1
|
Paiva WA, Alakwe SD, Marfai J, Jennison-Henderson MV, Achong RA, Duche T, Weeks AA, Robertson-Anderson RM, Oldenhuis NJ. From Bioreactor to Bulk Rheology: Achieving Scalable Production of Highly Concentrated Circular DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405490. [PMID: 38935929 DOI: 10.1002/adma.202405490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/10/2024] [Indexed: 06/29/2024]
Abstract
DNA serves as a model system in polymer physics due to its ability to be obtained as a uniform polymer with controllable topology and nonequilibrium behavior. Currently, a major obstacle in the widespread adoption of DNA is obtaining it on a scale and cost basis that accommodates bulk rheology and high-throughput screening. To address this, recent advancements in bioreactor-based plasmid DNA production is coupled with anion exchange chromatography producing a unified approach to generating gram-scale quantities of monodisperse DNA. With this method, 1.1 grams of DNA is obtained per batch to generate solutions with concentrations up to 116 mg mL-1. This solution of uniform supercoiled and relaxed circular plasmid DNA, is roughly 69 times greater than the overlap concentration. The utility of this method is demonstrated by performing bulk rheology measurements at sample volumes up to 1 mL on DNA of different lengths, topologies, and concentrations. The measured elastic moduli are orders of magnitude larger than those previously reported for DNA and allowed for the construction of a time-concentration superposition curve that spans 12 decades of frequency. Ultimately, these results can provide important insights into the dynamics of ring polymers and the nature of highly condensed DNA dynamics.
Collapse
Affiliation(s)
- Wynter A Paiva
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - Somkene D Alakwe
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - Juexin Marfai
- Department of Physics and Biophysics, College of Arts and Sciences, University of San Diego, Shiley Center for Science and Technology, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Madigan V Jennison-Henderson
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - Rachel A Achong
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - Tinotenda Duche
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - April A Weeks
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, College of Arts and Sciences, University of San Diego, Shiley Center for Science and Technology, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Nathan J Oldenhuis
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| |
Collapse
|
2
|
Fang S, Sinanan DJ, Perez MH, Cruz-Quintero RG, Jadhav SR. Development of a high-throughput scale-down model in Ambr® 250 HT for plasmid DNA fermentation processes. Biotechnol Prog 2024; 40:e3458. [PMID: 38494959 DOI: 10.1002/btpr.3458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Recent advances in messenger ribonucleic acid (mRNA) vaccines and gene therapy vectors have increased the need for rapid plasmid DNA (pDNA) screening and production within the biopharmaceutical industry. High-throughput (HT) fermentor systems, such as the Ambr® 250 HT, can significantly accelerate process development timelines of pDNA upstream processes compared to traditional bench-scale glass fermentors or small-scale steam-in-place (SIP) fermentors. However, such scale-down models must be qualified to ensure that they are representative of the larger scale process similar to traditional small-scale models. In the current study, we developed a representative scale-down model of a Biostat® D-DCU 30 L pDNA fermentation process in Ambr® 250 HT fermentors using three cell lines producing three different constructs. The Ambr scale-down model provided comparable process performance and pDNA quality as the 30 L SIP fermentation process. In addition, we demonstrated the predictive value of the Ambr model by two-way qualification, first by accurately reproducing the prior trends observed in a 30 L process, followed by predicting new process trends that were then successfully reproduced in the 30 L process. The representative and predictive scale-down Ambr model developed in this study would enable a faster and more efficient approach to strain/clone/host-cell screening, pDNA process development and characterization studies, process scale-up studies, and manufacturing support.
Collapse
Affiliation(s)
- Shu Fang
- BioProcess Research & Development, Pfizer Inc., Chesterfield, Missouri, USA
| | - Dillon J Sinanan
- BioProcess Research & Development, Pfizer Inc., Chesterfield, Missouri, USA
| | - Marc H Perez
- BioProcess Research & Development, Pfizer Inc., Chesterfield, Missouri, USA
| | | | - Sachin R Jadhav
- BioProcess Research & Development, Pfizer Inc., Chesterfield, Missouri, USA
| |
Collapse
|
3
|
Schene ME, Infield DT, Ahern CA. Expression and purification of fluorinated proteins from mammalian suspension culture. Methods Enzymol 2024; 696:341-354. [PMID: 38658087 PMCID: PMC11749373 DOI: 10.1016/bs.mie.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The site-specific encoding of noncanonical amino acids allows for the introduction of rationalized chemistry into a target protein. Of the methods that enable this technology, evolved tRNA and synthetase pairs offer the potential for expanded protein production and purification. Such an approach combines the versatility of solid-phase peptide synthesis with the scalable features of recombinant protein production. We describe the large scale production and purification of eukaryotic proteins bearing fluorinated phenylalanine in mammalian suspension cell preparations. Downstream applications of this approach include scalable recombinant protein preparation for ligand binding assays with small molecules and ligands, protein structure determination, and protein stability assays.
Collapse
Affiliation(s)
- Miranda E Schene
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
de la Cruz M, Kunert F, Taymaz-Nikerel H, Sigala JC, Gosset G, Büchs J, Lara AR. Increasing the Pentose Phosphate Pathway Flux to Improve Plasmid DNA Production in Engineered E. coli. Microorganisms 2024; 12:150. [PMID: 38257977 PMCID: PMC10820320 DOI: 10.3390/microorganisms12010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The demand of plasmid DNA (pDNA) as a key element for gene therapy products, as well as mRNA and DNA vaccines, is increasing together with the need for more efficient production processes. An engineered E. coli strain lacking the phosphotransferase system and the pyruvate kinase A gene has been shown to produce more pDNA than its parental strain. With the aim of improving pDNA production in the engineered strain, several strategies to increase the flux to the pentose phosphate pathway (PPP) were evaluated. The simultaneous consumption of glucose and glycerol was a simple way to increase the growth rate, pDNA production rate, and supercoiled fraction (SCF). The overexpression of key genes from the PPP also improved pDNA production in glucose, but not in mixtures of glucose and glycerol. Particularly, the gene coding for the glucose 6-phosphate dehydrogenase (G6PDH) strongly improved the SCF, growth rate, and pDNA production rate. A linear relationship between the G6PDH activity and pDNA yield was found. A higher flux through the PPP was confirmed by flux balance analysis, which also estimates relevant differences in fluxes of the tricarboxylic acid cycle. These results are useful for developing further cell engineering strategies to increase pDNA production and quality.
Collapse
Affiliation(s)
- Mitzi de la Cruz
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico
| | - Flavio Kunert
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Hilal Taymaz-Nikerel
- Department of Genetics and Bioengineering, Istanbul Bilgi University, 34060 Istanbul, Turkey
| | - Juan-Carlos Sigala
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico
| | - Guillermo Gosset
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Alvaro R. Lara
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
5
|
Gotsmy M, Strobl F, Weiß F, Gruber P, Kraus B, Mairhofer J, Zanghellini J. Sulfate limitation increases specific plasmid DNA yield and productivity in E. coli fed-batch processes. Microb Cell Fact 2023; 22:242. [PMID: 38017439 PMCID: PMC10685491 DOI: 10.1186/s12934-023-02248-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023] Open
Abstract
Plasmid DNA (pDNA) is a key biotechnological product whose importance became apparent in the last years due to its role as a raw material in the messenger ribonucleic acid (mRNA) vaccine manufacturing process. In pharmaceutical production processes, cells need to grow in the defined medium in order to guarantee the highest standards of quality and repeatability. However, often these requirements result in low product titer, productivity, and yield. In this study, we used constraint-based metabolic modeling to optimize the average volumetric productivity of pDNA production in a fed-batch process. We identified a set of 13 nutrients in the growth medium that are essential for cell growth but not for pDNA replication. When these nutrients are depleted in the medium, cell growth is stalled and pDNA production is increased, raising the specific and volumetric yield and productivity. To exploit this effect we designed a three-stage process (1. batch, 2. fed-batch with cell growth, 3. fed-batch without cell growth). The transition between stage 2 and 3 is induced by sulfate starvation. Its onset can be easily controlled via the initial concentration of sulfate in the medium. We validated the decoupling behavior of sulfate and assessed pDNA quality attributes (supercoiled pDNA content) in E. coli with lab-scale bioreactor cultivations. The results showed an increase in supercoiled pDNA to biomass yield by 33% and an increase of supercoiled pDNA volumetric productivity by 13 % upon limitation of sulfate. In conclusion, even for routinely manufactured biotechnological products such as pDNA, simple changes in the growth medium can significantly improve the yield and quality.
Collapse
Affiliation(s)
- Mathias Gotsmy
- Department of Analytical Chemistry, University of Vienna, Vienna, 1090, Austria
- Doctorate School of Chemistry, University of Vienna, Vienna, 1090, Austria
| | | | | | - Petra Gruber
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, 2304, Austria
| | - Barbara Kraus
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, 2304, Austria
| | | | - Jürgen Zanghellini
- Department of Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
6
|
Dekevic G, Tertel T, Tasto L, Schmidt D, Giebel B, Czermak P, Salzig D. A Bioreactor-Based Yellow Fever Virus-like Particle Production Process with Integrated Process Analytical Technology Based on Transient Transfection. Viruses 2023; 15:2013. [PMID: 37896790 PMCID: PMC10612092 DOI: 10.3390/v15102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Yellow Fever (YF) is a severe disease that, while preventable through vaccination, lacks rapid intervention options for those already infected. There is an urgent need for passive immunization techniques using YF-virus-like particles (YF-VLPs). To address this, we successfully established a bioreactor-based production process for YF-VLPs, leveraging transient transfection and integrating Process Analytical Technology. A cornerstone of this approach was the optimization of plasmid DNA (pDNA) production to a yield of 11 mg/L using design of experiments. Glucose, NaCl, yeast extract, and a phosphate buffer showed significant influence on specific pDNA yield. The preliminary work for VLP-production in bioreactor showed adjustments to the HEK cell density, the polyplex formation duration, and medium exchanges effectively elevated transfection efficiencies. The additive Pluronic F-68 was neutral in its effects, and anti-clumping agents (ACA) adversely affected the transfection process. Finally, we established the stirred-tank bioreactor process with integrated dielectric spectroscopy, which gave real-time insight in relevant process steps, e.g., cell growth, polyplex uptake, and harvest time. We confirmed the presence and integrity of YF-VLP via Western blot, imaging flow cytometry measurement, and transmission electron microscopy. The YF-VLP production process can serve as a platform to produce VLPs as passive immunizing agents against other neglected tropical diseases.
Collapse
Affiliation(s)
- Gregor Dekevic
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; (G.D.); (L.T.); (D.S.); (P.C.)
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 179, 45147 Essen, Germany; (T.T.); (B.G.)
| | - Lars Tasto
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; (G.D.); (L.T.); (D.S.); (P.C.)
| | - Deborah Schmidt
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; (G.D.); (L.T.); (D.S.); (P.C.)
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 179, 45147 Essen, Germany; (T.T.); (B.G.)
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; (G.D.); (L.T.); (D.S.); (P.C.)
- Faculty of Biology and Chemistry, University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; (G.D.); (L.T.); (D.S.); (P.C.)
| |
Collapse
|
7
|
Neeli P, Chai D, Wang X, Sobhani N, Udeani G, Li Y. Comparison of DNA vaccines with AddaS03 as an adjuvant and an mRNA vaccine against SARS-CoV-2. iScience 2023; 26:107120. [PMID: 37361876 PMCID: PMC10271916 DOI: 10.1016/j.isci.2023.107120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Emerging variants of SARS-CoV-2 call for frequent changes in vaccine antigens. Nucleic acid-based vaccination strategies are superior as the coding sequences can be easily altered with little impact on downstream production. mRNA vaccines, including variant-specific boosters, are approved for SARS-CoV-2. Here, we tested the efficacy of DNA vaccines against the SARS-CoV-2 Spike aided by the AddaS03 adjuvant using electroporation and compared their immunogenicity with an approved mRNA vaccine (mRNA-1273). DNA vaccination elicited robust humoral and cellular immune responses in C57BL/6 mice with Spike-specific antibody neutralization and T cells produced from 20 μg DNA vaccines similar to that from 0.5 μg mRNA-1273. Furthermore, a Nanoplasmid-based vector further increased the immunogenicity. Our results indicate that adjuvants are critical to the efficacy of DNA vaccines in stimulating robust immune responses against Spike, highlighting the feasibility of plasmid DNA as a rapid nucleic acid-based vaccine approach against SARS-CoV-2 and other emerging infectious diseases.
Collapse
Affiliation(s)
- Praveen Neeli
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dafei Chai
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xu Wang
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Navid Sobhani
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - George Udeani
- Department of Pharmacy Practice, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Islas F, Sabido A, Sigala J, Lara AR. Design of microaerobically inducible miniR1 plasmids. MLIFE 2023; 2:101-104. [PMID: 38818336 PMCID: PMC10989972 DOI: 10.1002/mlf2.12058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/01/2024]
Abstract
Plasmid DNA manufacture is an essential step to produce gene therapy agents and next-generation vaccines. However, little attention has been paid toward developing alternative replicons that can be coupled with large-scale production conditions. Our results demonstrate that the miniR1 replicon can be efficiently induced by oxygen limitation when a copy of the regulatory protein RepA under control of a microaerobic promoter is used. The results are potentially attractive for industrial applications.
Collapse
Affiliation(s)
- Fabiola Islas
- Departamento de Procesos y TecnologíaUniversidad Autónoma MetropolitanaCiudad de MexicoMéxico
| | - Andrea Sabido
- Departamento de Procesos y TecnologíaUniversidad Autónoma MetropolitanaCiudad de MexicoMéxico
| | - Juan‐Carlos Sigala
- Departamento de Procesos y TecnologíaUniversidad Autónoma MetropolitanaCiudad de MexicoMéxico
| | - Alvaro R. Lara
- Departamento de Procesos y TecnologíaUniversidad Autónoma MetropolitanaCiudad de MexicoMéxico
| |
Collapse
|
9
|
Kos S, Bosnjak M, Jesenko T, Markelc B, Kamensek U, Znidar K, Matkovic U, Rencelj A, Sersa G, Hudej R, Tuljak A, Peterka M, Cemazar M. Non-Clinical In Vitro Evaluation of Antibiotic Resistance Gene-Free Plasmids Encoding Human or Murine IL-12 Intended for First-in-Human Clinical Study. Pharmaceutics 2021; 13:pharmaceutics13101739. [PMID: 34684032 PMCID: PMC8539770 DOI: 10.3390/pharmaceutics13101739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Interleukin 12 (IL-12) is a key cytokine that mediates antitumor activity of immune cells. To fulfill its clinical potential, the development is focused on localized delivery systems, such as gene electrotransfer, which can provide localized delivery of IL-12 to the tumor microenvironment. Gene electrotransfer of the plasmid encoding human IL-12 is already in clinical trials in USA, demonstrating positive results in the treatment of melanoma patients. To comply with EU regulatory requirements for clinical application, which recommend the use of antibiotic resistance gene-free plasmids, we constructed and developed the production process for the clinical grade quality antibiotic resistance gene-free plasmid encoding human IL-12 (p21-hIL-12-ORT) and its ortholog encoding murine IL-12 (p21-mIL-12-ORT). To demonstrate the suitability of the p21-hIL-12-ORT or p21-mIL-12-ORT plasmid for the first-in-human clinical trial, the biological activity of the expressed transgene, its level of expression and plasmid copy number were determined in vitro in the human squamous cell carcinoma cell line FaDu and the murine colon carcinoma cell line CT26. The results of the non-clinical evaluation in vitro set the basis for further in vivo testing and evaluation of antitumor activity of therapeutic molecules in murine models as well as provide crucial data for further clinical trials of the constructed antibiotic resistance gene-free plasmid in humans.
Collapse
Affiliation(s)
- Spela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
| | - Masa Bosnjak
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
- Faculty of Pharmacy, University of Ljubljana, Aškerceva ulica 7, SI-1000 Ljubljana, Slovenia
| | - Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, SI-1000 Ljubljana, Slovenia
| | - Katarina Znidar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
| | - Urska Matkovic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
| | - Andrej Rencelj
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Rosana Hudej
- Center Odličnosti za Biosenzoriko, Instrumentacijo in Procesno Kontrolo, Mirce 21, SI-5270 Ajdovscina, Slovenia; (R.H.); (A.T.); (M.P.)
| | - Aneja Tuljak
- Center Odličnosti za Biosenzoriko, Instrumentacijo in Procesno Kontrolo, Mirce 21, SI-5270 Ajdovscina, Slovenia; (R.H.); (A.T.); (M.P.)
| | - Matjaz Peterka
- Center Odličnosti za Biosenzoriko, Instrumentacijo in Procesno Kontrolo, Mirce 21, SI-5270 Ajdovscina, Slovenia; (R.H.); (A.T.); (M.P.)
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (S.K.); (M.B.); (T.J.); (B.M.); (U.K.); (K.Z.); (U.M.); (A.R.); (G.S.)
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
- Correspondence: ; Tel.: +386-1-5879-544
| |
Collapse
|
10
|
Thean RKR, Ong DXY, Heng ZSL, Gan SKE, Yeo JY. To Plate or to Simply Unfreeze, That Is the Question for Optimal Plasmid Extraction. J Biomol Tech 2021; 32:57-62. [PMID: 34121935 PMCID: PMC8174125 DOI: 10.7171/jbt.20-3203-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many molecular biology applications require fast plasmid DNA extraction, spurring multiple studies on how to speed up the process. It is regularly instructed in standard laboratory protocols to plate out frozen glycerol bacterial stocks prior to bacteria incubation in liquid media and subsequent plasmid extraction, although the rationale for this is often unexplained (other than for the isolation of single colonies). Given the commonality and importance of this laboratory operation, such a practice is time-consuming and laborious. To study the impact of this practice and the alternative direct culturing method, we investigated the association between bacterial cell mass and its potential influence on plasmid yields from the 2 methods. Our results showed no difference with preplating for 7 out of 8 plasmid constructs used in the study, suggesting that direct glycerol recovery would not lead to poorer plasmid yields. The findings support the rationale for direct glycerol recovery for plasmid extraction, without the need of an intermediate preplating step.
Collapse
Affiliation(s)
| | | | | | - Samuel Ken-En Gan
- Antibody & Product Development Lab, A*STAR, Singapore 138671, Singapore
- Experimental Drug Development Centre, A*STAR, Singapore 138670, Singapore; and
- p53 Laboratory, A*STAR, Singapore 138648, Singapore
| | - Joshua Yi Yeo
- Antibody & Product Development Lab, A*STAR, Singapore 138671, Singapore
- Experimental Drug Development Centre, A*STAR, Singapore 138670, Singapore; and
| |
Collapse
|
11
|
Velazquez D, Jaén KE, Sigala JC, Lara AR. Minimized backbone and novel microaerobic promoters boost plasmid DNA production. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Enhancing microaerobic plasmid DNA production by chromosomal expression of Vitreoscilla hemoglobin in E. coli. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
de la Cruz M, Ramírez EA, Sigala JC, Utrilla J, Lara AR. Plasmid DNA Production in Proteome-Reduced Escherichia coli. Microorganisms 2020; 8:microorganisms8091444. [PMID: 32967123 PMCID: PMC7563601 DOI: 10.3390/microorganisms8091444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
The design of optimal cell factories requires engineering resource allocation for maximizing product synthesis. A recently developed method to maximize the saving in cell resources released 0.5% of the proteome of Escherichia coli by deleting only three transcription factors. We assessed the capacity for plasmid DNA (pDNA) production in the proteome-reduced strain in a mineral medium, lysogeny, and terrific broths. In all three cases, the pDNA yield from biomass was between 33 and 53% higher in the proteome-reduced than in its wild type strain. When cultured in fed-batch mode in shake-flask, the proteome-reduced strain produced 74.8 mg L-1 pDNA, which was four times greater than its wild-type strain. Nevertheless, the pDNA supercoiled fraction was less than 60% in all cases. Deletion of recA increased the pDNA yields in the wild type, but not in the proteome-reduced strain. Furthermore, recA mutants produced a higher fraction of supercoiled pDNA, compared to their parents. These results show that the novel proteome reduction approach is a promising starting point for the design of improved pDNA production hosts.
Collapse
Affiliation(s)
- Mitzi de la Cruz
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City 05348, Mexico; (M.d.l.C.); (E.A.R.); (J.-C.S.)
| | - Elisa A. Ramírez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City 05348, Mexico; (M.d.l.C.); (E.A.R.); (J.-C.S.)
| | - Juan-Carlos Sigala
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City 05348, Mexico; (M.d.l.C.); (E.A.R.); (J.-C.S.)
| | - José Utrilla
- Systems and Synthetic Biology Program, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Alvaro R. Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City 05348, Mexico; (M.d.l.C.); (E.A.R.); (J.-C.S.)
- Correspondence:
| |
Collapse
|
14
|
Folarin O, Nesbeth D, Ward JM, Keshavarz-Moore E. Application of Plasmid Engineering to Enhance Yield and Quality of Plasmid for Vaccine and Gene Therapy. Bioengineering (Basel) 2019; 6:bioengineering6020054. [PMID: 31248216 PMCID: PMC6631426 DOI: 10.3390/bioengineering6020054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 11/19/2022] Open
Abstract
There is an increased interest in plasmid DNA as therapeutics. This is evident in the number of ongoing clinical trials involving the use of plasmid DNA. In order to be an effective therapeutic, high yield and high level of supercoiling are required. From the bioprocessing point of view, the supercoiling level potentially has an impact on the ease of downstream processing. We approached meeting these requirements through plasmid engineering. A 7.2 kb plasmid was developed by the insertion of a bacteriophage Mu strong gyrase-binding sequence (Mu-SGS) to a 6.8 kb pSVβ-Gal and it was used to transform four different E. coli strains, and cultured in order to investigate the Mu-SGS effect and dependence on strain. There was an increase of over 20% in the total plasmid yield with pSVβ-Gal398 in two of the strains. The supercoiled topoisomer content was increased by 5% in both strains leading to a 27% increase in the overall yield. The extent of supercoiling was examined using superhelical density (σ) quantification with pSVβ-Gal398 maintaining a superhelical density of −0.022, and pSVβ-Gal −0.019, in both strains. This study has shown that plasmid modification with the Mu-phage SGS sequence has a beneficial effect on improving not only the yield of total plasmid but also the supercoiled topoisomer content of therapeutic plasmid DNA during bioprocessing.
Collapse
Affiliation(s)
- Olusegun Folarin
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - Darren Nesbeth
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - John M Ward
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - Eli Keshavarz-Moore
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
15
|
Long J, Zhao X, Liang F, Liu N, Sun Y, Xi Y. Optimization of fermentation conditions for an Escherichia coli strain engineered using the response surface method to produce a novel therapeutic DNA vaccine for rheumatoid arthritis. J Biol Eng 2018; 12:22. [PMID: 30337953 PMCID: PMC6180442 DOI: 10.1186/s13036-018-0110-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Fermentation condition optimization and nutrients screening are of equal importance for efficient production of plasmid DNA vaccines. This directly affects the downstream purification and final quality and yield of plasmid DNA vaccines. The present study aimed to optimize the fermentation conditions for high-throughput production of therapeutic DNA vaccine pcDNA-CCOL2A1 by engineered Escherichia coli DH5α, using the response surface method (RSM). RESULTS We hypothesized that optimized fermentation conditions significantly increase the yield of pcDNA-CCOL2A1 therapeutic DNA vaccine, a novel DNA vaccine for treating rheumatoid arthritis (RA). Single-factor analysis was performed to evaluate the optimal basal culture medium from LB, 2 × YT, TB, M9 (Glycerol) and M9 (Glucose), respectively. Thereafter, the Plackett-Burman design (PBD) was used to ascertain the three most significant factors affecting the vaccine yields, followed by the paths of steepest ascent to move to the nearest region of maximum response. Initial screening through the PBD revealed that the most key factors were peptone, mannitol, and inoculum concentration. Subsequent use of RSM was further optimized for the production of therapeutic DNA vaccine pcDNA-CCOL2A1 through Box-Behnken design (BBD). The final optimized fermentation conditions were as follows: peptone, 25.86 g/L; mannitol, 8.08 g/L; inoculum concentration, OD = 0.36. Using this statistical experimental design, the yield of therapeutic DNA vaccine pcDNA-CCOL2A1 markedly increased from 223.37 mg/L to339.32 mg/L under optimal conditions, and a 51.9% increase was observed compared with the original medium. CONCLUSIONS The present results provide a basis for further production of high-quality and high-yield therapeutic DNA vaccine pcDNA-CCOL2A1 in pilot-scale and even industrial-scale.
Collapse
Affiliation(s)
- Juan Long
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071 People’s Republic of China
| | - Xiao Zhao
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071 People’s Republic of China
| | - Fei Liang
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071 People’s Republic of China
| | - Nan Liu
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071 People’s Republic of China
| | - Yuying Sun
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071 People’s Republic of China
| | - Yongzhi Xi
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071 People’s Republic of China
| |
Collapse
|
16
|
Selas Castiñeiras T, Williams SG, Hitchcock AG, Smith DC. E. coli strain engineering for the production of advanced biopharmaceutical products. FEMS Microbiol Lett 2018; 365:5049002. [DOI: 10.1093/femsle/fny162] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Steven G Williams
- Cobra Biologics, Stephenson Building, The Science Park, Keele ST5 5SP, UK
| | - Antony G Hitchcock
- Cobra Biologics, Stephenson Building, The Science Park, Keele ST5 5SP, UK
| | - Daniel C Smith
- Cobra Biologics, Stephenson Building, The Science Park, Keele ST5 5SP, UK
| |
Collapse
|
17
|
Abdulrahman A, Ghanem A. Recent advances in chromatographic purification of plasmid DNA for gene therapy and DNA vaccines: A review. Anal Chim Acta 2018; 1025:41-57. [PMID: 29801607 DOI: 10.1016/j.aca.2018.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/16/2022]
Abstract
The wide spread of infectious diseases have provoked the scientists to develop new types of vaccines. Among the different types of vaccines, the recently discovered plasmid DNA vaccines, have gained tremendous attentions in the last few decades as a modern approach of vaccination. The scientific interest in plasmid DNA vaccines is attributed to their prominent efficacy as they trigger not only the cellular immune response but also the humoral immune responses. Moreover, pDNA vaccines are easily to be stored, shipped and produced. However, the purification of the pDNA vaccines is a crucial step in their production and administration, which is usually conducted by different chromatographic techniques. This review summarizes the most recent chromatographic purification methods provided in the literature during the last five years following our last review in 2013, including affinity chromatography, hydrophobic interaction chromatography, ion exchange chromatography, multimodal chromatography, sample displacement chromatography and miscellaneous chromatographic methods.
Collapse
Affiliation(s)
- Ahmed Abdulrahman
- Chirality Program, Faculty of Science and Technology, University of Canberra, Australian Capital Territory (ACT), 2617, Australia
| | - Ashraf Ghanem
- Chirality Program, Faculty of Science and Technology, University of Canberra, Australian Capital Territory (ACT), 2617, Australia. http://www.chiralitygroup.com
| |
Collapse
|
18
|
Hu C, Cheng X, Lu Y, Wu Z, Zhang Q. Gram-scale production of plasmid pUDK-HGF with current good manufacturing practices for gene therapy of critical limb ischemia. Prep Biochem Biotechnol 2016; 46:844-849. [PMID: 26853514 DOI: 10.1080/10826068.2016.1141302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The demand of a plasmid encoding human hepatocyte growth factor gene (pUDK-HGF) in large quantities at high purity and concentration has increased for gene therapy of critical limb ischemia (CLI) in clinical trials. In this article, we produced pUDK-HGF in compliance with current good manufacturing practices at gram scale. The process included a 50-L batch fermentation, continuous alkaline lysis, and integrated three-step chromatography on Sepharose 6 Fast Flow, PlasmidSelect Xtra, and Source 15Q. The production process has been scaled up to yield 4.24 ± 0.41 g of pharmaceutical pUDK-HGF from 1.0 kg bacterial cell paste and the overall yield reached range from 58.37 to 66.70%. The final pUDK-HGF product exhibited high purity with supercoiled percentage of > 95.8% and undetectable residual RNA, contaminated protein, and bacterial endotoxin. The phase I clinical study indicates that intramuscular injection of pUDK-HGF is safe, well tolerated, and may provide symptomatic relief to CLI patients. These results show that our manufacturing process of pUDK-HGF is efficient in producing pharmaceutical-grade plasmid DNA and is safe for clinical applications.
Collapse
Affiliation(s)
- ChunSheng Hu
- a College of Life Science and Bio-Engineering , Beijing University of Technology , Beijing , China.,b Department of Experimental Hematology , Beijing Institute of Radiation Medicine , Beijing , China
| | - XiaoChen Cheng
- b Department of Experimental Hematology , Beijing Institute of Radiation Medicine , Beijing , China
| | - YuXin Lu
- b Department of Experimental Hematology , Beijing Institute of Radiation Medicine , Beijing , China
| | - ZuZe Wu
- a College of Life Science and Bio-Engineering , Beijing University of Technology , Beijing , China.,b Department of Experimental Hematology , Beijing Institute of Radiation Medicine , Beijing , China
| | - QingLin Zhang
- b Department of Experimental Hematology , Beijing Institute of Radiation Medicine , Beijing , China
| |
Collapse
|
19
|
Sales KC, Rosa F, Cunha BR, Sampaio PN, Lopes MB, Calado CRC. Metabolic profiling of recombinant Escherichia coli cultivations based on high-throughput FT-MIR spectroscopic analysis. Biotechnol Prog 2016; 33:285-298. [PMID: 27696721 DOI: 10.1002/btpr.2378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 09/19/2016] [Indexed: 01/30/2023]
Abstract
Escherichia coli is one of the most used host microorganism for the production of recombinant products, such as heterologous proteins and plasmids. However, genetic, physiological and environmental factors influence the plasmid replication and cloned gene expression in a highly complex way. To control and optimize the recombinant expression system performance, it is very important to understand this complexity. Therefore, the development of rapid, highly sensitive and economic analytical methodologies, which enable the simultaneous characterization of the heterologous product synthesis and physiologic cell behavior under a variety of culture conditions, is highly desirable. For that, the metabolic profile of recombinant E. coli cultures producing the pVAX-lacZ plasmid model was analyzed by rapid, economic and high-throughput Fourier Transform Mid-Infrared (FT-MIR) spectroscopy. The main goal of the present work is to show as the simultaneous multivariate data analysis by principal component analysis (PCA) and direct spectral analysis could represent a very interesting tool to monitor E. coli culture processes and acquire relevant information according to current quality regulatory guidelines. While PCA allowed capturing the energetic metabolic state of the cell, e.g. by identifying different C-sources consumption phases, direct FT-MIR spectral analysis allowed obtaining valuable biochemical and metabolic information along the cell culture, e.g. lipids, RNA, protein synthesis and turnover metabolism. The information achieved by spectral multivariate data and direct spectral analyses complement each other and may contribute to understand the complex interrelationships between the recombinant cell metabolism and the bioprocess environment towards more economic and robust processes design according to Quality by Design framework. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:285-298, 2017.
Collapse
Affiliation(s)
- Kevin C Sales
- Faculty of Engineering, Catholic University of Portugal, Rio de Mouro, 2635-631, Portugal
| | - Filipa Rosa
- Faculty of Engineering, Catholic University of Portugal, Rio de Mouro, 2635-631, Portugal
| | - Bernardo R Cunha
- Faculty of Engineering, Catholic University of Portugal, Rio de Mouro, 2635-631, Portugal
| | - Pedro N Sampaio
- Faculty of Engineering, Catholic University of Portugal, Rio de Mouro, 2635-631, Portugal.,Faculty of Engineering, Lusophone University of Humanities and Technology, Campo Grande 376, Lisbon, 1749-019, Portugal
| | - Marta B Lopes
- Faculty of Engineering, Catholic University of Portugal, Rio de Mouro, 2635-631, Portugal.,Institute of Telecommunications, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, Lisboa, 1049-001, Portugal.,ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, Lisboa, 1959-007, Portugal
| | - Cecília R C Calado
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, Lisboa, 1959-007, Portugal
| |
Collapse
|
20
|
Sieben M, Steinhorn G, Müller C, Fuchs S, Ann Chin L, Regestein L, Büchs J. Testing plasmid stability ofEscherichia coliusing the Continuously Operated Shaken BIOreactor System. Biotechnol Prog 2016; 32:1418-1425. [DOI: 10.1002/btpr.2341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/11/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Michaela Sieben
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
| | - Gregor Steinhorn
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
| | - Carsten Müller
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
| | - Simone Fuchs
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
- Department of Chemical Engineering; Hochschule Ostwestfalen-Lippe; Lemgo Germany
| | - Laura Ann Chin
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
- University of Arizona; Tucson AZ USA
| | - Lars Regestein
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
| |
Collapse
|
21
|
Developing strategies to increase plasmid DNA production in Escherichia coli DH5α using batch culture. J Biotechnol 2016; 233:66-73. [DOI: 10.1016/j.jbiotec.2016.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 01/25/2023]
|
22
|
R El-Attar LM, Thomas C, Luke J, A Williams J, Brownlie J. Enhanced neutralising antibody response to bovine viral diarrhoea virus (BVDV) induced by DNA vaccination in calves. Vaccine 2015; 33:4004-12. [PMID: 26079613 DOI: 10.1016/j.vaccine.2015.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/28/2015] [Accepted: 06/02/2015] [Indexed: 11/26/2022]
Abstract
DNA vaccination is effective in inducing potent immunity in mice; however it appears to be less so in large animals. Increasing the dose of DNA plasmid to activate innate immunity has been shown to improve DNA vaccine adaptive immunity. Retinoic acid-inducible gene I (RIG-I) is a critical cytoplasmic double-stranded RNA pattern receptor required for innate immune activation in response to viral infection. RIG-I recognise viral RNA and trigger antiviral response, resulting in type I interferon (IFN) and inflammatory cytokine production. In an attempt to enhance the antibody response induced by BVDV DNA in cattle, we expressed BVDV truncated E2 (E2t) and NS3 codon optimised antigens from antibiotic free-plasmid vectors expressing a RIG-I agonist and designated either NTC E2t(co) and NTC NS3(co). To evaluate vaccine efficacy, groups of five BVDV-free calves were intramuscularly injected three times with NTC E2t(co) and NTC NS3(co) vaccine plasmids individually or in combination. Animals vaccinated with our (previously published) conventional DNA vaccines pSecTag/E2 and pTriExNS3 and plasmids expressing RIG-I agonist only presented both the positive and mock-vaccine groups. Our results showed that vaccines coexpressing E2t with a RIG-I agonist induced significantly higher E2 antigen specific antibody response (p<0.05). Additionally, E2t augmented the immune response to NS3 when the two vaccines were delivered in combination. Despite the lack of complete protection, on challenge day 4/5 calves vaccinated with NTC E2t(co) alone or NTC E2t(co) plus NTC NS3(co) had neutralising antibody titres exceeding 1/240 compared to 1/5 in the mock vaccine control group. Based on our results we conclude that co-expression of a RIG-I agonist with viral antigen could enhance DNA vaccine potency in cattle.
Collapse
Affiliation(s)
- Laila M R El-Attar
- Pathology & Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, Hertfordshire, UK.
| | - Carole Thomas
- Pathology & Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, Hertfordshire, UK
| | - Jeremy Luke
- Nature Technology Corporation, 4701 Innovation Drive, Lincoln, NE 68521, USA
| | - James A Williams
- Nature Technology Corporation, 4701 Innovation Drive, Lincoln, NE 68521, USA
| | - Joe Brownlie
- Pathology & Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, Hertfordshire, UK
| |
Collapse
|
23
|
Meade J, Bartlow P, Trivedi RN, Akhtar P, Ataai MM, Khan SA, Domach MM. Effect of plasmid replication deregulation via inc mutations on E. coli proteome & simple flux model analysis. Microb Cell Fact 2015; 14:31. [PMID: 25890349 PMCID: PMC4357208 DOI: 10.1186/s12934-015-0212-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/19/2015] [Indexed: 11/26/2022] Open
Abstract
When the replication of a plasmid based on sucrose selection is deregulated via the inc1 and inc2 mutations, high copy numbers (7,000 or greater) are attained while the growth rate on minimal medium is negligibly affected. Adaptions were assumed to be required in order to sustain the growth rate. Proteomics indicated that indeed a number of adaptations occurred that included increased expression of ribosomal proteins and 2-oxoglutarate dehydrogenase. The operating space prescribed by a basic flux model that maintained phenotypic traits (e.g. growth, byproducts, etc.) within typical bounds of resolution was consistent with the flux implications of the proteomic changes.
Collapse
Affiliation(s)
- Jonathan Meade
- Department Chemical Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA.
| | - Patrick Bartlow
- Department Chemical Engineering, University of Pittsburgh, 15219, Pittsburgh, PA, USA.
| | - Ram Narayan Trivedi
- Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA.
| | - Parvez Akhtar
- Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA.
| | - Mohammad M Ataai
- Department Chemical Engineering, University of Pittsburgh, 15219, Pittsburgh, PA, USA.
| | - Saleem A Khan
- Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA.
| | - Michael M Domach
- Department Chemical Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Wang Y, Zhang L, Zhang W, Wu H, Zhu XM, Xu YJ, Yan JQ, Yu JY. Increasing plasmid-based DNA vaccine construct (16 kb pSVK-HBVA) production in Escherichia coli XL10-Gold through optimization of media component. BIOTECHNOL BIOTEC EQ 2015; 29:164-174. [PMID: 26740792 PMCID: PMC4697194 DOI: 10.1080/13102818.2014.989103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/15/2014] [Indexed: 01/16/2023] Open
Abstract
At present, there are production processes to produce protein by Escherichia coli (E. coli) fermentation. Research on the design and optimization of the plasmid fermentation medium, however, is less advanced. The fermentation medium that is optimized for plasmid DNA production is different from the medium that is optimized for protein production. So, establishing a scientific and rational method to optimize the fermentation medium used for plasmid production is very important. Previously, our laboratory developed a novel therapeutic DNA vaccine (named pSVK-HBVA) for hepatitis B based on the alphavirus replicon, and found that E. coli XL10-Gold was the optimal host strain for the production of plasmid pSVK-HBVA. The aim of this study was to establish a scientific and rational method to optimize the fermentation medium used for plasmid production, and investigate the effect of growth medium composition on the production of plasmid pSVK-HBVA harboured in E. coli XL10-Gold, as well as to optimize the medium composition. The one-factor-at-a-time experiments demonstrated that Luria-Bertani (LB) was the optimal basic medium. The optimal carbon source and nitrogen source were glycerol and home-made proteose peptone, respectively. Based on the Plackett–Burman (PB) design, proteose peptone, glycerol and NH4Cl were identified as the significant variables, which were further optimized by the steepest ascent (descent) method and central composite design. Growth medium optimization in 500-mL shake flasks by response surface methodology resulted in a maximum volumetric yield of 13.61 mg/L, which was approximately 2.5 times higher than that obtained from the basic medium (LB).
Collapse
Affiliation(s)
- Yu Wang
- Institute of Basic Medical Science, Academy of Military Medical Sciences , 27 Tai Ping Road, Beijing 100850 , China
| | - Liang Zhang
- Institute of Basic Medical Science, Academy of Military Medical Sciences , 27 Tai Ping Road, Beijing 100850 , China
| | - Wei Zhang
- Institute of Basic Medical Science, Academy of Military Medical Sciences , 27 Tai Ping Road, Beijing 100850 , China
| | - Hao Wu
- Institute of Basic Medical Science, Academy of Military Medical Sciences , 27 Tai Ping Road, Beijing 100850 , China
| | - Xiao Ming Zhu
- Institute of Basic Medical Science, Academy of Military Medical Sciences , 27 Tai Ping Road, Beijing 100850 , China
| | - Yuan Ji Xu
- Institute of Basic Medical Science, Academy of Military Medical Sciences , 27 Tai Ping Road, Beijing 100850 , China
| | - Jin Qi Yan
- Institute of Basic Medical Science, Academy of Military Medical Sciences , 27 Tai Ping Road, Beijing 100850 , China
| | - Ji Yun Yu
- Institute of Basic Medical Science, Academy of Military Medical Sciences , 27 Tai Ping Road, Beijing 100850 , China
| |
Collapse
|
25
|
Xenopoulos A, Pattnaik P. Production and purification of plasmid DNA vaccines: is there scope for further innovation? Expert Rev Vaccines 2014; 13:1537-51. [DOI: 10.1586/14760584.2014.968556] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Lopes MB, Martins G, Calado CR. Kinetic modeling of plasmid bioproduction in Escherichia coli DH5α cultures over different carbon-source compositions. J Biotechnol 2014; 186:38-48. [DOI: 10.1016/j.jbiotec.2014.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 11/29/2022]
|
27
|
Gonçalves GAL, Prather KLJ, Monteiro GA, Carnes AE, Prazeres DMF. Plasmid DNA production with Escherichia coli GALG20, a pgi-gene knockout strain: fermentation strategies and impact on downstream processing. J Biotechnol 2014; 186:119-27. [PMID: 24995846 DOI: 10.1016/j.jbiotec.2014.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
The market development of plasmid biopharmaceuticals for gene therapy and DNA vaccination applications is critically dependent on the availability of cost-effective manufacturing processes capable of delivering large amounts of high-quality plasmid DNA (pDNA) for clinical trials and commercialization. The producer host strain used in these processes must be designed to meet the upstream and downstream processing challenges characteristic of large scale pDNA production. The goal of the present study was to investigate the effect of different glucose feeding strategies (batch and fed-batch) on the pDNA productivity of GALG20, a pgi Escherichia coli strain potentially useful in industrial fermentations, which uses the pentose phosphate pathway (PPP) as the main route for glucose metabolism. The parental strain, MG1655ΔendAΔrecA, and the common laboratory strain, DH5α, were used for comparison purposes and pVAX1GFP, a ColE1-type plasmid, was tested as a model. GALG20 produced 3-fold more pDNA (∼141 mg/L) than MG1655ΔendAΔrecA (∼48 mg/L) and DH5α (∼40 mg/L) in glucose-based fed-batch fermentations. The amount of pDNA in lysates obtained from these cells was also larger for GALG20 (41%) when compared with MG1655ΔendAΔrecA (31%) and DH5α (26%). However, the final quality of pDNA preparations obtained with a process that explores precipitation, hydrophobic interaction chromatography and size exclusion was not significantly affected by strain genotype. Finally, high cell density fed-batch cultures were performed with GALG20, this time using another ColE1-type plasmid, NTC7482-41H-HA, in pre-industrial facilities using glucose and glycerol. These experiments demonstrated the ability of GALG20 to produce high pDNA yields of the order of 2100-2200 mg/L.
Collapse
Affiliation(s)
- Geisa A L Gonçalves
- MIT-Portugal Program, Portugal; IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Kristala L J Prather
- MIT-Portugal Program, Portugal; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Gabriel A Monteiro
- MIT-Portugal Program, Portugal; IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Aaron E Carnes
- Nature Technology Corporation, Lincoln, NE, United States
| | - Duarte M F Prazeres
- MIT-Portugal Program, Portugal; IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
28
|
Engineering of Escherichia coli strains for plasmid biopharmaceutical production: scale-up challenges. Vaccine 2014; 32:2847-50. [PMID: 24598722 DOI: 10.1016/j.vaccine.2014.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plasmid-based vaccines and therapeutics have been making their way into the clinic in the last years. The existence of cost-effective manufacturing processes capable of delivering high amounts of high-quality plasmid DNA (pDNA) is essential to generate enough material for trials and support future commercialization. However, the development of pDNA manufacturing processes is often hampered by difficulties in predicting process scale performance of Escherichia coli cultivation on the basis of results obtained at lab scale. This paper reports on the differences observed in pDNA production when using shake flask and bench-scale bioreactor cultivation of E. coli strains MG1655ΔendAΔrecA and DH5α in complex media with 20 g/L of glucose. MG1655ΔendAΔrecA produced 5-fold more pDNA (9.8 mg/g DCW) in bioreactor than in shake flask (1.9 mg/g DCW) and DH5α produced 4-fold more pDNA (8 mg/g DCW) in bioreactor than in shake flask (2 mg/g DCW). Accumulation of acetate was also significant in shake flasks but not in bioreactors, a fact that was attributed to a lack of control of pH.
Collapse
|
29
|
Abstract
Recent developments in DNA vaccine research provide a new momentum for this rather young and potentially disruptive technology. Gene-based vaccines are capable of eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria, and tuberculosis, for which the conventional vaccine technologies have failed so far. The recent identification and characterization of genes coding for tumor antigens has stimulated the development of DNA-based antigen-specific cancer vaccines. Although most academic researchers consider the production of reasonable amounts of plasmid DNA (pDNA) for immunological studies relatively easy to solve, problems often arise during this first phase of production. In this chapter we review the current state of the art of pDNA production at small (shake flasks) and mid-scales (lab-scale bioreactor fermentations) and address new trends in vector design and strain engineering. We will guide the reader through the different stages of process design starting from choosing the most appropriate plasmid backbone, choosing the right Escherichia coli (E. coli) strain for production, and cultivation media and scale-up issues. In addition, we will address some points concerning the safety and potency of the produced plasmids, with special focus on producing antibiotic resistance-free plasmids. The main goal of this chapter is to make immunologists aware of the fact that production of the pDNA vaccine has to be performed with as much as attention and care as the rest of their research.
Collapse
|
30
|
Abstract
Plasmid DNA for immunization applications must be of the highest purity and quality. The ability of downstream purification to efficiently produce a pure final product is directly influenced by the performance of the upstream fermentation process. While several clinical manufacturing facilities already have validated fermentation processes in place to manufacture plasmid DNA for use in humans, a simple and inexpensive laboratory-scale fermentation process can be valuable for in-house production of plasmid DNA for use in animal efficacy studies. This chapter describes a simple fed-batch fermentation process for producing bacterial cell paste enriched with high-quality plasmid DNA. A constant feeding strategy results in a medium cell density culture with continuously increasing plasmid amplification towards the end of the process. Cell banking and seed culture preparation protocols, which can dramatically influence final product yield and quality, are also described. These protocols are suitable for production of research-grade plasmid DNA at the 100 mg-to-1.5 g scale from a typical 10 L laboratory benchtop fermentor.
Collapse
Affiliation(s)
- Aaron E Carnes
- Nature Technology Corporation, 4701 Innovation Drive, Lincoln, NE, 68521, USA,
| | | |
Collapse
|
31
|
Luke JM, Carnes AE, Williams JA. Development of antibiotic-free selection system for safer DNA vaccination. Methods Mol Biol 2014; 1143:91-111. [PMID: 24715283 DOI: 10.1007/978-1-4939-0410-5_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of antibiotic-resistance markers in DNA vaccines is discouraged by regulatory agencies due to various theoretical safety concerns. This chapter presents methodologies for the design and cloning of synthetic antigen genes into RNA-OUT encoding antibiotic-free DNA vaccine vectors that are additionally optimized to improve protein expression, and immunogenicity, compared to alternative kanamycin-resistant vectors. First, antigen targeting considerations are discussed in the context of immune response customization through MHC class I or class II directed antigen presentation; the example NTC868 series RNA-OUT vector system allows simultaneous cloning into multiple vectors that feature various transgene intracellular targeting destinations. Then a detailed flowchart for codon optimization and synthetic transgene design is presented. Finally in-depth methodologies for cloning transgenes into the NTC868 series RNA-OUT vector system are presented. The resultant antibiotic-free DNA vaccine vectors are a more potent, safer alternative to existing kanamycin resistance marker encoding vectors.
Collapse
Affiliation(s)
- Jeremy M Luke
- Nature Technology Corporation, 4701 Innovation Drive, Lincoln, NE, 68521, USA
| | | | | |
Collapse
|
32
|
Nelson J, Rodriguez S, Finlayson N, Williams J, Carnes A. Antibiotic-free production of a herpes simplex virus 2 DNA vaccine in a high yield cGMP process. Hum Vaccin Immunother 2013; 9:2211-5. [PMID: 23899469 DOI: 10.4161/hv.25048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two DNA vaccine plasmids encoding Herpes simplex virus type 2 (HSV-2) glycoprotein D, NTC8485-O2-gD2 and NTC8485-O2-UgD2tr, were produced at large scale under current good manufacturing practice (cGMP) for use in a Phase I human clinical trial. These DNA vaccines incorporate the regulatory agency compliant, minimal, antibiotic-free (AF) NTC8485 mammalian expression vector. Plasmid yields of>1 g/L were achieved using the HyperGRO™ fed-batch fermentation process, with successful scale up from 10 L process development scale to 320 L culture volume for cGMP production. The DNA vaccines were purified using a low residence time, high shear lysis process and AIRMIX(TM) technology, followed by chromatographic purification. This combination of optimized plasmid vector, high yield upstream production, and efficient downstream purification resulted in purified HSV-2 DNA vaccines with>99% total supercoiled plasmid, ≤ 0.2% RNA, ≤ 0.1% host cell genomic DNA, and ≤ 0.1 endotoxin units per mg.
Collapse
Affiliation(s)
| | | | - Neil Finlayson
- Coridon Pty Ltd; Level 3, Translational Research Institute; Woolloongabba, QLD Australia
| | | | | |
Collapse
|
33
|
Williams JA. Vector Design for Improved DNA Vaccine Efficacy, Safety and Production. Vaccines (Basel) 2013; 1:225-49. [PMID: 26344110 PMCID: PMC4494225 DOI: 10.3390/vaccines1030225] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 12/25/2022] Open
Abstract
DNA vaccination is a disruptive technology that offers the promise of a new rapidly deployed vaccination platform to treat human and animal disease with gene-based materials. Innovations such as electroporation, needle free jet delivery and lipid-based carriers increase transgene expression and immunogenicity through more effective gene delivery. This review summarizes complementary vector design innovations that, when combined with leading delivery platforms, further enhance DNA vaccine performance. These next generation vectors also address potential safety issues such as antibiotic selection, and increase plasmid manufacturing quality and yield in exemplary fermentation production processes. Application of optimized constructs in combination with improved delivery platforms tangibly improves the prospect of successful application of DNA vaccination as prophylactic vaccines for diverse human infectious disease targets or as therapeutic vaccines for cancer and allergy.
Collapse
Affiliation(s)
- James A Williams
- Nature Technology Corporation/Suite 103, 4701 Innovation Drive, Lincoln, NE 68521, USA.
| |
Collapse
|
34
|
Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 2012; 30:1158-70. [PMID: 21968146 DOI: 10.1016/j.biotechadv.2011.08.022] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 12/13/2022]
|
35
|
Bower DM, Prather KLJ. Development of new plasmid DNA vaccine vectors with R1-based replicons. Microb Cell Fact 2012; 11:107. [PMID: 22889338 PMCID: PMC3495755 DOI: 10.1186/1475-2859-11-107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/03/2012] [Indexed: 11/20/2022] Open
Abstract
Background There has been renewed interest in biopharmaceuticals based on plasmid DNA (pDNA) in recent years due to the approval of several veterinary DNA vaccines, on-going clinical trials of human pDNA-based therapies, and significant advances in adjuvants and delivery vehicles that have helped overcome earlier efficacy deficits. With this interest comes the need for high-yield, cost-effective manufacturing processes. To this end, vector engineering is one promising strategy to improve plasmid production. Results In this work, we have constructed a new DNA vaccine vector, pDMB02-GFP, containing the runaway R1 origin of replication. The runaway replication phenotype should result in plasmid copy number amplification after a temperature shift from 30°C to 42°C. However, using Escherichia coli DH5α as a host, we observed that the highest yields of pDMB02-GFP were achieved during constant-temperature culture at 30°C, with a maximum yield of approximately 19 mg pDNA/g DCW being observed. By measuring mRNA and protein levels of the R1 replication initiator protein, RepA, we determined that RepA may be limiting pDMB02-GFP yield at 42°C. A mutant plasmid, pDMB-ATG, was constructed by changing the repA start codon from the sub-optimal GTG to ATG. In cultures of DH5α[pDMB-ATG], temperature-induced plasmid amplification was more dramatic than that observed with pDMB02-GFP, and RepA protein was detectable for several hours longer than in cultures of pDMB02-GFP at 42°C. Conclusions Overall, we have demonstrated that R1-based plasmids can produce high yields of high-quality pDNA without the need for a temperature shift, and have laid the groundwork for further investigation of this class of vectors in the context of plasmid DNA production.
Collapse
Affiliation(s)
- Diana M Bower
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 66-454, Cambridge, MA 02139, USA
| | | |
Collapse
|
36
|
De novo creation of MG1655-derived E. coli strains specifically designed for plasmid DNA production. Appl Microbiol Biotechnol 2012; 97:611-20. [PMID: 22885693 DOI: 10.1007/s00253-012-4308-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/13/2012] [Accepted: 07/13/2012] [Indexed: 12/20/2022]
Abstract
The interest in plasmid DNA (pDNA) as a biopharmaceutical has been increasing over the last several years, especially after the approval of the first DNA vaccines. New pDNA production strains have been created by rationally mutating genes selected on the basis of Escherichia coli central metabolism and plasmid properties. Nevertheless, the highly mutagenized genetic background of the strains used makes it difficult to ascertain the exact impact of those mutations. To explore the effect of strain genetic background, we investigated single and double knockouts of two genes, pykF and pykA, which were known to enhance pDNA synthesis in two different E. coli strains: MG1655 (wild-type genetic background) and DH5α (highly mutagenized genetic background). The knockouts were only effective in the wild-type strain MG1655, demonstrating the relevance of strain genetic background and the importance of designing new strains specifically for pDNA production. Based on the obtained results, we created a new pDNA production strain starting from MG1655 by knocking out the pgi gene in order to redirect carbon flux to the pentose phosphate pathway, enhance nucleotide synthesis, and, consequently, increase pDNA production. GALG20 (MG1655ΔendAΔrecAΔpgi) produced 25-fold more pDNA (19.1 mg/g dry cell weight, DCW) than its parental strain, MG1655ΔendAΔrecA (0.8 mg/g DCW), in glucose. For the first time, pgi was identified as an important target for constructing a high-yielding pDNA production strain.
Collapse
|
37
|
Silva F, Queiroz JA, Domingues FC. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol Adv 2012; 30:691-708. [DOI: 10.1016/j.biotechadv.2011.12.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/01/2011] [Accepted: 12/29/2011] [Indexed: 01/26/2023]
|
38
|
Josefsberg JO, Buckland B. Vaccine process technology. Biotechnol Bioeng 2012; 109:1443-60. [DOI: 10.1002/bit.24493] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 12/15/2022]
|
39
|
Klausner EA, Zhang Z, Wong SP, Chapman RL, Volin MV, Harbottle RP. Corneal gene delivery: chitosan oligomer as a carrier of CpG rich, CpG free or S/MAR plasmid DNA. J Gene Med 2012; 14:100-8. [DOI: 10.1002/jgm.1634] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Zhong Zhang
- Department of Pharmaceutical Sciences; Midwestern University Chicago College of Pharmacy; Downers Grove; IL; USA
| | - Suet P. Wong
- Imperial College London; Gene Therapy Research Group, Molecular Medicine; Sir Alexander Fleming Building; London; UK
| | - Robert L. Chapman
- Department of Pharmaceutical Sciences; Midwestern University Chicago College of Pharmacy; Downers Grove; IL; USA
| | - Michael V. Volin
- Department of Microbiology and Immunology; Midwestern University Chicago College of Osteopathic Medicine; Downers Grove; IL; USA
| | - Richard P. Harbottle
- Imperial College London; Gene Therapy Research Group, Molecular Medicine; Sir Alexander Fleming Building; London; UK
| |
Collapse
|
40
|
Abstract
Plasmid DNA (pDNA) is the base for promising DNA vaccines and gene therapies against many infectious, acquired, and genetic diseases, including HIV-AIDS, Ebola, Malaria, and different types of cancer, enteric pathogens, and influenza. Compared to conventional vaccines, DNA vaccines have many advantages such as high stability, not being infectious, focusing the immune response to only those antigens desired for immunization and long-term persistence of the vaccine protection. Especially in developing countries, where conventional effective vaccines are often unavailable or too expensive, there is a need for both new and improved vaccines. Therefore the demand of pDNA is expected to rise significantly in the near future. Since the injection of pDNA usually only leads to a weak immune response, several milligrams of DNA vaccine are necessary for immunization protection. Hence, there is a special interest to raise the product yield in order to reduce manufacturing costs. In this chapter, the different stages of plasmid DNA production are reviewed, from the vector design to downstream operation options. In particular, recent advances on cell engineering for improving plasmid DNA production are discussed.
Collapse
Affiliation(s)
- Alvaro R Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico.
| | | | | |
Collapse
|
41
|
Plasmid DNA fermentation strategies: influence on plasmid stability and cell physiology. Appl Microbiol Biotechnol 2011; 93:2571-80. [DOI: 10.1007/s00253-011-3668-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/02/2011] [Accepted: 10/23/2011] [Indexed: 01/14/2023]
|
42
|
Soto R, Caspeta L, Barrón B, Gosset G, Ramírez OT, Lara AR. High cell-density cultivation in batch mode for plasmid DNA production by a metabolically engineered E. coli strain with minimized overflow metabolism. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Gonçalves GAL, Bower DM, Prazeres DMF, Monteiro GA, Prather KLJ. Rational engineering of Escherichia coli strains for plasmid biopharmaceutical manufacturing. Biotechnol J 2011; 7:251-61. [PMID: 21913330 DOI: 10.1002/biot.201100062] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/10/2011] [Accepted: 07/08/2011] [Indexed: 01/08/2023]
Abstract
Plasmid DNA (pDNA) has become very attractive as a biopharmaceutical, especially for gene therapy and DNA vaccination. Currently, there are a few products licensed for veterinary applications and numerous plasmids in clinical trials for use in humans. Recent work in both academia and industry demonstrates a need for technological and economical improvement in pDNA manufacturing. Significant progress has been achieved in plasmid design and downstream processing, but there is still a demand for improved production strains. This review focuses on engineering of Escherichia coli strains for plasmid DNA production, understanding the differences between the traditional use of pDNA for recombinant protein production and its role as a biopharmaceutical. We will present recent developments in engineering of E. coli strains, highlight essential genes for improvement of pDNA yield and quality, and analyze the impact of various process strategies on gene expression in pDNA production strains.
Collapse
Affiliation(s)
- Geisa A L Gonçalves
- Department of Bioengineering, Instituto Superior Técnico (IST), Lisbon, Portugal
| | | | | | | | | |
Collapse
|
44
|
Bohle K, Ross A. Plasmid DNA production for pharmaceutical use: Role of specific growth rate and impact on process design. Biotechnol Bioeng 2011; 108:2099-106. [DOI: 10.1002/bit.23138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 02/02/2023]
|
45
|
Vector insert-targeted integrative antisense expression system for plasmid stabilization. Mol Biotechnol 2011; 47:43-9. [PMID: 20607625 DOI: 10.1007/s12033-010-9310-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Some DNA vaccine and gene therapy vector-encoded transgenes are toxic to the E. coli plasmid production host resulting in poor production yields. For plasmid products undergoing clinical evaluation, sequence modification to eliminate toxicity is undesirable because an altered vector is a new chemical entity. We hypothesized that: (1) insert-encoded toxicity is mediated by unintended expression of a toxic insert-encoded protein from spurious bacterial promoters; and (2) that toxicity could be eliminated with antisense RNA-mediated translation inhibition. We developed the pINT PR PL vector, a chromosomally integrable RNA expression vector, and utilized it to express insert-complementary (anti-insert) RNA from a single defined site in the bacterial chromosome. Anti-insert RNA eliminated leaky fluorescent protein expression from a target plasmid. A toxic retroviral gag pol helper plasmid produced in a gag pol anti-insert strain had fourfold improved plasmid fermentation yields. Plasmid fermentation yields were also fourfold improved when a DNA vaccine plasmid containing a toxic Influenza serotype H1 hemagglutinin transgene was grown in an H1 sense strand anti-insert production strain, suggesting that in this case toxicity was mediated by an antisense alternative reading frame-encoded peptide. This anti-insert chromosomal RNA expression technology is a general approach to improve production yields with plasmid-based vectors that encode toxic transgenes, or toxic alternative frame peptides.
Collapse
|
46
|
Carnes AE, Luke JM, Vincent JM, Anderson S, Schukar A, Hodgson CP, Williams JA. Critical design criteria for minimal antibiotic-free plasmid vectors necessary to combine robust RNA Pol II and Pol III-mediated eukaryotic expression with high bacterial production yields. J Gene Med 2011; 12:818-31. [PMID: 20806425 DOI: 10.1002/jgm.1499] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND For safety considerations, regulatory agencies recommend the elimination of antibiotic resistance markers and non-essential sequences from plasmid DNA-based gene medicines. In the present study, we analyzed antibiotic-free (AF) vector design criteria impacting upon bacterial production and mammalian transgene expression. METHODS Both CMV-HTLV-I R RNA Pol II promoter (protein transgene) and murine U6 RNA Pol III promoter (RNA transgene) vector designs were studied. Plasmid production yield was assessed through inducible fed-batch fermentation. RNA Pol II-directed enhanced green fluorescent protein and RNA Pol III-directed RNA expression were quantified by fluorometry and quantitative real-time polymerase chain reaction, respectively, after transfection of human HEK293 cells. RESULTS Sucrose-selectable minimalized protein and therapeutic RNA expression vector designs that combined an RNA-based AF selection with highly productive fermentation manufacturing (>1000 mg/l plasmid DNA) and high-level in vivo expression of encoded products were identified. The AF selectable marker was also successfully applied to convert existing kanamycin-resistant DNA vaccine plasmids gWIZ and pVAX1 into AF vectors, demonstrating a general utility for retrofitting existing vectors. A minimum vector size for high yield plasmid fermentation was identified. A strategy for stable fermentation of plasmid dimers with improved vector potency and fermentation yields up to 1740 mg/l was developed. CONCLUSIONS We report the development of potent high yield AF gene medicine expression vectors for protein or RNA (e.g. short hairpin RNA or microRNA) products. These AF expression vectors were optimized to exceed a newly-identified size threshold for high copy plasmid replication and direct higher transgene expression levels than alternative vectors.
Collapse
|
47
|
Abstract
Methods to improve plasmid-mediated transgene expression are needed for gene medicine and gene vaccination applications. To maintain a low risk of insertional mutagenesis-mediated gene activation, expression-augmenting sequences would ideally function to improve transgene expression from transiently transfected intact plasmid, but not from spurious genomically integrated vectors. We report herein the development of potent minimal, antibiotic-free, high-manufacturing-yield mammalian expression vectors incorporating rationally designed additive combinations of expression enhancers. The SV40 72 bp enhancer incorporated upstream of the cytomegalovirus (CMV) enhancer selectively improved extrachromosomal transgene expression. The human T-lymphotropic virus type I (HTLV-I) R region, incorporated downstream of the CMV promoter, dramatically increased mRNA translation efficiency, but not overall mRNA levels, after transient transfection. A similar mRNA translation efficiency increase was observed with plasmid vectors incorporating and expressing the protein kinase R-inhibiting adenoviral viral associated (VA)1 RNA. Strikingly, HTLV-I R and VA1 did not increase transgene expression or mRNA translation efficiency from plasmid DNA after genomic integration. The vector platform, when combined with electroporation delivery, further increased transgene expression and improved HIV-1 gp120 DNA vaccine-induced neutralizing antibody titers in rabbits. These antibiotic-free vectors incorporating transient expression enhancers are safer, more potent alternatives to improve transgene expression for DNA therapy or vaccination.
Collapse
|
48
|
Coexpressed RIG-I agonist enhances humoral immune response to influenza virus DNA vaccine. J Virol 2010; 85:1370-83. [PMID: 21106745 DOI: 10.1128/jvi.01250-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Increasing levels of plasmid vector-mediated activation of innate immune signaling pathways is an approach to improve DNA vaccine-induced adaptive immunity for infectious disease and cancer applications. Retinoic acid-inducible gene I (RIG-I) is a critical cytoplasmic double-stranded RNA (dsRNA) pattern receptor required for innate immune activation in response to viral infection. Activation of RIG-I leads to type I interferon (IFN) and inflammatory cytokine production through interferon promoter stimulator 1 (IPS-1)-mediated activation of interferon regulatory factor 3 (IRF3) and NF-κB signaling. DNA vaccines coexpressing antigen and an expressed RNA (eRNA) RIG-I agonist were made, and the effect of RIG-I activation on antigen-specific immune responses to the encoded antigen was determined. Plasmid vector backbones expressing various RIG-I ligands from RNA polymerase III promoters were screened in a cell culture assay for RIG-I agonist activity, and optimized, potent RIG-I ligands were developed. One of these, eRNA41H, combines (i) eRNA11a, an immunostimulatory dsRNA expressed by convergent transcription, with (ii) adenovirus VA RNAI. eRNA41H was integrated into the backbone of DNA vaccine vectors expressing H5N1 influenza virus hemagglutinin (HA). The resultant eRNA vectors potently induced type 1 IFN production in cell culture through RIG-I activation and combined high-level HA antigen expression with RNA-mediated type I IFN activation in a single plasmid vector. The eRNA vectors induced increased HA-specific serum antibody binding avidity after naked DNA intramuscular prime and boost delivery in mice. This demonstrates that DNA vaccine potency may be augmented by the incorporation of RIG-I-activating immunostimulatory RNA into the vector backbone.
Collapse
|
49
|
Carnes AE, Luke JM, Vincent JM, Schukar A, Anderson S, Hodgson CP, Williams JA. Plasmid DNA fermentation strain and process-specific effects on vector yield, quality, and transgene expression. Biotechnol Bioeng 2010; 108:354-63. [DOI: 10.1002/bit.22936] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Ongkudon CM, Ho J, Danquah MK. Mitigating the looming vaccine crisis: production and delivery of plasmid-based vaccines. Crit Rev Biotechnol 2010; 31:32-52. [DOI: 10.3109/07388551.2010.483460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|