial mouse diet for 4 weeks. RESULTS Subacute toxicity, hematology, liver function, and organ weight tests in low-sodium sausage groups showed results similar to those of the control group, and all toxicity test levels were within normal ranges. CONCLUSIONS All low-sodium sausage types tested are suggested to be safe in terms of subacute toxicity. Moreover, low-sodium sausages can be manufactured by biopolymer encapsulation of saltwort using pectin, chitosan, cellulose, and dextrin without toxicity. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eun Young Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, South Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, South Korea
| | - On You Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, South Korea
| | - Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, South Korea
| | - Dong Gyun Yim
- Department of Animal Science, Sangji University, Wonju, South Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, South Korea
| |
Collapse
|
24
|
Boyer C, Réthoré G, Weiss P, d’Arros C, Lesoeur J, Vinatier C, Halgand B, Geffroy O, Fusellier M, Vaillant G, Roy P, Gauthier O, Guicheux J. A Self-Setting Hydrogel of Silylated Chitosan and Cellulose for the Repair of Osteochondral Defects: From in vitro Characterization to Preclinical Evaluation in Dogs. Front Bioeng Biotechnol 2020; 8:23. [PMID: 32117912 PMCID: PMC7025592 DOI: 10.3389/fbioe.2020.00023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Articular cartilage (AC) may be affected by many injuries including traumatic lesions that predispose to osteoarthritis. Currently there is no efficient cure for cartilage lesions. In that respect, new strategies for regenerating AC are contemplated with interest. In this context, we aim to develop and characterize an injectable, self-hardening, mechanically reinforced hydrogel (Si-HPCH) composed of silanised hydroxypropymethyl cellulose (Si-HPMC) mixed with silanised chitosan. The in vitro cytocompatibility of Si-HPCH was tested using human adipose stromal cells (hASC). In vivo, we first mixed Si-HPCH with hASC to observe cell viability after implantation in nude mice subcutis. Si-HPCH associated or not with canine ASC (cASC), was then tested for the repair of osteochondral defects in canine femoral condyles. Our data demonstrated that Si-HPCH supports hASC viability in culture. Moreover, Si-HPCH allows the transplantation of hASC in the subcutis of nude mice while maintaining their viability and secretory activity. In the canine osteochondral defect model, while the empty defects were only partially filled with a fibrous tissue, defects filled with Si-HPCH with or without cASC, revealed a significant osteochondral regeneration. To conclude, Si-HPCH is an injectable, self-setting and cytocompatible hydrogel able to support the in vitro and in vivo viability and activity of hASC as well as the regeneration of osteochondral defects in dogs when implanted alone or with ASC.
Collapse
Affiliation(s)
- Cécile Boyer
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
| | - Gildas Réthoré
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- CHU Nantes, Service d’Odontologie Restauratrice et Chirurgicale, PHU4 OTONN, Nantes, France
| | - Pierre Weiss
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- CHU Nantes, Service d’Odontologie Restauratrice et Chirurgicale, PHU4 OTONN, Nantes, France
| | - Cyril d’Arros
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
| | - Julie Lesoeur
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- SC3M – “Electron Microscopy, Microcharacterization and Functional Morphohistology Imaging” Core Facility, Structure Fédérative de Recherche Franc̨ois Bonamy, INSERM – UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, France
| | - Claire Vinatier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- SC3M – “Electron Microscopy, Microcharacterization and Functional Morphohistology Imaging” Core Facility, Structure Fédérative de Recherche Franc̨ois Bonamy, INSERM – UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, France
| | - Boris Halgand
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- CHU Nantes, PHU4 OTONN, Nantes, France
| | - Olivier Geffroy
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- Centre of Research and Preclinical Investigation (C.R.I.P.), ONIRIS, Nantes, France
| | - Marion Fusellier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- Centre of Research and Preclinical Investigation (C.R.I.P.), ONIRIS, Nantes, France
| | - Gildas Vaillant
- CHU Nantes, PHU4 OTONN, Nantes, France
- Centre of Research and Preclinical Investigation (C.R.I.P.), ONIRIS, Nantes, France
| | - Patrice Roy
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- Centre of Research and Preclinical Investigation (C.R.I.P.), ONIRIS, Nantes, France
| | - Olivier Gauthier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- Centre of Research and Preclinical Investigation (C.R.I.P.), ONIRIS, Nantes, France
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
- SC3M – “Electron Microscopy, Microcharacterization and Functional Morphohistology Imaging” Core Facility, Structure Fédérative de Recherche Franc̨ois Bonamy, INSERM – UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, France
- CHU Nantes, PHU4 OTONN, Nantes, France
| |
Collapse
|
25
|
Olive M, Boyer C, Lesoeur J, Thorin C, Weiss P, Fusellier M, Gauthier O. Preliminary evaluation of an osteochondral autograft, a prosthetic implant, and a biphasic absorbable implant for osteochondral reconstruction in a sheep model. Vet Surg 2020; 49:570-581. [PMID: 31916628 PMCID: PMC7154554 DOI: 10.1111/vsu.13373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 10/11/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the ability of three implants to enhance the healing of osteochondral defects: (1) a biphasic construct composed of calcium phosphate (CaP) and chitosan/cellulosic polymer, (2) a titanium-polyurethane implant, and (3) an osteochondral autograft. STUDY DESIGN Experimental study. ANIMALS Ten adult female sheep. METHODS In five sheep, an 8-mm diameter osteochondral defect was created on the medial femoral condyle of a stifle and filled with a synthetic titanium-polyurethane implant. In five sheep, a similar defect was filled with an osteochondral autograft, and the donor site was filled with a biphasic construct combining CaP granules and a chitosan/cellulosic polymer. Sheep were monitored daily for lameness. Stifle radiographs and MRI were evaluated at 20 weeks, prior to animals being humanely killed. Surgical sites were evaluated with histology, microcomputed tomography, and scanning electron microscopy. RESULTS Clinical outcomes were satisfactory regardless of the tested biomaterials. All implants appeared in place on imaging studies. Osteointegration of prosthetic implants varied between sites, with limited ingrowth of new bone into the titanium structure. Autografts and biphasic constructs were consistently well integrated in subchondral bone. All autografts except one contained a cartilage surface, and all biphasic constructs except one partially restored hyaline cartilage surface. CONCLUSION Biphasic constructs supported hyaline cartilage and subchondral bone regeneration, although restoration of the articular cartilage was incomplete. CLINICAL IMPACT Biphasic constructs may provide an alternative treatment for osteochondral defects, offering a less invasive approach compared with autologous grafts and eliminating the requirement for a prosthetic implant.
Collapse
Affiliation(s)
- Mélanie Olive
- Department of Small Animal Surgery, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France
| | - Cécile Boyer
- University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Julie Lesoeur
- University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Chantal Thorin
- Department of Management and Statistics, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France
| | - Pierre Weiss
- University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Marion Fusellier
- Department of Small Animal Surgery, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France.,University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Olivier Gauthier
- Department of Small Animal Surgery, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France.,University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| |
Collapse
|
26
|
Liao Y, He Q, Zhou F, Zhang J, Liang R, Yao X, Bunpetch V, Li J, Zhang S, Ouyang H. Current Intelligent Injectable Hydrogels for In Situ Articular Cartilage Regeneration. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1683028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Youguo Liao
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiulin He
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Feifei Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwei Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xudong Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajin Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Hongwei Ouyang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Perrier-Groult E, Pérès E, Pasdeloup M, Gazzolo L, Duc Dodon M, Mallein-Gerin F. Evaluation of the biocompatibility and stability of allogeneic tissue-engineered cartilage in humanized mice. PLoS One 2019; 14:e0217183. [PMID: 31107916 PMCID: PMC6527235 DOI: 10.1371/journal.pone.0217183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
Articular cartilage (AC) has poor capacities of regeneration and lesions often lead to osteoarthritis. Current AC reconstruction implies autologous chondrocyte implantation which requires tissue sampling and grafting. An alternative approach would be to use scaffolds containing off-the-shelf allogeneic human articular chondrocytes (HACs). To investigate tolerance of allogeneic HACs by the human immune system, we developed a humanized mouse model implanted with allogeneic cartilage constructs generated in vitro. A prerequisite of the study was to identify a scaffold that would not provoke inflammatory reaction in host. Therefore, we first compared the response of hu-mice to two biomaterials used in regenerative medicine, collagen sponge and agarose hydrogel. Four weeks after implantation in hu-mice, acellular collagen sponges, but not acellular agarose hydrogels, showed positive staining for CD3 (T lymphocytes) and CD68 (macrophages), suggesting that collagen scaffold elicits weak inflammatory reaction. These data led us to deepen our evaluation of the biocompatibility of allogeneic tissue-engineered cartilage by using agarose as scaffold. Agarose hydrogels were combined with allogeneic HACs to reconstruct cartilage in vitro. Particular attention was paid to HLA-A2 compatibility between HACs to be grafted and immune human cells of hu-mice: HLA-A2+ or HLA-A2- HACs agarose hydrogels were cultured in the presence of a chondrogenic cocktail and implanted in HLA-A2+ hu-mice. After four weeks implantation and regardless of the HLA-A2 phenotype, chondrocytes were well-differentiated and produced cartilage matrix in agarose. In addition, no sign of T-cell or macrophage infiltration was seen in the cartilaginous constructs and no significant increase in subpopulations of T lymphocytes and monocytes was detected in peripheral blood and spleen. We show for the first time that humanized mouse represents a useful model to investigate human immune responsiveness to tissue-engineered cartilage and our data together indicate that allogeneic cartilage constructs can be suitable for cartilage engineering.
Collapse
Affiliation(s)
- Emeline Perrier-Groult
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS-UMR5305, Lyon, France
- * E-mail:
| | - Eléonore Pérès
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, Lyon, France
| | - Marielle Pasdeloup
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS-UMR5305, Lyon, France
| | - Louis Gazzolo
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, Lyon, France
| | - Madeleine Duc Dodon
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, Lyon, France
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS-UMR5305, Lyon, France
| |
Collapse
|
28
|
Head to Knee: Cranial Neural Crest-Derived Cells as Promising Candidates for Human Cartilage Repair. Stem Cells Int 2019; 2019:9310318. [PMID: 30766608 PMCID: PMC6350557 DOI: 10.1155/2019/9310318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/04/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
A large array of therapeutic procedures is available to treat cartilage disorders caused by trauma or inflammatory disease. Most are invasive and may result in treatment failure or development of osteoarthritis due to extensive cartilage damage from repeated surgery. Despite encouraging results of early cell therapy trials that used chondrocytes collected during arthroscopic surgery, these approaches have serious disadvantages, including morbidity associated with cell harvesting and low predictive clinical outcomes. To overcome these limitations, adult stem cells derived from bone marrow and subsequently from other tissues are now considered as preferred sources of cells for cartilage regeneration. Moreover, with new evidence showing that the choice of cell source is one of the most important factors for successful cell therapy, there is growing interest in neural crest-derived cells in both the research and clinical communities. Neural crest-derived cells such as nasal chondrocytes and oral stem cells that exhibit chondrocyte-like properties seem particularly promising in cartilage repair. Here, we review the types of cells currently available for cartilage cell therapy, including articular chondrocytes and various mesenchymal stem cells, and then highlight recent developments in the use of neural crest-derived chondrocytes and oral stem cells for repair of cartilage lesions.
Collapse
|
29
|
Tourné-Péteilh C, Robin B, Lions M, Martinez J, Mehdi A, Subra G, Devoisselle JM. Combining sol–gel and microfluidics processes for the synthesis of protein-containing hybrid microgels. Chem Commun (Camb) 2019; 55:13112-13115. [DOI: 10.1039/c9cc04963k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biocompatible encapsulation of proteins in hybrid microgels of a silylated hydrogel, focused on soft procedures and cross-linking conditions.
Collapse
Affiliation(s)
| | | | | | | | - Ahmad Mehdi
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Gilles Subra
- IBMM
- University of Montpellier
- CNRS
- ENSCM
- Montpellier
| | | |
Collapse
|
30
|
Graceffa V, Vinatier C, Guicheux J, Stoddart M, Alini M, Zeugolis DI. Chasing Chimeras - The elusive stable chondrogenic phenotype. Biomaterials 2018; 192:199-225. [PMID: 30453216 DOI: 10.1016/j.biomaterials.2018.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
Abstract
The choice of the best-suited cell population for the regeneration of damaged or diseased cartilage depends on the effectiveness of culture conditions (e.g. media supplements, three-dimensional scaffolds, mechanical stimulation, oxygen tension, co-culture systems) to induce stable chondrogenic phenotype. Herein, advances and shortfalls in in vitro, preclinical and clinical setting of various in vitro microenvironment modulators on maintaining chondrocyte phenotype or directing stem cells towards chondrogenic lineage are critically discussed. Chondrocytes possess low isolation efficiency, limited proliferative potential and rapid phenotypic drift in culture. Mesenchymal stem cells are relatively readily available, possess high proliferation potential, exhibit great chondrogenic differentiation capacity, but they tend to acquire a hypertrophic phenotype when exposed to chondrogenic stimuli. Embryonic and induced pluripotent stem cells, despite their promising in vitro and preclinical data, are still under-investigated. Although a stable chondrogenic phenotype remains elusive, recent advances in in vitro microenvironment modulators are likely to develop clinically- and commercially-relevant therapies in the years to come.
Collapse
Affiliation(s)
- Valeria Graceffa
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Claire Vinatier
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Jerome Guicheux
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Martin Stoddart
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mauro Alini
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
31
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Injectable hydrogels: a new paradigm for osteochondral tissue engineering. J Mater Chem B 2018; 6:5499-5529. [PMID: 32254962 DOI: 10.1039/c8tb01430b] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteochondral tissue engineering has become a promising strategy for repairing focal chondral lesions and early osteoarthritis (OA), which account for progressive joint pain and disability in millions of people worldwide. Towards improving osteochondral tissue repair, injectable hydrogels have emerged as promising matrices due to their wider range of properties such as their high water content and porous framework, similarity to the natural extracellular matrix (ECM), ability to encapsulate cells within the matrix and ability to provide biological cues for cellular differentiation. Further, their properties such as those that facilitate minimally invasive deployment or delivery, and their ability to repair geometrically complex irregular defects have been critical for their success. In this review, we provide an overview of innovative approaches to engineer injectable hydrogels towards improved osteochondral tissue repair. Herein, we focus on understanding the biology of osteochondral tissue and osteoarthritis along with the need for injectable hydrogels in osteochondral tissue engineering. Furthermore, we discuss in detail different biomaterials (natural and synthetic) and various advanced fabrication methods being employed for the development of injectable hydrogels in osteochondral repair. In addition, in vitro and in vivo applications of developed injectable hydrogels for osteochondral tissue engineering are also reviewed. Finally, conclusions and future perspectives of using injectable hydrogels in osteochondral tissue engineering are provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | | | | | |
Collapse
|
32
|
Novel Bionanocellulose/κ-Carrageenan Composites for Tissue Engineering. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8081352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this work, novel bacterial cellulose/κ-carrageenan (BNC/κ-Car) composites, being potential scaffolds for tissue engineering (TE), and outperforming the two polymers when used as scaffolds separately, were for the first time obtained using an in situ method, based on the stationary culture of bacteria Komagateibacter xylinus E25. The composites were compared with native BNC in terms of the morphology of fibers, chemical composition, crystallinity, tensile and compression strength, water holding capacity, water retention ratio and swelling properties. Murine chondrogenic ATDC5 cells were applied to assess the utility of the BNC/κ-Car composites as potential scaffolds. The impact of the composites on the cells viability, chondrogenic differentiation, and expression patterns of Col1α1, Col2α1, Runx2, and Sox9, which are indicative of ATDC5 chondrogenic differentiation, was determined. None of the composites obtained in this study caused the chondrocyte hypertrophy. All of them supported the differentiation of ATDC5 cells to more chondrogenic phenotype.
Collapse
|
33
|
Adamski M, Fontana G, Gershlak JR, Gaudette GR, Le HD, Murphy WL. Two Methods for Decellularization of Plant Tissues for Tissue Engineering Applications. J Vis Exp 2018:57586. [PMID: 29912197 PMCID: PMC6101437 DOI: 10.3791/57586] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The autologous, synthetic, and animal-derived grafts currently used as scaffolds for tissue replacement have limitations due to low availability, poor biocompatibility, and cost. Plant tissues have favorable characteristics that make them uniquely suited for use as scaffolds, such as high surface area, excellent water transport and retention, interconnected porosity, preexisting vascular networks, and a wide range of mechanical properties. Two successful methods of plant decellularization for tissue engineering applications are described here. The first method is based on detergent baths to remove cellular matter, which is similar to previously established methods used to clear mammalian tissues. The second is a detergent-free method adapted from a protocol that isolates leaf vasculature and involves the use of a heated bleach and salt bath to clear the leaves and stems. Both methods yield scaffolds with comparable mechanical properties and low cellular metabolic impact, thus allowing the user to select the protocol which better suits their intended application.
Collapse
Affiliation(s)
| | - Gianluca Fontana
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health
| | - Joshua R Gershlak
- Department of Biomedical Engineering, Worcester Polytechnic Institute
| | - Glenn R Gaudette
- Department of Biomedical Engineering, Worcester Polytechnic Institute
| | - Hau D Le
- Department of Surgery, University of Wisconsin-Madison
| | - William L Murphy
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health; Department of Biomedical Engineering, University of Wisconsin College of Engineering;
| |
Collapse
|
34
|
Synthetic Materials for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:31-52. [DOI: 10.1007/978-3-319-76711-6_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Nano-hydroxyapatite/collagen film as a favorable substrate to maintain the phenotype and promote the growth of chondrocytes cultured in vitro. Int J Mol Med 2018; 41:2150-2158. [PMID: 29393382 PMCID: PMC5810202 DOI: 10.3892/ijmm.2018.3431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/18/2018] [Indexed: 11/05/2022] Open
Abstract
Autologous chondrocyte implantation (ACI) has emerged as a novel approach to cartilage repair through the use of harvested chondrocytes. However, the expansion of the chondrocytes from the donor tissue in vitro is restricted by the limited cell numbers and the dedifferentiation of the chondrocytes. The present study investigated the effect of collagen-based films, including collagen, hydroxyapatite (HA)/collagen (HC) and in situ synthesis of nano‑HC (nHC), on monolayer cultures of chondrocytes. As a substrate for the chondrocytes monolayer culture in vitro, nHC was able to restrain the dedifferentiation of chondrocytes and facilitate cell expansion, which was detected by methyl thiazolyl tetrazolium assay, scanning electron microscopy, calcein‑acetoxymethyl/propidium iodide staining, hematoxylin and eosin staining, Safranin O staining, immunohistochemical staining and reverse transcription‑quantitative polymerase chain reaction. Furthermore, the nHC films significantly facilitated cell growth and enhanced the expression of cartilage‑specific extracellular matrix (ECM) components, including aggrecan and type II collagen. In addition, nHC films markedly downregulated the expression of collagen type I, an indicator of dedifferentiation. The results indicated that nHC, a collagen‑based substrate optimized by nanoparticles, was able to better support cell growth and preserve cell phenotype compared with collagen alone or HC. The nHC film, which favors cell growth and prevents the dedifferentiation of chondrocytes, may therefore serve as a useful cartilage‑like ECM for chondrocytes. In conclusion, nHC film is a promising substrate for the culture of chondrocytes in cell-based therapy.
Collapse
|
36
|
Boyer C, Figueiredo L, Pace R, Lesoeur J, Rouillon T, Visage CL, Tassin JF, Weiss P, Guicheux J, Rethore G. Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomater 2018; 65:112-122. [PMID: 29128532 DOI: 10.1016/j.actbio.2017.11.027] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/20/2017] [Accepted: 11/07/2017] [Indexed: 11/26/2022]
Abstract
Articular cartilage is a connective tissue which does not spontaneously heal. To address this issue, biomaterial-assisted cell therapy has been researched with promising advances. The lack of strong mechanical properties is still a concern despite significant progress in three-dimensional scaffolds. This article's objective was to develop a composite hydrogel using a small amount of nano-reinforcement clay known as laponites. These laponites were capable of self-setting within the gel structure of the silated hydroxypropylmethyl cellulose (Si-HPMC) hydrogel. Laponites (XLG) were mixed with Si-HPMC to prepare composite hydrogels leading to the development of a hybrid interpenetrating network. This interpenetrating network increases the mechanical properties of the hydrogel. The in vitro investigations showed no side effects from the XLG regarding cytocompatibility or oxygen diffusion within the composite after cross-linking. The ability of the hybrid scaffold containing the composite hydrogel and chondrogenic cells to form a cartilaginous tissue in vivo was investigated during a 6-week implantation in subcutaneous pockets of nude mice. Histological analysis of the composite constructs revealed the formation of a cartilage-like tissue with an extracellular matrix containing glycosaminoglycans and collagens. Overall, this new hybrid construct demonstrates an interpenetrating network which enhances the hydrogel mechanical properties without interfering with its cytocompatibility, oxygen diffusion, or the ability of chondrogenic cells to self-organize in the cluster and produce extracellular matrix components. This composite hydrogel may be of relevance for the treatment of cartilage defects in a large animal model of articular cartilage defects. STATEMENT OF SIGNIFICANCE Articular cartilage is a tissue that fails to heal spontaneously. To address this clinically relevant issue, biomaterial-assisted cell therapy is considered promising but often lacks adequate mechanical properties. Our objective was to develop a composite hydrogel using a small amount of nano reinforcement (laponite) capable of gelling within polysaccharide based self-crosslinking hydrogel. This new hybrid construct demonstrates an interpenetrating network (IPN) which enhances the hydrogel mechanical properties without interfering with its cytocompatibility, O2 diffusion and the ability of chondrogenic cells to self-organize in cluster and produce extracellular matrix components. This composite hydrogel may be of relevance for the treatment of cartilage defects and will now be considered in a large animal model of articular cartilage defects.
Collapse
|
37
|
Henry N, Clouet J, Le Bideau J, Le Visage C, Guicheux J. Innovative strategies for intervertebral disc regenerative medicine: From cell therapies to multiscale delivery systems. Biotechnol Adv 2017; 36:281-294. [PMID: 29199133 DOI: 10.1016/j.biotechadv.2017.11.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022]
Abstract
As our understanding of the physiopathology of intervertebral disc (IVD) degeneration has improved, novel therapeutic strategies have emerged, based on the local injection of cells, bioactive molecules, and nucleic acids. However, with regard to the harsh environment constituted by degenerated IVDs, protecting biologics from in situ degradation while allowing their long-term delivery is a major challenge. Yet, the design of the optimal approach for IVD regeneration is still under debate and only a few papers provide a critical assessment of IVD-specific carriers for local and sustained delivery of biologics. In this review, we highlight the IVD-relevant polymers as well as their design as macro-, micro-, and nano-sized particles to promote endogenous repair. Finally, we illustrate how multiscale systems, combining in situ-forming hydrogels with ready-to-use particles, might drive IVD regenerative medicine strategies toward innovation.
Collapse
Affiliation(s)
- Nina Henry
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France; Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes, Cedex 3, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Johann Clouet
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes, France
| | - Jean Le Bideau
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes, Cedex 3, France
| | - Catherine Le Visage
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France.
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France; CHU Nantes, PHU 4 OTONN, Nantes, France.
| |
Collapse
|
38
|
Affiliation(s)
- Ai-Rong Xu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Jun-Jie Wang
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Xin Guo
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| |
Collapse
|
39
|
Henry N, Clouet J, Fragale A, Griveau L, Chédeville C, Véziers J, Weiss P, Le Bideau J, Guicheux J, Le Visage C. Pullulan microbeads/Si-HPMC hydrogel injectable system for the sustained delivery of GDF-5 and TGF-β1: new insight into intervertebral disc regenerative medicine. Drug Deliv 2017; 24:999-1010. [PMID: 28645219 PMCID: PMC8241148 DOI: 10.1080/10717544.2017.1340362] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
Discogenic low back pain is considered a major health concern and no etiological treatments are today available to tackle this disease. To clinically address this issue at early stages, there is a rising interest in the stimulation of local cells by in situ injection of growth factors targeting intervertebral disc (IVD) degenerative process. Despite encouraging safety and tolerability results in clinic, growth factors efficacy may be further improved. To this end, the use of a delivery system allowing a sustained release, while protecting growth factors from degradation appears of particular interest. We propose herein the design of a new injectable biphasic system, based on the association of pullulan microbeads (PMBs) into a cellulose-based hydrogel (Si-HPMC), for the TGF-β1 and GDF-5 growth factors sustained delivery. We present for the first time the design and mechanical characterization of both the PMBs and the called biphasic system (PMBs/Si-HPMC). Their loading and release capacities were also studied and we were able to demonstrate a sustained release of both growth factors, for up to 28 days. Noteworthy, the growth factors biological activity on human cells was maintained. Altogether, these data suggest that this PMBs/Si-HPMC biphasic system may be a promising candidate for the development of an innovative bioactive delivery system for IVD regenerative medicine.
Collapse
Affiliation(s)
- Nina Henry
- INSERM, UMRS 1229, RMeS “Regenerative Medicine and Skeleton”, Team STEP “Skeletal Physiopathology and Joint Regenerative Medicine”, Nantes, France
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, Nantes, France
- UFR Odontologie, Université de Nantes, Nantes, France
| | - Johann Clouet
- INSERM, UMRS 1229, RMeS “Regenerative Medicine and Skeleton”, Team STEP “Skeletal Physiopathology and Joint Regenerative Medicine”, Nantes, France
- UFR Odontologie, Université de Nantes, Nantes, France
- CHU Nantes, PHU 11 Pharmacie, Pharmacie Centrale, Nantes, France
- UFR Sciences Biologiques et Pharmaceutiques, Université de Nantes, Nantes, France
| | - Audrey Fragale
- INSERM, UMRS 1229, RMeS “Regenerative Medicine and Skeleton”, Team STEP “Skeletal Physiopathology and Joint Regenerative Medicine”, Nantes, France
- UFR Odontologie, Université de Nantes, Nantes, France
| | - Louise Griveau
- INSERM, UMRS 1229, RMeS “Regenerative Medicine and Skeleton”, Team STEP “Skeletal Physiopathology and Joint Regenerative Medicine”, Nantes, France
| | - Claire Chédeville
- INSERM, UMRS 1229, RMeS “Regenerative Medicine and Skeleton”, Team STEP “Skeletal Physiopathology and Joint Regenerative Medicine”, Nantes, France
| | - Joëlle Véziers
- INSERM, UMRS 1229, RMeS “Regenerative Medicine and Skeleton”, Team STEP “Skeletal Physiopathology and Joint Regenerative Medicine”, Nantes, France
- UFR Odontologie, Université de Nantes, Nantes, France
- SC3M platform, UMS INSERM 016/CNRS 3556, SFR François Bonamy, Nantes, France
- CHU Nantes, PHU 4 OTONN, Nantes, France
| | - Pierre Weiss
- UFR Odontologie, Université de Nantes, Nantes, France
- INSERM, UMRS 1229, RMeS “Regenerative Medicine and Skeleton”, Team REGOS “Regenerative Medicine of Bone Tissues”, Nantes, France
| | - Jean Le Bideau
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, Nantes, France
| | - Jérôme Guicheux
- INSERM, UMRS 1229, RMeS “Regenerative Medicine and Skeleton”, Team STEP “Skeletal Physiopathology and Joint Regenerative Medicine”, Nantes, France
- UFR Odontologie, Université de Nantes, Nantes, France
- CHU Nantes, PHU 4 OTONN, Nantes, France
| | - Catherine Le Visage
- INSERM, UMRS 1229, RMeS “Regenerative Medicine and Skeleton”, Team STEP “Skeletal Physiopathology and Joint Regenerative Medicine”, Nantes, France
- UFR Odontologie, Université de Nantes, Nantes, France
| |
Collapse
|
40
|
Fakhri A, Tahami S, Nejad PA. Preparation and characterization of Fe 3 O 4 -Ag 2 O quantum dots decorated cellulose nanofibers as a carrier of anticancer drugs for skin cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:83-88. [DOI: 10.1016/j.jphotobiol.2017.08.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/06/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022]
|
41
|
Flégeau K, Pace R, Gautier H, Rethore G, Guicheux J, Le Visage C, Weiss P. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Adv Colloid Interface Sci 2017; 247:589-609. [PMID: 28754381 DOI: 10.1016/j.cis.2017.07.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 01/21/2023]
Abstract
Repairing or replacing damaged human tissues has been the ambitious goal of regenerative medicine for over 25years. One promising approach is the use of hydrated three-dimensional scaffolds, known as hydrogels, which have had good results repairing tissues in pre-clinical trials. Benefiting from breakthrough advances in the field of biology, and more particularly regarding cell/matrix interactions, these hydrogels are now designed to recapitulate some of the fundamental cues of native environments to drive the local tissue regeneration. We highlight the key parameters that are required for the development of smart and biomimetic hydrogels. We also review the wide variety of polymers, crosslinking methods, and manufacturing processes that have been developed over the years. Of particular interest is the emergence of supramolecular chemistries, allowing for the development of highly functional and reversible biohydrogels. Moreover, advances in computer assisted design and three-dimensional printing have revolutionized the production of macroporous hydrogels and allowed for more complex designs than ever before with the opportunity to develop fully reconstituted organs. Today, the field of biohydrogels for regenerative medicine is a prolific area of research with applications for most bodily tissues. On top of these applications, injectable hydrogels and macroporous hydrogels (foams) were found to be the most successful. While commonly associated with cells or biologics as drug delivery systems to increase therapeutic outcomes, they are steadily being used in the emerging fields of organs-on-chip and hydrogel-assisted cell therapy. To highlight these advances, we review some of the recent developments that have been achieved for the regeneration of tissues, focusing on the articular cartilage, bone, cardiac, and neural tissues. These biohydrogels are associated with improved cartilage and bone defects regeneration, reduced left ventricular dilation upon myocardial infarction and display promising results repairing neural lesions. Combining the benefits from each of these areas reviewed above, we envision that an injectable biohydrogel foam loaded with either stem cells or their secretome is the most promising hydrogel solution to trigger tissue regeneration. A paradigm shift is occurring where the combined efforts of fundamental and applied sciences head toward the development of hydrogels restoring tissue functions, serving as drug screening platforms or recreating complex organs.
Collapse
|
42
|
Milcovich G, Antunes FE, Farra R, Grassi G, Grassi M, Asaro F. Modulating carbohydrate-based hydrogels as viscoelastic lubricant substitute for articular cartilages. Int J Biol Macromol 2017; 102:796-804. [DOI: 10.1016/j.ijbiomac.2017.04.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 10/19/2022]
|
43
|
Microgels of silylated HPMC as a multimodal system for drug co-encapsulation. Int J Pharm 2017; 532:790-801. [PMID: 28755992 DOI: 10.1016/j.ijpharm.2017.07.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/22/2023]
Abstract
Combined therapy is a global strategy developed to prevent drug resistance in cancer and infectious diseases. In this field, there is a need of multifunctional drug delivery systems able to co-encapsulate small drug molecules, peptides, proteins, associated to targeting functions, nanoparticles. Silylated hydrogels are alkoxysilane hybrid polymers that can be engaged in a sol-gel process, providing chemical cross linking in physiological conditions, and functionalized biocompatible hybrid materials. In the present work, microgels were prepared with silylated (hydroxypropyl)methyl cellulose (Si-HPMC) that was chemically cross linked in soft conditions of pH and temperature. They were prepared by an emulsion templating process, water in oil (W/O), as microreactors where the condensation reaction took place. The ability to functionalize the microgels, so-called FMGs, in a one-pot process, was evaluated by grafting a silylated hydrophilic model drug, fluorescein (Si-Fluor), using the same reaction of condensation. Biphasic microgels (BPMGs) were prepared to evaluate their potential to encapsulate lipophilic model drug (Nile red). They were composed of two separate compartments, one oily phase (sesame oil) trapped in the cross linked Si-HPMC hydrophilic phase. The FMGs and BPMGs were characterized by different microscopic techniques (optic, epi-fluorescence, Confocal Laser Scanning Microscopy and scanning electronic microscopy), the mechanical properties were monitored using nano indentation by Atomic Force Microscopy (AFM), and different preliminary tests were performed to evaluate their chemical and physical stability. Finally, it was demonstrated that it is possible to co-encapsulate both hydrophilic and hydrophobic drugs, in silylated microgels, that were physically and chemically stable. They were obtained by chemical cross linking in soft conditions, and without surfactant addition during the emulsification process. The amount of drug loaded was in favor of further biological activity. Mechanical stimulations should be necessary to trigger drug release.
Collapse
|
44
|
Pelttari K, Mumme M, Barbero A, Martin I. Nasal chondrocytes as a neural crest-derived cell source for regenerative medicine. Curr Opin Biotechnol 2017; 47:1-6. [PMID: 28551498 DOI: 10.1016/j.copbio.2017.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
Cells deriving from neural crest are generally acknowledged during embryonic development for their multipotency and plasticity, accounting for their capacity to generate various cell and tissue types even across germ layers. At least partial preservation of some of these properties in adulthood makes neural crest derived cells of large interest for regenerative purposes. Chondrocytes from fully mature nasal septum cartilage in adults are also derivatives of neural crest cells and were recently demonstrated to be able not only to maintain functionality across serial cloning, as surrogate self-renewal test, but also to respond and adapt to heterotopic transplantation sites. Based on these findings, cartilage grafts engineered by nasal chondrocytes were clinically used to reconstitute the nasal alar lobule and to repair articular cartilage defects. This article discusses further perspectives of potential clinical utility for nasal chondrocytes in musculoskeletal regeneration. It then highlights the need to derive deeper understanding of their biological properties in order to inform on possible therapeutic modes of action. This acquired knowledge will help to optimise manufacturing conditions to guarantee defined functional traits associated with safety and therapeutic potency of nasal chondrocytes in regenerative medicine.
Collapse
Affiliation(s)
- Karoliina Pelttari
- Department of Biomedicine, University of Basel, University Hospital of Basel, Switzerland
| | - Marcus Mumme
- Department of Biomedicine, University of Basel, University Hospital of Basel, Switzerland; Clinic for Orthopedics and Traumatology, University Hospital of Basel, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University of Basel, University Hospital of Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University of Basel, University Hospital of Basel, Switzerland.
| |
Collapse
|
45
|
|
46
|
Arakawa CK, DeForest CA. Polymer Design and Development. BIOLOGY AND ENGINEERING OF STEM CELL NICHES 2017:295-314. [DOI: 10.1016/b978-0-12-802734-9.00019-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
47
|
Mumme M, Steinitz A, Nuss KM, Klein K, Feliciano S, Kronen P, Jakob M, von Rechenberg B, Martin I, Barbero A, Pelttari K. Regenerative Potential of Tissue-Engineered Nasal Chondrocytes in Goat Articular Cartilage Defects. Tissue Eng Part A 2016; 22:1286-1295. [DOI: 10.1089/ten.tea.2016.0159] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marcus Mumme
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
- Clinic for Traumatologic Surgery, University Hospital of Basel, Basel, Switzerland
| | - Amir Steinitz
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
- Clinic for Traumatologic Surgery, University Hospital of Basel, Basel, Switzerland
| | - Katja M. Nuss
- Musculoskeletal Research Unit (MSRU), Equine Department, University of Zurich, Zürich, Switzerland
| | - Karina Klein
- Musculoskeletal Research Unit (MSRU), Equine Department, University of Zurich, Zürich, Switzerland
| | - Sandra Feliciano
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Peter Kronen
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zürich, Switzerland
- Veterinary Anaesthesia Services–International (VAS), Winterthur, Switzerland
| | - Marcel Jakob
- Clinic for Traumatologic Surgery, University Hospital of Basel, Basel, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Equine Department, University of Zurich, Zürich, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zürich, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Karoliina Pelttari
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
48
|
Rabyk M, Hruby M, Vetrik M, Kucka J, Proks V, Parizek M, Konefal R, Krist P, Chvatil D, Bacakova L, Slouf M, Stepanek P. Modified glycogen as construction material for functional biomimetic microfibers. Carbohydr Polym 2016; 152:271-279. [DOI: 10.1016/j.carbpol.2016.06.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022]
|
49
|
Vinatier C, Guicheux J. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments. Ann Phys Rehabil Med 2016; 59:139-144. [PMID: 27079583 DOI: 10.1016/j.rehab.2016.03.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
Articular cartilage is a non-vascularized and poorly cellularized connective tissue that is frequently damaged as a result of trauma and degenerative joint diseases such as osteoarthrtis. Because of the absence of vascularization, articular cartilage has low capacity for spontaneous repair. Today, and despite a large number of preclinical data, no therapy capable of restoring the healthy structure and function of damaged articular cartilage is clinically available. Tissue-engineering strategies involving the combination of cells, scaffolding biomaterials and bioactive agents have been of interest notably for the repair of damaged articular cartilage. During the last 30 years, cartilage tissue engineering has evolved from the treatment of focal lesions of articular cartilage to the development of strategies targeting the osteoarthritis process. In this review, we focus on the different aspects of tissue engineering applied to cartilage engineering. We first discuss cells, biomaterials and biological or environmental factors instrumental to the development of cartilage tissue engineering, then review the potential development of cartilage engineering strategies targeting new emerging pathogenic mechanisms of osteoarthritis.
Collapse
Affiliation(s)
- C Vinatier
- Inserm UMRS 791, laboratoire d'ingénierie osteo-articulaire et dentaire (LIOAD), group STEP « skeletal tissue engineering and physiopathology », 44042 Nantes, France; Université de Nantes, UFR d'odontologie, 44042 Nantes, France
| | - J Guicheux
- Inserm UMRS 791, laboratoire d'ingénierie osteo-articulaire et dentaire (LIOAD), group STEP « skeletal tissue engineering and physiopathology », 44042 Nantes, France; Université de Nantes, UFR d'odontologie, 44042 Nantes, France; CHU de Nantes, PHU 4 OTONN, 44000 Nantes, France.
| |
Collapse
|
50
|
Guillory X, Tessier A, Gratien GO, Weiss P, Colliec-Jouault S, Dubreuil D, Lebreton J, Le Bideau J. Glycidyl alkoxysilane reactivities towards simple nucleophiles in organic media for improved molecular structure definition in hybrid materials. RSC Adv 2016. [DOI: 10.1039/c6ra01658h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report the first comprehensive study of the reactivity in organic media of (3-glycidyloxypropyl)trialkoxysilanes towards common nucleophiles. Their reactivity have to be emphasized in order to design and to improve new sol–gel hybrid synthesis.
Collapse
Affiliation(s)
- X. Guillory
- Institut des Matériaux Jean Rouxel (IMN)
- UMR 6502
- 44322 Nantes
- France
- IFREMER
| | - A. Tessier
- CEISAM
- UMR 6230, équipe Symbiose
- 44322 Nantes
- France
| | - G.-O. Gratien
- Institut des Matériaux Jean Rouxel (IMN)
- UMR 6502
- 44322 Nantes
- France
- CEISAM
| | - P. Weiss
- LIOAD
- INSERM U791
- 44042 Nantes
- France
| | | | - D. Dubreuil
- CEISAM
- UMR 6230, équipe Symbiose
- 44322 Nantes
- France
| | - J. Lebreton
- CEISAM
- UMR 6230, équipe Symbiose
- 44322 Nantes
- France
| | - J. Le Bideau
- Institut des Matériaux Jean Rouxel (IMN)
- UMR 6502
- 44322 Nantes
- France
| |
Collapse
|