1
|
Rahman MU, Ullah MW, Alabbosh KF, Shah JA, Muhammad N, Zahoor, Shah SWA, Nawab S, Sethupathy S, Abdikakharovich SA, Khan KA, Elboughdiri N, Zhu D. Lignin valorization through the oxidative activity of β-etherases: Recent advances and perspectives. Int J Biol Macromol 2024; 281:136383. [PMID: 39395522 DOI: 10.1016/j.ijbiomac.2024.136383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The increasing interest in lignin, a complex and abundant biopolymer, stems from its ability to produce environmentally beneficial biobased products. β-Etherases play a crucial role by breaking down the β-aryl ether bonds in lignin. This comprehensive review covers the latest advancements in β-etherase-mediated lignin valorization, focusing on substrate selectivity, enzymatic oxidative activity, and engineering methods. Research on the microbial origin, protein modification, and molecular structure determination of β-etherases has improved our understanding of their effectiveness. Furthermore, the use of these enzymes in biorefinery processes is promising for enhancing lignin breakdown and creating more valuable products. The review also discusses the challenges and future potential of β-etherases in advancing lignin valorization for biorefinery applications that are economically viable and environmentally sustainable.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | | | - Junaid Ali Shah
- Department of Molecular Biology and Biochemistry, College of Life Sciences, China Normal University, Shanghai 200241, PR China
| | - Nizar Muhammad
- COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zahoor
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Syed Waqas Ali Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | | | - Khalid Ali Khan
- Applied College & Center of Bee Research and its Products (CBRP), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
2
|
Kumar R, Bhagia S, Mittal A, Wyman CE. Effect of cellulose reducing ends and primary hydroxyl groups modifications on cellulose-cellulase interactions and cellulose hydrolysis. Biotechnol Bioeng 2024; 121:2793-2807. [PMID: 38853638 DOI: 10.1002/bit.28774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/02/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Cellulose reducing ends are believed to play a vital role in the cellulose recalcitrance to enzymatic conversion. However, their role in insoluble cellulose accessibility and hydrolysis is not clear. Thus, in this study, reducing ends of insoluble cellulose derived from various sources were modified by applying reducing and/or oxidizing agents. The effects of cellulose reducing ends modification on cellulose reducing ends, cellulose structure, and cellulose accessibility to cellulase were evaluated along with the impact on cellulose hydrolysis with complete as well purified cellulase components. Sodium borohydride (NaBH4) reduction and sodium chlorite-acetic acid (SC/AA) oxidation were able to modify more than 90% and 60% of the reducing ends, respectively, while the bicinchoninic acid (BCA) reagent applied for various cycles oxidized cellulose reducing ends to various extents. X-ray diffractograms of the treated solids showed that these treatments did not change the cellulose crystalline structure and the change in crystallinity index was insignificant. Surprisingly, it was found that the cellulose reducing ends modification, either through selective NaBH4 reduction or BCA oxidation, had a negligible impact on cellulose accessibility as well on cellulose hydrolysis rates or final conversions with complete cellulase at loadings as low as 0.5 mg protein/g cellulose. In fact, in contrast to what is traditionally believed, modifications of cellulose reducing ends by these two methods had no apparent impact on cellulose conversion with purified cellulase components and their synergy. However, SC/AA oxidation resulted in significant drop in cellulose conversion (10%-50%) with complete as well purified cellulase components. Nonetheless, further research revealed that the cause for drop in cellulose conversion for the SC/AA oxidation case was due to primary hydroxyl groups (PHGs) oxidation and not the oxidation of reducing ends. Furthermore, it was found that the PHGs modification affects cellulose accessibility and slows the cellulase uptake as well resulting in significant drop in cellulose conversions.
Collapse
Affiliation(s)
- Rajeev Kumar
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, California, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, USA
| | - Samarthya Bhagia
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, California, USA
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, USA
| | - Ashutosh Mittal
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, Colorado, USA
| | - Charles E Wyman
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, California, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, USA
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, California, USA
| |
Collapse
|
3
|
Zhou M, Feng Y, Li H, Tian X. Sustainable structural polysaccharides conversion: How does DES pretreatment affect cellulase adsorption, thereby improving enzymatic digestion of lignocellulose? Carbohydr Polym 2024; 326:121593. [PMID: 38142091 DOI: 10.1016/j.carbpol.2023.121593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 12/25/2023]
Abstract
Biomass conversion aims at degrading the structural polysaccharides of lignocellulose into reducing sugars. Pretreatment is necessary to overcome the recalcitrance of lignocellulose. The DES La/ChCl in this paper was selected based on our previous study. To examine cellulase adsorption of lignocellulose after DES pretreatment, sorghum straw was pretreated with DES under different condition. The adsorption improvement of cellulase on lignocellulose after DES pretreatment has positive impact on reducing sugar production of biomass. After DES pretreatment, 1. pore corrosion caused the upward trend of pore radius and the downward trend of SSA. 2. the hydrogen bounding force of pretreated sorghum straw and MCC decreased, the hydrogen bounding force of pretreated lignin increased. 3. although the unsaturation of pretreated lignin increased, DES pretreatment is helpful for the removal of lignin. 4. The decrease in the hydrophobicity of sorghum straw make it easier to disperse. 5. the Zeta potential of pretreated sorghum straw shifted towards the positively charged region, while pretreated lignin shifted towards the negatively charged region. 6. different adsorption behaviors were observed in specific components of cellulase mixtures (BGs, CBHs, EGs and xlylanase). These results revealing the mechanism of enzyme adsorption are conductive for understanding the role of pretreatment in biomass conversion.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Pharmaceutical, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yuxuan Feng
- State Key Laboratory of Pharmaceutical, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Haidong Li
- State Key Laboratory of Pharmaceutical, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xingjun Tian
- State Key Laboratory of Pharmaceutical, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
4
|
Tang S, Yu YL, Liu R, Wei S, Zhang Q, Zhao J, Li S, Dong Q, Li YB, Wang Y. Enhancing ethylene glycol and ferric chloride pretreatment of rice straw by low-pressure carbon dioxide to improve enzymatic saccharification. BIORESOURCE TECHNOLOGY 2023; 369:128391. [PMID: 36435418 DOI: 10.1016/j.biortech.2022.128391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Ethylene glycol and ferric chloride pretreatment assisted by low-pressure carbon dioxide (1 MPa CO2) realized the targeted deconstruction of lignocelluloses at 170 °C for 5 min, achieving 98 % cellulose recovery with removal of 92 % lignin and 90 % hemicellulose. After the pretreatment, the formation of stable platform mono-phenol components would be with the destruction of the lignin-carbohydrate complexes structure, and the surface of rice straw became rough, with a less negative charge and higher specific surface area, while the enzyme adsorption rate increased by 8.1 times. Furthermore, the glucose yield of pretreated straw was remarkably increased by 5.6 times that of the untreated straw, reaching 91 % after hydrolyzed for 48 h. With Tween 80 added in concentrated solid (12 %) hydrolysis at low cellulase loading (3 FPU/g dry substrate), half of the hydrolysis time was shortened than that without Tween 80, with 45 % higher glucose yield.
Collapse
Affiliation(s)
- Song Tang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China; Biomass Group, College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210031, China
| | - Yan-Ling Yu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Rukuan Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Shenghua Wei
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Qin Zhang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jie Zhao
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Song Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Qian Dong
- Biomass Group, College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210031, China
| | - Yan-Bin Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Yuanli Wang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
5
|
Qin S, Liu X, Lv W, Hu J, Huang X, Zhao L. The mechanism of degradation polycyclic aromatic hydrocarbons by magnetic biogenic manganese oxides. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Madadi M, Song G, Sun F, Sun C, Xia C, Zhang E, Karimi K, Tu M. Positive role of non-catalytic proteins on mitigating inhibitory effects of lignin and enhancing cellulase activity in enzymatic hydrolysis: Application, mechanism, and prospective. ENVIRONMENTAL RESEARCH 2022; 215:114291. [PMID: 36103929 DOI: 10.1016/j.envres.2022.114291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Fermentable sugar production from lignocellulosic biomass has received considerable attention and has been dramatic progress recently. However, due to low enzymatic hydrolysis (EH) yields and rates, a high dosage of the costly enzyme is required, which is a bottleneck for commercial applications. Over the last decades, various strategies have been developed to reduce cellulase enzyme costs. The progress of the non-catalytic additive proteins in mitigating inhibition in EH is discussed in detail in this review. The low efficiency of EH is mostly due to soluble lignin compounds, insoluble lignin, and harsh thermal and mechanical conditions of the EH process. Adding non-catalytic proteins into the EH is considered a simple and efficient approach to boost hydrolysis yield. This review discussed the multiple mechanical steps involved in the EH process. The effect of physicochemical properties of modified lignin on EH and its interaction with cellulase and cellulose are identified and discussed, which include hydrogen bonding, hydrophobic, electrostatic, and cation-π interactions, as well as physical barriers. Moreover, the effects of different conditions of EH that lead to cellulase deactivation by thermal and mechanical mechanisms are also explained. Finally, recent advances in the development, potential mechanisms, and economic feasibility of non-catalytic proteins on EH are evaluated and perspectives are presented.
Collapse
Affiliation(s)
- Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ezhen Zhang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Maobing Tu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, United States
| |
Collapse
|
7
|
Gacias-Amengual N, Wohlschlager L, Csarman F, Ludwig R. Fluorescent Imaging of Extracellular Fungal Enzymes Bound onto Plant Cell Walls. Int J Mol Sci 2022; 23:ijms23095216. [PMID: 35563607 PMCID: PMC9105846 DOI: 10.3390/ijms23095216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Lignocelluloytic enzymes are industrially applied as biocatalysts for the deconstruction of recalcitrant plant biomass. To study their biocatalytic and physiological function, the assessment of their binding behavior and spatial distribution on lignocellulosic material is a crucial prerequisite. In this study, selected hydrolases and oxidoreductases from the white rot fungus Phanerochaete chrysosporium were localized on model substrates as well as poplar wood by confocal laser scanning microscopy. Two different detection approaches were investigated: direct tagging of the enzymes and tagging specific antibodies generated against the enzymes. Site-directed mutagenesis was employed to introduce a single surface-exposed cysteine residue for the maleimide site-specific conjugation. Specific polyclonal antibodies were produced against the enzymes and were labeled using N-hydroxysuccinimide (NHS) ester as a cross-linker. Both methods allowed the visualization of cell wall-bound enzymes but showed slightly different fluorescent yields. Using native poplar thin sections, we identified the innermost secondary cell wall layer as the preferential attack point for cellulose-degrading enzymes. Alkali pretreatment resulted in a partial delignification and promoted substrate accessibility and enzyme binding. The methods presented in this study are suitable for the visualization of enzymes during catalytic biomass degradation and can be further exploited for interaction studies of lignocellulolytic enzymes in biorefineries.
Collapse
|
8
|
Yang J, Gao C, Yang X, Su Y, Shi S, Han L. Effect of combined wet alkaline mechanical pretreatment on enzymatic hydrolysis of corn stover and its mechanism. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:31. [PMID: 35300735 PMCID: PMC8932242 DOI: 10.1186/s13068-022-02130-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND To further optimize the mechanochemical pretreatment process, a combined wet alkaline mechanical pretreatment of corn stover was proposed with a short time and less chemical consumption at room temperature. RESULTS The combined alkaline mechanical pretreatment significantly enhanced enzymatic hydrolysis resulting a highest glucose yield (YG) of 91.9% with 3% NaOH and ball milling (BM) for 10 min. At this optimal condition, 44.4% lignin was removed and major portion of cellulose was retained (86.6%). The prehydrolysate contained by-products such as monosaccharides, oligosaccharides, acetic acid, and lignin but no furfural and 5-HMF. The alkaline concentration showed a significant impact on glucose yield, while the BM time was less important. Quantitative correlation analysis showed that YG (%) = 0.68 × BM time (min) + 19.27 × NaOH concentration (%) + 13.71 (R2 = 0.85), YG = 6.35 × glucan content - 231.84 (R2 = 0.84), and YG = - 14.22 × lignin content + 282.70 (R2 = 0.87). CONCLUSION The combined wet alkaline mechanical pretreatment at room temperature had a boosting effect on the yield of enzymatic hydrolysis with short treatment time and less chemical consumption. The impact of the physical and chemical properties of corn stover pretreated with different BM times and/or different NaOH concentrations on the subsequent enzymatic hydrolysis was investigated, which would be beneficial to illustrate the effective mechanism of the mechanochemical pretreatment method.
Collapse
Affiliation(s)
- Jie Yang
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China
| | - Chongfeng Gao
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China
| | - Xueqi Yang
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China
| | - Yanfu Su
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China
| | - Suan Shi
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China.
| | - Lujia Han
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China
| |
Collapse
|
9
|
Leroy A, Falourd X, Foucat L, Méchin V, Guillon F, Paës G. Evaluating polymer interplay after hot water pretreatment to investigate maize stem internode recalcitrance. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:164. [PMID: 34332625 PMCID: PMC8325808 DOI: 10.1186/s13068-021-02015-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/21/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Biomass recalcitrance is governed by various molecular and structural factors but the interplay between these multiscale factors remains unclear. In this study, hot water pretreatment (HWP) was applied to maize stem internodes to highlight the impact of the ultrastructure of the polymers and their interactions on the accessibility and recalcitrance of the lignocellulosic biomass. The impact of HWP was analysed at different scales, from the polymer ultrastructure or water mobility to the cell wall organisation by combining complementary compositional, spectral and NMR analyses. RESULTS HWP increased the kinetics and yield of saccharification. Chemical characterisation showed that HWP altered cell wall composition with a loss of hemicelluloses (up to 45% in the 40-min HWP) and of ferulic acid cross-linking associated with lignin enrichment. The lignin structure was also altered (up to 35% reduction in β-O-4 bonds), associated with slight depolymerisation/repolymerisation depending on the length of treatment. The increase in [Formula: see text], [Formula: see text] and specific surface area (SSA) showed that the cellulose environment was looser after pretreatment. These changes were linked to the increased accessibility of more constrained water to the cellulose in the 5-15 nm pore size range. CONCLUSION The loss of hemicelluloses and changes in polymer structural features caused by HWP led to reorganisation of the lignocellulose matrix. These modifications increased the SSA and redistributed the water thereby increasing the accessibility of cellulases and enhancing hydrolysis. Interestingly, lignin content did not have a negative impact on enzymatic hydrolysis but a higher lignin condensed state appeared to promote saccharification. The environment and organisation of lignin is thus more important than its concentration in explaining cellulose accessibility. Elucidating the interactions between polymers is the key to understanding LB recalcitrance and to identifying the best severity conditions to optimise HWP in sustainable biorefineries.
Collapse
Affiliation(s)
- Amandine Leroy
- INRAE, UR 1268 BIA, 44316, Nantes, France
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A614, 51100, Reims, France
| | - Xavier Falourd
- INRAE, UR 1268 BIA, 44316, Nantes, France
- INRAE, BIBS Facility, 44316, Nantes, France
| | - Loïc Foucat
- INRAE, UR 1268 BIA, 44316, Nantes, France
- INRAE, BIBS Facility, 44316, Nantes, France
| | - Valérie Méchin
- INRAE, Institut Jean-Pierre Bourgin, 78026, Versailles, France
| | | | - Gabriel Paës
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A614, 51100, Reims, France.
| |
Collapse
|
10
|
Zhang H, Zhang J, Xie J, Qin Y. Effects of NaOH-catalyzed organosolv pretreatment and surfactant on the sugar production from sugarcane bagasse. BIORESOURCE TECHNOLOGY 2020; 312:123601. [PMID: 32502887 DOI: 10.1016/j.biortech.2020.123601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
In this study, NaOH-catalyzed organosolv pretreatment with different loading of NaOH (0-10%) was proposed to disrupt the recalcitrant structure by degrading lignin, reserve the majority of cellulose and hemicellulose, and improve the enzymatic efficiency of sugarcane bagasse. It was found that the higher loading of NaOH during organosolv pretreatment yielded more glucose, and the synergistic performance of NaOH and ethanol on enzymolysis was superior to that pretreated with only NaOH and only ethanol during two-step pretreatment. Furthermore, Tween 80 was added to determine its influence on enzymolysis after NaOH-catalyzed organosolv pretreatment, leading to the highest glucose yield of 95.1% at 24 h, which saved 2/3 hydrolysis time while generating the similar glucose yield comparing with that without Tween 80. However, the increased yields of glucose by adding Tween 80 were decreased as hydrolysis time was prolonged from 6 h to 24 h.
Collapse
Affiliation(s)
- Hongdan Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangzhou 510640, PR China.
| | - Jiajie Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, PR China
| | - Jun Xie
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, PR China
| | - Yanlin Qin
- Guangdong University of Technology, School of Chemical Engineering and Light Industry, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Tang W, Wu X, Huang C, Huang C, Lai C, Yong Q. Humic acid-assisted autohydrolysis of waste wheat straw to sustainably improve enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2020; 306:123103. [PMID: 32163866 DOI: 10.1016/j.biortech.2020.123103] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 05/24/2023]
Abstract
Humic acid (HA), considered the main component of organic matter in the ash of waste wheat straw (WWS), has the potential to improve autohydrolysis through its function as a surfactant. In this work, a pre-washed WWS (PWWS) was subjected to autohydrolysis with addition of HA to explore whether its surfactant properties can provide benefit to biorefinery operations. Acquired results showed that HA acted as delignification agent likely due to its surfactant properties. Delignification was more than doubled at the maximum HA dosage (30 g/L) relative to the control, which allowed for enzymatic hydrolysis efficiency to also increase from 64.9% to 81.8%. The pretreated materials were further subjected to analysis structure characterization. The results showed that HA effectively reduced the surface lignin area of PWWS, lowering non-specific adsorption of lignin to enzymes. The autohydrolysis with HA was an effective technique to improve the subsequent cellulose enzymatic digestion by enhancing the delignification.
Collapse
Affiliation(s)
- Wei Tang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xinxing Wu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Chen Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
12
|
Weidener D, Dama M, Dietrich SK, Ohrem B, Pauly M, Leitner W, Domínguez de María P, Grande PM, Klose H. Multiscale analysis of lignocellulose recalcitrance towards OrganoCat pretreatment and fractionation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:155. [PMID: 32944071 PMCID: PMC7487623 DOI: 10.1186/s13068-020-01796-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/01/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Biomass recalcitrance towards pretreatment and further processing can be related to the compositional and structural features of the biomass. However, the exact role and relative importance to those structural attributes has still to be further evaluated. Herein, ten different types of biomass currently considered to be important raw materials for biorefineries were chosen to be processed by the recently developed, acid-catalyzed OrganoCat pretreatment to produce cellulose-enriched pulp, sugars, and lignin with different amounts and qualities. Using wet chemistry analysis and NMR spectroscopy, the generic factors of lignocellulose recalcitrance towards OrganoCat were determined. RESULTS The different materials were processed applying different conditions (e.g., type of acid catalyst and temperature), and fractions with different qualities were obtained. Raw materials and products were characterized in terms of their compositional and structural features. For the first time, generic correlation coefficients were calculated between the measured chemical and structural features and the different OrganoCat product yields and qualities. Especially lignin-related factors displayed a detrimental role for enzymatic pulp hydrolysis, as well as sugar and lignin yield exhibiting inverse correlation coefficients. Hemicellulose appeared to have less impact, not being as detrimental as lignin factors, but xylan-O-acetylation was inversely correlated with product yield and qualities. CONCLUSION These results illustrate the role of generic features of lignocellulosic recalcitrance towards acidic pretreatments and fractionation, exemplified in the OrganoCat strategy. Discriminating between types of lignocellulosic biomass and highlighting important compositional variables, the improved understanding of how these parameters affect OrganoCat products will ameliorate bioeconomic concepts from agricultural production to chemical products. Herein, a methodological approach is proposed.
Collapse
Affiliation(s)
- Dennis Weidener
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Murali Dama
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, Universitätsstraße. 1, 40225 Düsseldorf, Germany
| | - Sabine K. Dietrich
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Benedict Ohrem
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Markus Pauly
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, Universitätsstraße. 1, 40225 Düsseldorf, Germany
| | - Walter Leitner
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an Der Ruhr, Germany
| | | | - Philipp M. Grande
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Holger Klose
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
13
|
Zoghlami A, Paës G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front Chem 2019; 7:874. [PMID: 31921787 PMCID: PMC6930145 DOI: 10.3389/fchem.2019.00874] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Lignocellulosic biomass (LB) is an abundant and renewable resource from plants mainly composed of polysaccharides (cellulose and hemicelluloses) and an aromatic polymer (lignin). LB has a high potential as an alternative to fossil resources to produce second-generation biofuels and biosourced chemicals and materials without compromising global food security. One of the major limitations to LB valorisation is its recalcitrance to enzymatic hydrolysis caused by the heterogeneous multi-scale structure of plant cell walls. Factors affecting LB recalcitrance are strongly interconnected and difficult to dissociate. They can be divided into structural factors (cellulose specific surface area, cellulose crystallinity, degree of polymerization, pore size and volume) and chemical factors (composition and content in lignin, hemicelluloses, acetyl groups). Goal of this review is to propose an up-to-date survey of the relative impact of chemical and structural factors on biomass recalcitrance and of the most advanced techniques to evaluate these factors. Also, recent spectral and water-related measurements accurately predicting hydrolysis are presented. Overall, combination of relevant factors and specific measurements gathering simultaneously structural and chemical information should help to develop robust and efficient LB conversion processes into bioproducts.
Collapse
Affiliation(s)
- Aya Zoghlami
- FARE Laboratory, INRAE, University of Reims Champagne-Ardenne, Reims, France
| | - Gabriel Paës
- FARE Laboratory, INRAE, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
14
|
Tang S, Dong Q, Fang Z, Cong WJ, Miao ZD. High-concentrated substrate enzymatic hydrolysis of pretreated rice straw with glycerol and aluminum chloride at low cellulase loadings. BIORESOURCE TECHNOLOGY 2019; 294:122164. [PMID: 31563115 DOI: 10.1016/j.biortech.2019.122164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Rice straw was pretreated with glycerol and AlCl3 for enzymatic hydrolysis at low cellulase loadings. Based on a central composite design, 83% delignification, 94% hemicellulose removal, and 92% cellulose recovery (or 76% cellulose in solid residue) were achieved under the optimized pretreatment conditions (0.08 mol/L AlCl3 as catalyst at 146.8 °C for 20 min with 90% glycerol). During glycerol-AlCl3 pretreatment, the lignin-carbohydrate complex was depolymerized, resulting in the complex and recalcitrant construction of straw effectively being destroyed. The enzyme adsorption ability of pretreated straw was 16.5 times that for the original sample. After pretreatment, glucose yield was increased by 2.4 times to 74% for 48 h. Moreover, concentrated solid (15%) with low cellulase loading (3.3 FPU/g dry substrate) achieved 58.6% glucose yield, and further increased by 12% to 65.7% by adding Tween 80. Glycerol-AlCl3 pretreatment was a promising approach to realize high-concentrated solid hydrolysis for sugars at low cellulase loadings.
Collapse
Affiliation(s)
- Song Tang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Qian Dong
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Zhen Fang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China. http://biomass-group.njau.edu.cn/
| | - Wen-Jie Cong
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Zheng-Diao Miao
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| |
Collapse
|
15
|
Zhang H, Fan Z, Li J, Han L. A comparative study on enzyme adsorption and hydrolytic performance of different scale corn stover by two-step kinetics. BIORESOURCE TECHNOLOGY 2019; 282:384-389. [PMID: 30884458 DOI: 10.1016/j.biortech.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
To investigate the effect of two-step kinetics on enzyme adsorption and hydrolytic properties of different structural substrates at low enzyme doses. The two-step kinetic experiments of ultrafine grinding (UGCS) and sieve-based grinding corn stover (SGCS) were performed respectively with enzyme loading of 2.5 + 2.5 FPU/g and 5 + 5 FPU/g. The different performance of these two samples were illustrated by characterizing the particle size distribution, SEM and XPS. The results showed that ultrafine grinding can promote the structural properties which is beneficial to adsorption and hydrolysis. The main factors influencing adsorption kinetics are enzyme concentration and the surface cellulose amount. Pre-adsorbed enzyme has no effects on the subsequent enzyme adsorption quantity but produces some small competitive and impeditive effects. The hydrolysis kinetics mainly depend on the structure of the substrate and its complexity of hydrolysis. The two-step hydrolysis didn't promote the total sugar yield under the same enzyme concentration, but the first step contributed more to the total sugar yield.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Zhiliang Fan
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States
| | - Junbao Li
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Lujia Han
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China.
| |
Collapse
|
16
|
Cheng L, Hu X, Gu Z, Hong Y, Li Z, Li C. Characterization of physicochemical properties of cellulose from potato pulp and their effects on enzymatic hydrolysis by cellulase. Int J Biol Macromol 2019; 131:564-571. [DOI: 10.1016/j.ijbiomac.2019.02.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/11/2019] [Accepted: 02/28/2019] [Indexed: 11/17/2022]
|
17
|
Zhang H, Huang S, Wei W, Zhang J, Xie J. Investigation of alkaline hydrogen peroxide pretreatment and Tween 80 to enhance enzymatic hydrolysis of sugarcane bagasse. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:107. [PMID: 31073331 PMCID: PMC6498686 DOI: 10.1186/s13068-019-1454-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/25/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Due to the intact structure of lignocellulosic biomass, pretreatment was a prerequisite to improve the enzymatic hydrolysis by disrupting the recalcitrant lignocellulose and increasing the accessibility of cellulose to enzyme. In this study, an alkaline hydrogen peroxide (AHP) pretreatment of sugarcane bagasse with various loadings of H2O2 (1.25-6.25 wt%) at temperatures of 60-160 °C was proposed to degrade hemicellulose/lignin and improve the enzymatic digestibility. RESULTS It was found that increasing H2O2 loadings during pretreatment lead to the enhancement of substrate digestibility, whereas the alkali (only NaOH)-pretreated solid generated higher glucose yield than that pretreated under AHP pretreatment with lower loading of H2O2. This enhancement of enzymatic digestibility was due to the degradation of hemicellulose and lignin. Furthermore, Tween 80 was added to promote enzymatic digestibility, however, the increased yields were different with various substrates and hydrolysis time. The highest glucose yield of 77.6% was obtained after pretreatment at 160 °C for 60 min with 6.25% H2O2 and the addition of Tween 80, representing 89.1% of glucose in pretreated substrate. CONCLUSIONS This study demonstrated that the AHP pretreatment could greatly enhance the enzymatic saccharification. The addition of Tween 80 played remarkable performances in promoting the glucose yield during enzymatic hydrolysis by stabilizing and protecting the enzyme activity. This study provided an economical feasible and gradual process for the generation of glucose, which will be subsequently converted to bioethanol and bio-chemicals.
Collapse
Affiliation(s)
- Hongdan Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangzhou, 510640 People’s Republic of China
| | - Shihang Huang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Weiqi Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Jiajie Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Jun Xie
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| |
Collapse
|
18
|
Lu M, Li J, Han L, Xiao W. An aggregated understanding of cellulase adsorption and hydrolysis for ball-milled cellulose. BIORESOURCE TECHNOLOGY 2019; 273:1-7. [PMID: 30368157 DOI: 10.1016/j.biortech.2018.10.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 05/22/2023]
Abstract
This study evaluated the effects of physicochemical properties of a series of ball-milled cellulose on cellulase adsorption and glucose yield. The relationship between cellulase adsorption and initial hydrolysis rate was also discussed. We found that hydrophobicity and surface charge are the key factors affecting cellulase adsorption on ball-milled cellulose. The results demonstrated that glucose yield had a positive correlation with specific surface area, while showed a negative correlation with particle size, degree of polymerization and crystallinity. Among these properties, specific surface area and crystallinity are the key factors affecting glucose yield. As ball milling progressed, cellulose showed lower enzyme adsorption capacity/amount of bound enzyme during initial stage of hydrolysis, but had higher initial hydrolysis rate. The enhanced rate is attributed to the fact that the amorphous region produced by ball milling reduces the free energy required for decrystallization thus increases the catalytic efficiency of the bound enzyme.
Collapse
Affiliation(s)
- Minsheng Lu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Junbao Li
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Weihua Xiao
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
19
|
Bhagia S, Wyman CE, Kumar R. Impacts of cellulase deactivation at the moving air-liquid interface on cellulose conversions at low enzyme loadings. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:96. [PMID: 31044009 PMCID: PMC6477705 DOI: 10.1186/s13068-019-1439-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/13/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND We recently confirmed that the deactivation of T. reesei cellulases at the air-liquid interface reduces microcrystalline cellulose conversion at low enzyme loadings in shaken flasks. It is one of the main causes for lowering of cellulose conversions at low enzyme loadings. However, supplementing cellulases with small quantities of surface-active additives in shaken flasks can increase cellulose conversions at low enzyme loadings. It was also shown that cellulose conversions at low enzyme loadings can be increased in unshaken flasks if the reactions are carried for a longer time. This study further explores these recent findings to better understand the impact of air-liquid interfacial phenomena on enzymatic hydrolysis of cellulose contained in Avicel, Sigmacell, α-cellulose, cotton linters, and filter paper. The impacts of solids and enzyme loadings, supplementation with nonionic surfactant Tween 20 and xylanases, and application of different types of mixing and reactor designs on cellulose hydrolysis were also evaluated. RESULTS Avicel cellulose conversions at high solid loading were more than doubled by minimizing loss of cellulases to the air-liquid interface. Maximum cellulose conversions were high for surface-active supplemented shaken flasks or unshaken flasks because of low cellulase deactivation at the air-liquid interface. The nonionic surfactant Tween 20 was unable to completely prevent cellulase deactivation in shaken flasks and only reduced cellulose conversions at unreasonably high concentrations. CONCLUSIONS High dynamic interfacial areas created through baffles in reactor vessels, low volumes in high-capacity vessels, or high shaking speeds severely limited cellulose conversions at low enzyme loadings. Precipitation of cellulases due to aggregation at the air-liquid interface caused their continuous deactivation in shaken flasks and severely limited solubilization of cellulose.
Collapse
Affiliation(s)
- Samarthya Bhagia
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
| | - Charles E. Wyman
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Rajeev Kumar
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| |
Collapse
|
20
|
Liang C, Gu C, Karim MN, Holtzapple M. Kinetic modeling of countercurrent saccharification. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:179. [PMID: 31333760 PMCID: PMC6621958 DOI: 10.1186/s13068-019-1517-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/27/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Countercurrent saccharification is a promising way to minimize enzyme loading while obtaining high conversions and product concentrations. However, in countercurrent saccharification experiments, 3-4 months are usually required to acquire a single steady-state data point. To save labor and time, simulation of this process is necessary to test various reaction conditions and determine the optimal operating point. Previously, a suitable kinetic model for countercurrent saccharification has never been reported. The Continuum Particle Distribution Modeling (CPDM) satisfactorily predicts countercurrent fermentation using mixed microbial cultures that digest various feedstocks. Here, CPDM is applied to countercurrent enzymatic saccharification of lignocellulose. RESULTS CPDM was used to simulate multi-stage countercurrent saccharifications of a lignocellulose model compound (α-cellulose). The modified HCH-1 model, which accurately predicts long-term batch saccharification, was used as the governing equation in the CPDM model. When validated against experimental countercurrent saccharification data, it predicts experimental glucose concentrations and conversions with the average errors of 3.5% and 4.7%, respectively. CPDM predicts conversion and product concentration with varying enzyme-addition location, total stage number, enzyme loading, liquid residence time (LRT), and solids loading rate (SLR). In addition, countercurrent saccharification was compared to batch saccharification at the same conversion, product concentration, and reactor volume. Results show that countercurrent saccharification is particularly beneficial when the product concentration is low. CONCLUSIONS The CPDM model was used to simulate multi-stage countercurrent saccharification of α-cellulose. The model predictions agreed well with the experimental glucose concentrations and conversions. CPDM prediction results showed that the enzyme-addition location, enzyme loading, LRT, and SLR significantly affected the glucose concentration and conversion. Compared to batch saccharification at the same conversion, product concentration, and reactor volume, countercurrent saccharification is particularly beneficial when the product concentration is low.
Collapse
Affiliation(s)
- Chao Liang
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122 USA
| | - Chao Gu
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843-3122 USA
| | - M. Nazmul Karim
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122 USA
| | - Mark Holtzapple
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122 USA
| |
Collapse
|
21
|
Li J, Lu M, Guo X, Zhang H, Li Y, Han L. Insights into the improvement of alkaline hydrogen peroxide (AHP) pretreatment on the enzymatic hydrolysis of corn stover: Chemical and microstructural analyses. BIORESOURCE TECHNOLOGY 2018; 265:1-7. [PMID: 29860078 DOI: 10.1016/j.biortech.2018.05.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
The alkaline hydrogen peroxide (AHP) pretreatment (0.5 g H2O2/g corn stover, 30 °C, 24 h) removed 91.53% of the initial lignin and 55.77% of the initial hemicellulose in corn stover and afforded a considerable glucose yield (88.34%) through enzymatic hydrolysis. A combination of chemical and microstructural analyses was used to illustrate the mechanism of the effect of AHP pretreatment on enzymatic hydrolysis. During pretreatment, H2O2-derived radicals effectively spread into and destroyed the cell wall of various parts (vascular bundle sheath, xylem vessels, tracheid, phloem, and parenchyma) of corn stover to remove most of the lignin, acetyl group, and partial hemicellulose. They destroyed the compact structure of the cellulose-hemicellulose-lignin network, increased the cellulase-accessible pore volume by 6 times, doubled the area of exposed cellulose, and decreased the unproductive adsorption of enzymes onto lignin. Combining all the effects, AHP pretreatment effectively improved the cellulose accessibility to enhance the subsequent enzymatic hydrolysis efficiency.
Collapse
Affiliation(s)
- Junbao Li
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Minsheng Lu
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Xiaomiao Guo
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Haiyan Zhang
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Yaping Li
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Lujia Han
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China.
| |
Collapse
|
22
|
Zhang H, Lyu G, Zhang A, Li X, Xie J. Effects of ferric chloride pretreatment and surfactants on the sugar production from sugarcane bagasse. BIORESOURCE TECHNOLOGY 2018; 265:93-101. [PMID: 29885498 DOI: 10.1016/j.biortech.2018.05.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 05/08/2023]
Abstract
An efficient pretreatment with various concentrations of FeCl3 (0.005-0.2 mol/L) was developed to extract hemicellulose in sugarcane bagasse and enhance the enzymatic hydrolysis of cellulose in pretreated solids. It was found that 0.025 mol/L FeCl3 pretreated substrate yielded a high glucose yield of 80.1% during enzymatic hydrolysis. Then the characterization of raw material and pretreated solids was carried out to better understand how hemicellulose removal affected subsequent enzymatic hydrolysis. In addition, Tween 80 and Bovine Serum Albumin (BSA) were added to promote enzymatic hydrolysis of pretreated substrate. Together with that obtained from pretreatment, the highest glucose yield reached 97.7% with addition of Tween 80, meanwhile, a reduction of 50% loading of enzyme yielded the same level of glucose. However, the increased yields with additives decreased gradually as the hydrolysis time was extended. Furthermore, the enhancement mechanisms of Tween 80 and BSA were determined.
Collapse
Affiliation(s)
- Hongdan Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education of China, Qilu University of Technology, Jinan 250353, PR China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Gaojin Lyu
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education of China, Qilu University of Technology, Jinan 250353, PR China
| | - Aiping Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Xin Li
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Jun Xie
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
23
|
Kothari N, Holwerda EK, Cai CM, Kumar R, Wyman CE. Biomass augmentation through thermochemical pretreatments greatly enhances digestion of switchgrass by Clostridium thermocellum. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:219. [PMID: 30087696 PMCID: PMC6076393 DOI: 10.1186/s13068-018-1216-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/25/2018] [Indexed: 06/06/2023]
Abstract
BACKGROUND The thermophilic anaerobic bacterium Clostridium thermocellum is a multifunctional ethanol producer, capable of both saccharification and fermentation, that is central to the consolidated bioprocessing (CBP) approach of converting lignocellulosic biomass to ethanol without external enzyme supplementation. Although CBP organisms have evolved efficient machinery for biomass deconstruction, achieving complete solubilization requires targeted approaches, such as pretreatment, to prepare recalcitrant biomass feedstocks for further biological digestion. Here, differences between how C. thermocellum and fungal cellulases respond to senescent switchgrass prepared by four different pretreatment techniques revealed relationships between biomass substrate composition and its digestion by the two biological approaches. RESULTS Alamo switchgrass was pretreated using hydrothermal, dilute acid, dilute alkali, and co-solvent-enhanced lignocellulosic fractionation (CELF) pretreatments to produce solids with varying glucan, xylan, and lignin compositions. C. thermocellum achieved highest sugar release and metabolite production from de-lignified switchgrass prepared by CELF and dilute alkali pretreatments demonstrating greater resilience to the presence of hemicellulose sugars than fungal enzymes. 100% glucan solubilization and glucan plus xylan release from switchgrass were achieved using the CELF-CBP combination. Lower glucan solubilization and metabolite production by C. thermocellum was observed on solids prepared by dilute acid and hydrothermal pretreatments with higher xylan removal from switchgrass than lignin removal. Further, C. thermocellum (2% by volume inoculum) showed ~ 48% glucan solubilization compared to < 10% through fungal enzymatic hydrolysis (15 and 65 mg protein/g glucan loadings) of unpretreated switchgrass indicating the effectiveness of C. thermocellum's cellulosome. Overall, C. thermocellum performed equivalent to 65 and better than 15 mg protein/g glucan fungal enzymatic hydrolysis on all substrates except CELF-pretreated substrates. CELF pretreatments of switchgrass produced solids that were highly digestible regardless of whether C. thermocellum or fungal enzymes were chosen. CONCLUSIONS The unparalleled comprehensive nature of this work with a comparison of four pretreatment and two biological digestion techniques provides a strong platform for future integration of pretreatment with CBP. Lignin removal had a more positive impact on biological digestion of switchgrass than xylan removal from the biomass. However, the impact of switchgrass structural properties, including cellulose, hemicellulose, and lignin characterization, would provide a better understanding of lignocellulose deconstruction.
Collapse
Affiliation(s)
- Ninad Kothari
- Dept. of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside (UCR), Riverside, CA USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Evert K. Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Charles M. Cai
- Dept. of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside (UCR), Riverside, CA USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Rajeev Kumar
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Charles E. Wyman
- Dept. of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside (UCR), Riverside, CA USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| |
Collapse
|
24
|
Zhang H, Zhang S, Yuan H, Lyu G, Xie J. FeCl 3-catalyzed ethanol pretreatment of sugarcane bagasse boosts sugar yields with low enzyme loadings and short hydrolysis time. BIORESOURCE TECHNOLOGY 2018; 249:395-401. [PMID: 29059622 DOI: 10.1016/j.biortech.2017.10.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 05/22/2023]
Abstract
An organosolv pretreatment system consisting of 60% ethanol and 0.025 mol·L-1 FeCl3 under various temperatures was developed in this study. During the pretreatment, the highest xylose yield was 11.4 g/100 g raw material, representing 49.8% of xylose in sugarcane bagasse. Structural features of raw material and pretreated substrates were characterized to better understand how hemicellulose removal and delignification affected subsequent enzymatic hydrolysis. The 160 °C pretreated solid presented a remarkable glucose yield of 93.8% for 72 h. Furthermore, the influence of different additives on the enzymatic hydrolysis of pretreated solid was investigated. The results indicated that the addition of Tween 80 shortened hydrolysis time to 6 h and allowed a 50% reduction of enzyme loading to achieve the same level of glucose yield. This work suggested that FeCl3-catalyzed organosolv pretreatment could improve the enzymatic hydrolysis significantly and reduce the hydrolysis time and enzyme dosage with the addition of Tween 80.
Collapse
Affiliation(s)
- Hongdan Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research, Development, and Application, Guangzhou 510640, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education of China, Qilu University of Technology, Jinan 250353, PR China
| | - Shuaishuai Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Hongyou Yuan
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research, Development, and Application, Guangzhou 510640, PR China
| | - Gaojin Lyu
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education of China, Qilu University of Technology, Jinan 250353, PR China
| | - Jun Xie
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
25
|
Zhang H, Wei W, Zhang J, Huang S, Xie J. Enhancing enzymatic saccharification of sugarcane bagasse by combinatorial pretreatment and Tween 80. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:309. [PMID: 30455738 PMCID: PMC6225707 DOI: 10.1186/s13068-018-1313-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/01/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND The recalcitrant structure of lignocellulosic biomass made it challenging for their bioconversion into biofuels and biochemicals. Pretreatment was required to deconstruct the intact structure by the removal of hemicellulose/lignin, improving the cellulose accessibility of enzyme. Combinatorial pretreatments with liquid hot water/H2SO4 and ethanol/NaOH of sugarcane bagasse were developed to improve enzymatic hydrolysis under mild conditions. RESULTS After one-step 60% ethanol containing 0.5% NaOH pretreatment with solid to liquid ratio of 1/10, the glucose yield after hydrolysis for 72 h with enzyme dosage of 20 FPU/g substrate was enhanced by 41% and 205% compared to that of NaOH or 60% ethanol pretreated solids, respectively. This improvement was correlated with the removal of hemicellulose and lignin. However, using combinatorial pretreatments with 1% H2SO4 followed by 60% ethanol containing 0.5% NaOH, the highest glucose yield with Tween 80 reached 76%, representing 84.5% of theoretical glucose in pretreated substrate. While retaining similar glucose yield, the addition of Tween 80 capacitated either a reduction of enzyme loading by 50% or shortening hydrolysis time to 24 h. However, the enhancement with the addition of Tween 80 decreased as hydrolysis time was extended. CONCLUSIONS This study demonstrated that a combinatorial pretreatment with 1% H2SO4 followed by 60% ethanol containing 0.5% NaOH had significant effects on improving the enzymatic hydrolysis of sugarcane bagasse. The addition of Tween 80 enabled reducing the enzyme loading or shortening the hydrolysis time. This study provided an economically feasible and mild process for the generation of glucose, which will be subsequently converted to bioethanol and biochemicals.
Collapse
Affiliation(s)
- Hongdan Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 People’s Republic of China
| | - Weiqi Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Jiajie Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Shihang Huang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Jun Xie
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| |
Collapse
|
26
|
Satari B, Karimi K, Molaverdi M. Structural features influential to enzymatic hydrolysis of cellulose-solvent-based pretreated pinewood and elmwood for ethanol production. Bioprocess Biosyst Eng 2017; 41:249-264. [DOI: 10.1007/s00449-017-1863-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/04/2017] [Indexed: 02/04/2023]
|
27
|
Aguilar-Reynosa A, Romaní A, Rodríguez-Jasso RM, Aguilar CN, Garrote G, Ruiz HA. Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. BIORESOURCE TECHNOLOGY 2017; 243:273-283. [PMID: 28675841 DOI: 10.1016/j.biortech.2017.06.096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/16/2017] [Accepted: 06/17/2017] [Indexed: 05/15/2023]
Abstract
This work describes the application of two forms of heating for autohydrolysis pretreatment on isothermal regimen: conduction-convection heating and microwave heating processing using corn stover as raw material for bioethanol production. Pretreatments were performed using different operational conditions: residence time (10-50 min) and temperature (160-200°C) for both pretreatments. Subsequently, the susceptibility of pretreated solids was studied using low enzyme loads, and high substrate loads. The highest conversion was 95.1% for microwave pretreated solids. Also solids pretreated by microwave heating processing showed better ethanol conversion in simultaneous saccharification and fermentation process (92% corresponding to 33.8g/L). Therefore, microwave heating processing is a promising technology in the pretreatment of lignocellulosic materials.
Collapse
Affiliation(s)
- Alejandra Aguilar-Reynosa
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico; Cluster of Bioalcohols, Mexican Centre for Innovation in Bioenergy (Cemie-Bio), Mexico
| | - Aloia Romaní
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico; Cluster of Bioalcohols, Mexican Centre for Innovation in Bioenergy (Cemie-Bio), Mexico
| | - Cristóbal N Aguilar
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Gil Garrote
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; CITI (Centro de Investigación, Transferencia e Innovación), University of Vigo, Tecnopole, San Ciprián das Viñas, 32901 Ourense, Spain
| | - Héctor A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico; Cluster of Bioalcohols, Mexican Centre for Innovation in Bioenergy (Cemie-Bio), Mexico.
| |
Collapse
|
28
|
Crowe JD, Zarger RA, Hodge DB. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8652-8662. [PMID: 28876068 DOI: 10.1021/acs.jafc.7b03240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.
Collapse
Affiliation(s)
| | | | - David B Hodge
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology , Luleå 97187, Sweden
| |
Collapse
|
29
|
Li X, Zheng Y. Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Biotechnol Adv 2017; 35:466-489. [DOI: 10.1016/j.biotechadv.2017.03.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/19/2017] [Accepted: 03/23/2017] [Indexed: 01/23/2023]
|
30
|
Goshadrou A, Lefsrud M. Synergistic surfactant-assisted [EMIM]OAc pretreatment of lignocellulosic waste for enhanced cellulose accessibility to cellulase. Carbohydr Polym 2017; 166:104-113. [DOI: 10.1016/j.carbpol.2017.02.076] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/06/2017] [Accepted: 02/20/2017] [Indexed: 11/16/2022]
|
31
|
Zhang H, Chen L, Li J, Lu M, Han L. Quantitative characterization of enzyme adsorption and hydrolytic performance for ultrafine grinding pretreated corn stover. BIORESOURCE TECHNOLOGY 2017; 234:23-32. [PMID: 28315601 DOI: 10.1016/j.biortech.2017.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
Quantitative analysis of enzyme adsorption and hydrolysis were performed for sieve-based grinding corn stover (SGCS) and ultrafine grinding corn stover (UGCS)1 with different enzyme consumptions. The UGCS presented significantly higher enzyme adsorption quantity (5.15mg/g for UGCS, 1.33mg/g for SGCS), higher glucose yield (49.75% for UGCS, 28.75% for SGCS) under 20FPU/g and higher binding enzyme proportion (41.32% for UGCS, 10.64% for SGCS under 5FPU/g) which can be attributed to the more accessible microstructure properties. The relationship between enzyme adsorption and hydrolytic production was directly proportional for SGCS (GY1=21.04×AQ1+1.86 (R2=0.95)) while was exponential for UGCS (GY2=49.42×(1-e-0.57×AQ2) (R2=0.99)),2 indicating that overmuch enzyme consumption was not advisable for UGCS at economical aspect.
Collapse
Affiliation(s)
- Haiyan Zhang
- China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Longjian Chen
- China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China.
| | - Junbao Li
- China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Minsheng Lu
- China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Lujia Han
- China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| |
Collapse
|
32
|
Birhade S, Pednekar M, Sagwal S, Odaneth A, Lali A. Preparation of cellulase concoction using differential adsorption phenomenon. Prep Biochem Biotechnol 2017; 47:520-529. [PMID: 28045609 DOI: 10.1080/10826068.2016.1275009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Controlled depolymerization of cellulose is essential for the production of valuable cellooligosaccharides and cellobiose from lignocellulosic biomass. However, enzymatic cellulose hydrolysis involves multiple synergistically acting enzymes, making difficult to control the depolymerization process and generate desired product. This work exploits the varying adsorption properties of the cellulase components to the cellulosic substrate and aims to control the enzyme activity. Cellulase adsorption was favored on pretreated cellulosic biomass as compared to synthetic cellulose. Preferential adsorption of exocellulases was observed over endocellulase, while β-glucosidases remained unadsorbed. Adsorbed enzyme fraction with bound exocellulases when used for hydrolysis generated cellobiose predominantly, while the unadsorbed enzymes in the liquid fraction produced cellooligosaccharides majorly, owing to its high endocellulases activity. Thus, the differential adsorption phenomenon of the cellulase components can be used for the controlling cellulose hydrolysis for the production of an array of sugars.
Collapse
Affiliation(s)
- Sachinkumar Birhade
- a DBT-ICT Centre of Energy Biosciences , Institute of Chemical Technology, Nathalal Parikh Marg, Matunga , Mumbai , Maharashtra , India
| | - Mukesh Pednekar
- a DBT-ICT Centre of Energy Biosciences , Institute of Chemical Technology, Nathalal Parikh Marg, Matunga , Mumbai , Maharashtra , India
| | - Shilpa Sagwal
- a DBT-ICT Centre of Energy Biosciences , Institute of Chemical Technology, Nathalal Parikh Marg, Matunga , Mumbai , Maharashtra , India
| | - Annamma Odaneth
- a DBT-ICT Centre of Energy Biosciences , Institute of Chemical Technology, Nathalal Parikh Marg, Matunga , Mumbai , Maharashtra , India
| | - Arvind Lali
- a DBT-ICT Centre of Energy Biosciences , Institute of Chemical Technology, Nathalal Parikh Marg, Matunga , Mumbai , Maharashtra , India
| |
Collapse
|
33
|
Tervasmäki P, Sotaniemi V, Kangas J, Taskila S, Ojamo H, Tanskanen J. A discretized model for enzymatic hydrolysis of cellulose in a fed-batch process. BIORESOURCE TECHNOLOGY 2017; 227:112-124. [PMID: 28013127 DOI: 10.1016/j.biortech.2016.12.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 05/24/2023]
Abstract
In the enzymatic hydrolysis of cellulose, several phenomena have been proposed to cause a decrease in the reaction rate with increasing conversion. The importance of each phenomenon is difficult to distinguish from batch hydrolysis data. Thus, kinetic models for the enzymatic hydrolysis of cellulose often suffer from poor parameter identifiability. This work presents a model that is applicable to fed-batch hydrolysis by discretizing the substrate based on the feeding time. Different scenarios are tested to explain the observed decrease in reaction rate with increasing conversion, and comprehensive assessment of the parameter sensitivities is carried out. The proposed model performed well in the broad range of experimental conditions used in this study and when compared to literature data. Furthermore, the use of data from fed-batch experiments and discretization of the model substrate to populations was found to be very informative when assessing the importance of the rate-decreasing phenomena in the model.
Collapse
Affiliation(s)
- Petri Tervasmäki
- Chemical Process Engineering, Faculty of Technology, University of Oulu, P.O. Box 4300, FI-90014 Oulun yliopisto, Finland.
| | - Ville Sotaniemi
- Chemical Process Engineering, Faculty of Technology, University of Oulu, P.O. Box 4300, FI-90014 Oulun yliopisto, Finland
| | - Jani Kangas
- Chemical Process Engineering, Faculty of Technology, University of Oulu, P.O. Box 4300, FI-90014 Oulun yliopisto, Finland
| | - Sanna Taskila
- Chemical Process Engineering, Faculty of Technology, University of Oulu, P.O. Box 4300, FI-90014 Oulun yliopisto, Finland
| | - Heikki Ojamo
- Department of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| | - Juha Tanskanen
- Chemical Process Engineering, Faculty of Technology, University of Oulu, P.O. Box 4300, FI-90014 Oulun yliopisto, Finland
| |
Collapse
|
34
|
Momayez F, Karimi K, Karimi S, Horváth IS. Efficient hydrolysis and ethanol production from rice straw by pretreatment with organic acids and effluent of biogas plant. RSC Adv 2017. [DOI: 10.1039/c7ra10063a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Effects of biogas effluent and its organic ingredients, i.e., acetic, butyric, lactic, and propionic acid, for the pretreatment of rice straw on enzymatic hydrolysis and ethanol production was studied.
Collapse
Affiliation(s)
- Forough Momayez
- Department of Chemical Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
- Swedish Centre for Resource Recovery
| | - Keikhosro Karimi
- Department of Chemical Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
- Industrial Biotechnology Group
| | - Shiva Karimi
- Department of Chemical Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | | |
Collapse
|
35
|
Katsimpouras C, Kalogiannis KG, Kalogianni A, Lappas AA, Topakas E. Production of high concentrated cellulosic ethanol by acetone/water oxidized pretreated beech wood. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:54. [PMID: 28265300 PMCID: PMC5331700 DOI: 10.1186/s13068-017-0737-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/17/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignocellulosic biomass is an abundant and inexpensive resource for biofuel production. Alongside its biotechnological conversion, pretreatment is essential to enable efficient enzymatic hydrolysis by making cellulose susceptible to cellulases. Wet oxidation of biomass, such as acetone/water oxidation, that employs hot acetone, water, and oxygen, has been found to be an attractive pretreatment method for removing lignin while producing less degradation products. The remaining enriched cellulose fraction has the potential to be utilized under high gravity enzymatic saccharification and fermentation processes for the cost-competing production of bioethanol. RESULTS Beech wood residual biomass was pretreated following an acetone/water oxidation process aiming at the production of high concentration of cellulosic ethanol. The effect of pressure, reaction time, temperature, and acetone-to-water ratio on the final composition of the pretreated samples was studied for the efficient utilization of the lignocellulosic feedstock. The optimal conditions were acetone/water ratio 1:1, 40 atm initial pressure of 40 vol% O2 gas, and 64 atm at reaction temperature of 175 °C for 2 h incubation. The pretreated beech wood underwent an optimization step studying the effect of enzyme loading and solids content on the enzymatic liquefaction/saccharification prior to fermentation. In a custom designed free-fall mixer at 50 °C for either 6 or 12 h of prehydrolysis using an enzyme loading of 9 mg/g dry matter at 20 wt% initial solids content, high ethanol concentration of 75.9 g/L was obtained. CONCLUSION The optimization of the pretreatment process allowed the efficient utilization of beech wood residual biomass for the production of high concentrations of cellulosic ethanol, while obtaining lignin that can be upgraded towards high-added-value chemicals. The threshold of 4 wt% ethanol concentration that is required for the sustainable bioethanol production was surpassed almost twofold, underpinning the efficient conversion of biomass to ethanol and bio-based chemicals on behalf of the biorefinery concept.
Collapse
Affiliation(s)
- Constantinos Katsimpouras
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Konstantinos G. Kalogiannis
- Chemical Process and Energy Resources Institute (CPERI), CERTH, 6th km Harilaou-Thermi Road, Thermi, 57001 Thessalonica, Greece
| | - Aggeliki Kalogianni
- Chemical Process and Energy Resources Institute (CPERI), CERTH, 6th km Harilaou-Thermi Road, Thermi, 57001 Thessalonica, Greece
| | - Angelos A. Lappas
- Chemical Process and Energy Resources Institute (CPERI), CERTH, 6th km Harilaou-Thermi Road, Thermi, 57001 Thessalonica, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
36
|
Zheng Y, Shi J, Tu M, Cheng YS. Principles and Development of Lignocellulosic Biomass Pretreatment for Biofuels. ADVANCES IN BIOENERGY 2017. [DOI: 10.1016/bs.aibe.2017.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Mou H, Wu S. Comparison of organosolv and hydrotropic pretreatments of eucalyptus for enhancing enzymatic saccharification. BIORESOURCE TECHNOLOGY 2016; 220:637-640. [PMID: 27590575 DOI: 10.1016/j.biortech.2016.08.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 05/06/2023]
Abstract
The objective of this study was to investigate the effects of organosolv and hydrotropic pretreatments on improving enzymatic hydrolysis of eucalyptus. The chemical composition of the fiber surface was analyzed using X-ray photoelectron spectroscopy (XPS) to determine the surface characteristics of pretreated eucalyptus. Other than the significant decrease of surface coverage by lignin, hydrotropic pretreatment was more effective in removing the lignin and xylose from fiber cell walls than organosolv pretreatment. The restriction of acetyl and phenolic groups in pretreated substrates was typically eliminated by hydrotropic pretreatments. Moreover, fiber structure and morphology after pretreatments were more suitable for enzymatic hydrolysis. Cellulase adsorption capacity was notably improved by hydrotropic pretreatment, which indicating the better enzyme accessibility of cellulose in pretreated substrates. Eventually, higher glucose yield was obtained with hydrotropic pretreatment. In addition, the precipitated lignin as an important by-product of pretreatments was characterized by Fourier transforms infrared spectroscopy (FTIR) also.
Collapse
Affiliation(s)
- Hongyan Mou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou PR-510640, China.
| | - Shubin Wu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou PR-510640, China.
| |
Collapse
|
38
|
Jain A, Bediako SH, Henson JM. Correlation analysis of enzyme activities and deconstruction of ammonia-pretreated switchgrass by bacterial-fungal communities. BIORESOURCE TECHNOLOGY 2016; 218:1082-1089. [PMID: 27469088 DOI: 10.1016/j.biortech.2016.07.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
The mixed microbial communities that occur naturally on lignocellulosic feedstocks can provide feedstock-specific enzyme mixtures to saccharify lignocelluloses. Bacterial-fungal communities were enriched from switchgrass bales to deconstruct ammonia-pretreated switchgrass (DSG). Correlation analysis was carried out to elucidate the relationship between microbial decomposition of DSG by these communities, enzymatic activities produced and enzymatic saccharification of DSG using these enzyme mixtures. Results of the analysis showed that β-glucosidase and xylosidase activities limited the extent of microbial deconstruction and enzymatic saccharification of DSG. The results also underlined the importance of ligninase activity for the enzymatic saccharification of pretreated lignocellulosic feedstock. The bacterial-fungal communities developed in this research can be used to produce enzyme mixtures to deconstruct DSG, and the results from the correlation analysis can be used to optimize these enzyme mixtures for efficient saccharification of DSG to produce second-generation biofuels.
Collapse
Affiliation(s)
- Abhiney Jain
- Biotechnology Institute, University of Minnesota, Twin Cities, 1479 Gortner Avenue, Falcon Heights, MN 55108, United States
| | - Sandra H Bediako
- Sacred Heart University, Department of Biology, 5151 Park Avenue, Fairfield, CT 06825, United States
| | - J Michael Henson
- Department of Biological Sciences, 157A Life Sciences Facility, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
39
|
Buntić AV, Pavlović MD, Antonović DG, Šiler-Marinković SS, Dimitrijević-Branković SI. Utilization of spent coffee grounds for isolation and stabilization of Paenibacillus chitinolyticus CKS1 cellulase by immobilization. Heliyon 2016; 2:e00146. [PMID: 27626091 PMCID: PMC5008956 DOI: 10.1016/j.heliyon.2016.e00146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/16/2016] [Accepted: 08/17/2016] [Indexed: 11/27/2022] Open
Abstract
This study has explored the feasibility of using spent coffee grounds as a good supporting material for the Paenibacillus chitinolyticus CKS1 cellulase immobilization. An optimal operational conditions in a batch-adsorption system were found to be: carrier mass of 12 g/L, under the temperature of 45 °C and no pH adjustments. The immobilization yield reached about 71%. An equilibrium establishment between the cellulase and the carrier surface occurred within 45 min, whereas the process kinetics may be predicted by the pseudo-second-order model. An immobilized cellulase preparation expressed very good avicelase activity, this reached up to 2.67 U/g, and revealed an improved storage stability property, compared to free enzyme sample counterpart. The addition of metal ions, such as K+ and Mg2+ did not affect positively immobilization yield results, but on the contrary, contributed to an improved bio-activities of the immobilized cellulase, thus may be employed before each enzyme application. The method developed in this study offers a cheap and effective alternative for immediate enzyme isolation from the production medium and its stabilization, compared to other carriers used for the immobilization.
Collapse
Affiliation(s)
- Aneta V Buntić
- Faculty of Technology and Metallurgy, University of Belgrade, Department of Biochemical Engineering and Biotechnology, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Marija D Pavlović
- Faculty of Technology and Metallurgy, University of Belgrade, Department of Biochemical Engineering and Biotechnology, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Dušan G Antonović
- Faculty of Technology and Metallurgy, University of Belgrade, Department of Biochemical Engineering and Biotechnology, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Slavica S Šiler-Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, Department of Biochemical Engineering and Biotechnology, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Suzana I Dimitrijević-Branković
- Faculty of Technology and Metallurgy, University of Belgrade, Department of Biochemical Engineering and Biotechnology, Karnegijeva 4, 11000 Belgrade, Serbia
| |
Collapse
|
40
|
Chen L, Li J, Lu M, Guo X, Zhang H, Han L. Integrated chemical and multi-scale structural analyses for the processes of acid pretreatment and enzymatic hydrolysis of corn stover. Carbohydr Polym 2016; 141:1-9. [DOI: 10.1016/j.carbpol.2015.12.079] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/17/2015] [Accepted: 12/30/2015] [Indexed: 11/30/2022]
|
41
|
Karimi K, Taherzadeh MJ. A critical review on analysis in pretreatment of lignocelluloses: Degree of polymerization, adsorption/desorption, and accessibility. BIORESOURCE TECHNOLOGY 2016; 203:348-56. [PMID: 26778166 DOI: 10.1016/j.biortech.2015.12.035] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/12/2015] [Accepted: 12/13/2015] [Indexed: 05/18/2023]
Abstract
The pretreatment of lignocelluloses results in changes in the different properties of these materials. In a recent review (Karimi and Taherzadeh, 2016), the details of compositional, imaging, and crystallinity analyses of lignocelluloses were reviewed and critically discussed. Changes in the cellulose degree of polymerization, accessibility, and enzyme adsorption/desorption by pretreatments are also among the effective parameters. This paper deals with the measurement techniques, modifications, and relation to bioconversions, as well as the challenges of these three properties. These analyses are very helpful to investigate the pretreatment processes; however, the pretreatments are very complicated and challenging processes. It is not easily possible to study the effects of only one of these parameters and even to find which one is the dominant one. Moreover, it is not possible to accurately predict the changes in the bioconversion yield using these methods.
Collapse
Affiliation(s)
- Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Institute of Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | |
Collapse
|
42
|
Boakye-Boaten NA, Xiu S, Shahbazi A, Wang L, Li R, Mims M, Schimmel K. Effects of fertilizer application and dry/wet processing of Miscanthus x giganteus on bioethanol production. BIORESOURCE TECHNOLOGY 2016; 204:98-105. [PMID: 26773953 DOI: 10.1016/j.biortech.2015.12.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
The effects of wet and dry processing of miscanthus on bioethanol production using simultaneous saccharification and fermentation (SSF) process were investigated, with wet samples showing higher ethanol yields than dry samples. Miscanthus grown with no fertilizer, with fertilizer and with swine manure were sampled for analysis. Wet-fractionation was used to separate miscanthus into solid and liquid fractions. Dilute sulfuric acid pretreatment was employed and the SSF process was performed with saccharomyces cerevisiae and a cocktail of enzymes at 35°C. After pretreatment, cellulose compositions of biomass of the wet samples increased from 61.0-67.0% to 77.0-87.0%, which were higher than the compositions of dry samples. The highest theoretical ethanol yield of 88.0% was realized for wet processed pretreated miscanthus, grown with swine manure. Changes to the morphology and chemical composition of the biomass samples after pretreatment, such as crystallinity reduction, were observed using SEM and FTIR. These changes improved ethanol production.
Collapse
Affiliation(s)
- Nana Abayie Boakye-Boaten
- Energy and Environmental Systems Program, College of Arts and Science, North Carolina A & T State University, 1601 East Market Street, Greensboro, NC 27411, United States; Biological Engineering Program, Department of Natural Resources and Environmental Design, North Carolina A & T State University, 1601 East Market Street, Greensboro, NC 27411, United States
| | - Shuangning Xiu
- Biological Engineering Program, Department of Natural Resources and Environmental Design, North Carolina A & T State University, 1601 East Market Street, Greensboro, NC 27411, United States.
| | - Abolghasem Shahbazi
- Biological Engineering Program, Department of Natural Resources and Environmental Design, North Carolina A & T State University, 1601 East Market Street, Greensboro, NC 27411, United States
| | - Lijun Wang
- Biological Engineering Program, Department of Natural Resources and Environmental Design, North Carolina A & T State University, 1601 East Market Street, Greensboro, NC 27411, United States
| | - Rui Li
- Joint School of Nanoscience and Nanoengineering, North Carolina A & T State University, 2907 E. Gate City Blvd, Greensboro, NC 27401, United States; Biological Engineering Program, Department of Natural Resources and Environmental Design, North Carolina A & T State University, 1601 East Market Street, Greensboro, NC 27411, United States
| | - Michelle Mims
- Biological Engineering Program, Department of Natural Resources and Environmental Design, North Carolina A & T State University, 1601 East Market Street, Greensboro, NC 27411, United States
| | - Keith Schimmel
- Energy and Environmental Systems Program, College of Arts and Science, North Carolina A & T State University, 1601 East Market Street, Greensboro, NC 27411, United States
| |
Collapse
|
43
|
Wallace J, Brienzo M, García-Aparicio MP, Görgens JF. Lignin enrichment and enzyme deactivation as the root cause of enzymatic hydrolysis slowdown of steam pretreated sugarcane bagasse. N Biotechnol 2016; 33:361-71. [PMID: 26820122 DOI: 10.1016/j.nbt.2016.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 11/25/2015] [Accepted: 01/14/2016] [Indexed: 01/21/2023]
Abstract
The enzymatic hydrolysis (EH) rate normally decreases during the hydrolysis, leaving unhydrolyzed material as residue. This phenomenon occurs during the hydrolysis of both cellulose (avicel) and lignocellulosic material, in nature or even pretreated. The progression of EH of steam pretreated sugarcane bagasse was associated with an initial (fast), intermediate (slower) and recalcitrant (slowest) phases, at glucan to glucose conversion yields of 61.7, 81.6 and 86%, respectively. Even though the EH of avicel as a simpler material than steam pretreated sugarcane bagasse, EH slowdown was present. The less thermo-stable endo-xylanase lost 58% of initial enzyme activity, followed by β-glucosidase that lost 16%, culminating in FPase activity loss of 30% in the first 24hours. After 72hours of EH the total loss of FPase activity was 40% compared to the initial activity. Analysis of the solid residue from EH showed that lignin content, phenolic compounds and ash increased while glucan decreased as hydrolysis progressed. During the initial fast phase of EH, the total solid residue surface area consisted predominantly of internal surface area. Thereafter, in the intermediate and recalcitrant phases of EH, the ratio of external:internal surface area increased. The proposed fiber damage and decrease in internal surface area, probably by EH action, was visualized by scanning electron microscopy imagery. The higher lignin/glucan ratio as EH progressed and enzyme deactivation by thermo instability were the main effects observed, respectively to substrate and enzyme.
Collapse
Affiliation(s)
- Joshua Wallace
- Department of Process Engineering, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa
| | - Michel Brienzo
- Department of Process Engineering, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa.
| | - María P García-Aparicio
- Department of Process Engineering, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa; Department of Microbiology, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa
| | - Johann F Görgens
- Department of Process Engineering, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa
| |
Collapse
|
44
|
Wang S, Ouyang X, Wang W, Yuan Q, Yan A. Comparison of ultrasound-assisted Fenton reaction and dilute acid-catalysed steam explosion pretreatment of corncobs: cellulose characteristics and enzymatic saccharification. RSC Adv 2016. [DOI: 10.1039/c6ra13125e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As an emerging method for lignocellulose pretreatment, the ultrasound-assisted Fenton reaction is not well developed in comparison to the dilute acid-catalysed steam explosion.
Collapse
Affiliation(s)
- Sujun Wang
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xianhong Ouyang
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wenya Wang
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Qipeng Yuan
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Aixia Yan
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
45
|
Noori MS, Karimi K. Detailed study of efficient ethanol production from elmwood by alkali pretreatment. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Mathew AK, Parameshwaran B, Sukumaran RK, Pandey A. An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production. BIORESOURCE TECHNOLOGY 2016; 199:13-20. [PMID: 26358144 DOI: 10.1016/j.biortech.2015.08.121] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
The challenge associated with cellulosic ethanol production is maximizing sugar yield at low cost. Current research is being focused to develop a pretreatment method to overcome biomass recalcitrance in an efficient way. This review is focused on two major pretreatments: dilute acid (DA) and ammonia fiber explosion (AFEX) pretreatment of corn stover and how these pretreatment cause morphological and chemical changes to corn stover in order to overcome the biomass recalcitrance. This review highlights the key differences of these two pretreatments based on compositional analysis, cellulose and its crystallinity, morphological changes, structural changes to lignin, enzymatic reactivity and enzyme adsorption onto pretreated solids and finally cellulosic ethanol production from the hydrolysate of DA and AFEX treated corn stover. Each stage of the process, AFEX pretreated corn stover was superior to DA treated corn stover.
Collapse
Affiliation(s)
- Anil Kuruvilla Mathew
- Centre for Biofuels, Biotechnology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India
| | - Binod Parameshwaran
- Centre for Biofuels, Biotechnology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India
| | - Rajeev Kumar Sukumaran
- Centre for Biofuels, Biotechnology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India
| | - Ashok Pandey
- Centre for Biofuels, Biotechnology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India
| |
Collapse
|
47
|
Zhang H, Chen L, Lu M, Li J, Han L. A novel film-pore-surface diffusion model to explain the enhanced enzyme adsorption of corn stover pretreated by ultrafine grinding. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:181. [PMID: 27579144 PMCID: PMC5004277 DOI: 10.1186/s13068-016-0602-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/19/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Ultrafine grinding is an environmentally friendly pretreatment that can alter the degree of polymerization, the porosity and the specific surface area of lignocellulosic biomass and can, thus, enhance cellulose hydrolysis. Enzyme adsorption onto the substrate is a prerequisite for the enzymatic hydrolysis process. Therefore, it is necessary to investigate the enzyme adsorption properties of corn stover pretreated by ultrafine grinding. RESULTS The ultrafine grinding pretreatment was executed on corn stover. The results showed that ultrafine grinding pretreatment can significantly decrease particle size [from 218.50 μm of sieve-based grinding corn stover (SGCS) to 17.45 μm of ultrafine grinding corn stover (UGCS)] and increase the specific surface area (SSA), pore volume (PV) and surface composition (SSA: from 1.71 m(2)/g of SGCS to 2.63 m(2)/g of UGCS, PV: from 0.009 cm(3)/g of SGCS to 0.024 m(3)/g of UGCS, cellulose surface area: from 168.69 m(2)/g of SGCS to 290.76 m(2)/g of UGCS, lignin surface area: from 91.46 m(2)/g of SGCS to 106.70 m(2)/g of UGCS). The structure and surface composition changes induced by ultrafine grinding increase the enzyme adsorption capacity from 2.83 mg/g substrate of SGCS to 5.61 mg/g substrate of UGCS. A film-pore-surface diffusion model was developed to simultaneously predict the enzyme adsorption kinetics of both the SGCS and UGCS. Satisfactory predictions could be made with the model based on high R (2) and low RMSE values (R (2) = 0.95 and RMSE = 0.16 mg/g for the UGCS, R (2) = 0.93 and RMSE = 0.09 mg/g for the SGCS). The model was further employed to analyze the rate-limiting steps in the enzyme adsorption process. Although both the external-film and internal-pore mass transfer are important for enzyme adsorption on the SGCS and UGCS, the UGCS has a lower internal-pore resistance compared to the SGCS. CONCLUSIONS Ultrafine grinding pretreatment can enhance the enzyme adsorption onto corn stover by altering structure and surface composition. The film-pore-surface diffusion model successfully captures features on enzyme adsorption on ultrafine grinding pretreated corn stover. These findings identify wherein the probable rate-limiting factors for the enzyme adsorption reside and could, therefore, provide a basis for enhanced cellulose hydrolysis processes.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing, 100083 People’s Republic of China
| | - Longjian Chen
- College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing, 100083 People’s Republic of China
| | - Minsheng Lu
- College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing, 100083 People’s Republic of China
| | - Junbao Li
- College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing, 100083 People’s Republic of China
| | - Lujia Han
- College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing, 100083 People’s Republic of China
| |
Collapse
|
48
|
Niu H, Shah N, Kontoravdi C. Modelling of amorphous cellulose depolymerisation by cellulases, parametric studies and optimisation. Biochem Eng J 2016; 105:455-472. [PMID: 26865832 PMCID: PMC4705870 DOI: 10.1016/j.bej.2015.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A mechanistic model for heterogeneous cellulose hydrolysis by cellulases. A modeling framework for uncertainty analysis, model reduction and refinement. The parameters were estimated. Composition of cellulases cocktail was optimized using the model.
Improved understanding of heterogeneous cellulose hydrolysis by cellulases is the basis for optimising enzymatic catalysis-based cellulosic biorefineries. A detailed mechanistic model is developed to describe the dynamic adsorption/desorption and synergistic chain-end scissions of cellulases (endoglucanase, exoglucanase, and β-glucosidase) upon amorphous cellulose. The model can predict evolutions of the chain lengths of insoluble cellulose polymers and production of soluble sugars during hydrolysis. Simultaneously, a modelling framework for uncertainty analysis is built based on a quasi-Monte-Carlo method and global sensitivity analysis, which can systematically identify key parameters, help refine the model and improve its identifiability. The model, initially comprising 27 parameters, is found to be over-parameterized with structural and practical identification problems under usual operating conditions (low enzyme loadings). The parameter estimation problem is therefore mathematically ill posed. The framework allows us, on the one hand, to identify a subset of 13 crucial parameters, of which more accurate confidence intervals are estimated using a given experimental dataset, and, on the other hand, to overcome the identification problems. The model’s predictive capability is checked against an independent set of experimental data. Finally, the optimal composition of cellulases cocktail is obtained by model-based optimisation both for enzymatic hydrolysis and for the process of simultaneous saccharification and fermentation.
Collapse
Affiliation(s)
- Hongxing Niu
- Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, England, UK
| | - Nilay Shah
- Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, England, UK
| | - Cleo Kontoravdi
- Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, England, UK
| |
Collapse
|
49
|
Paixão SM, Ladeira SA, Silva TP, Arez BF, Roseiro JC, Martins MLL, Alves L. Sugarcane bagasse delignification with potassium hydroxide for enhanced enzymatic hydrolysis. RSC Adv 2016. [DOI: 10.1039/c5ra14908h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alkali pretreatment of sugarcane bagasse biomass was shown to be effective for producing sugar-rich hydrolysates for biotechnological applications.
Collapse
Affiliation(s)
- S. M. Paixão
- LNEG – Laboratório Nacional de Energia e Geologia, IP
- Unidade de Bioenergia
- 1649-038 Lisboa
- Portugal
| | - S. A. Ladeira
- UENF – Universidade Estadual do Norte Fluminense Darcy Ribeiro
- LTA-CCTA
- RJ
- Brazil
| | - T. P. Silva
- LNEG – Laboratório Nacional de Energia e Geologia, IP
- Unidade de Bioenergia
- 1649-038 Lisboa
- Portugal
| | - B. F. Arez
- LNEG – Laboratório Nacional de Energia e Geologia, IP
- Unidade de Bioenergia
- 1649-038 Lisboa
- Portugal
| | - J. C. Roseiro
- LNEG – Laboratório Nacional de Energia e Geologia, IP
- Unidade de Bioenergia
- 1649-038 Lisboa
- Portugal
| | - M. L. L. Martins
- UENF – Universidade Estadual do Norte Fluminense Darcy Ribeiro
- LTA-CCTA
- RJ
- Brazil
| | - L. Alves
- LNEG – Laboratório Nacional de Energia e Geologia, IP
- Unidade de Bioenergia
- 1649-038 Lisboa
- Portugal
| |
Collapse
|
50
|
Noori MS, Karimi K. Chemical and structural analysis of alkali pretreated pinewood for efficient ethanol production. RSC Adv 2016. [DOI: 10.1039/c6ra11486e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Improvement of enzymatic hydrolysis and ethanol production from softwood pine was conducted by pretreatment with 8% (w/v) NaOH at different temperatures of 0, 25, and 80 °C for 2 h.
Collapse
Affiliation(s)
- Mahboubeh S. Noori
- Department of Chemical Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
- Chemical and Biomolecular Engineering Department
| | - Keikhosro Karimi
- Department of Chemical Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
- Industrial Biotechnology Group
| |
Collapse
|