1
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
2
|
Deng J, Zhong Z, Geng C, Dai Z, Zheng W, Li Z, Yan Z, Yang J, Deng W, Tan W, Sun H, Li S. Herpes Simplex Type 1 UL43 Multiple Membrane-Spanning Protein Increases Energy Metabolism in Host Cells through Interacting with ARL2. Cells 2022; 11:cells11223594. [PMID: 36429022 PMCID: PMC9688820 DOI: 10.3390/cells11223594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Non-essential proteins for viral replication affect host cell metabolism, while the function of the UL43 protein of herpes simplex virus 1 (HSV-1) is not clear. Herein, we performed a comprehensive microarray analysis of HUVEC cells infected with HSV-1 and its UL43-deficient mutant and found significant variation in genes associated with cellular energy metabolic pathways. The localization of UL43 protein in host cells and how it affects cellular energy metabolism pathways were further investigated. Internalization analysis showed that the UL43 protein could be endocytosis-mediated by YPLF motif (aa144-147) and localized to mitochondria. At the same time, more ATP was produced by coupling with mitochondrial small G protein ARF-like 2 (ARL2) GTPase, which triggered the phosphorylation of ANT1 (SLC25A4) to affect the opening degree of mitochondrial permeability transition pore (mPTP), and significantly promoted the aerobic oxidation and oxidative phosphorylation of glucose. Our study shows that UL43 mediates the improvement of host cell metabolism after HSV-1 infection. Additionally, UL43 protein could be a valuable ATP-stimulating factor for mammalian cells.
Collapse
Affiliation(s)
- Jianshan Deng
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Zhiying Zhong
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chengxu Geng
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Zhenning Dai
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
- Department of Stomatology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou 510095, China
| | - Weihan Zheng
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
| | - Ziyue Li
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
| | - Zi Yan
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
| | - Jiaxin Yang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenfeng Deng
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510799, China
| | - Wei Tan
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Nanning 530005, China
- Correspondence: author: (W.T.); (H.S.); (S.L.)
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China
- Correspondence: author: (W.T.); (H.S.); (S.L.)
| | - Shiyu Li
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
- Department of Anatomy, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: author: (W.T.); (H.S.); (S.L.)
| |
Collapse
|
3
|
Abstract
Although the culture of VERO cells in bioreactors is an important industrial bioprocess for the production of viruses and vaccines, surprisingly few reports on the analysis of the flux distribution in the cell metabolism have been published. In this study, an attempt is made to fill this gap by providing an analysis of relatively simple metabolic networks, which are constructed to describe the cell behavior in different culture conditions, e.g., the exponential growth phase (availability of glucose and glutamine), cell growth without glutamine, and cell growth without glucose and glutamine. The metabolic networks are kept as simple as possible in order to avoid underdeterminacy linked to the lack of extracellular measurements, and a unique flux distribution is computed in each case based on a mild assumption that the macromolecular composition of the cell is known. The result of this computation provides some insight into the metabolic changes triggered by the culture conditions, which could support the design of feedback control strategies in fed batch or perfusion bioreactors where the lactate concentration is measured online and regulated by controlling the delivery rates of glucose and, possibly, of some essential amino acids.
Collapse
|
4
|
Li S, Liu S, Dai Z, Zhang Q, Xu Y, Chen Y, Jiang Z, Huang W, Sun H. The UL16 protein of HSV-1 promotes the metabolism of cell mitochondria by binding to ANT2 protein. Sci Rep 2021; 11:14001. [PMID: 34234233 PMCID: PMC8263751 DOI: 10.1038/s41598-021-93430-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
Long-term studies have shown that virus infection affects the energy metabolism of host cells, which mainly affects the function of mitochondria and leads to the hydrolysis of ATP in host cells, but it is not clear how virus infection participates in mitochondrial energy metabolism in host cells. In our study, HUVEC cells were infected with HSV-1, and the differentially expressed genes were obtained by microarray analysis and data analysis. The viral gene encoding protein UL16 was identified to interact with host protein ANT2 by immunoprecipitation and mass spectrometry. We also reported that UL16 transfection promoted oxidative phosphorylation of glucose and significantly increased intracellular ATP content. Furthermore, UL16 was transfected into the HUVEC cell model with mitochondrial dysfunction induced by d-Gal, and it was found that UL16 could restore the mitochondrial function of cells. It was first discovered that viral protein UL16 could enhance mitochondrial function in mammalian cells by promoting mitochondrial metabolism. This study provides a theoretical basis for the prevention and treatment of mitochondrial dysfunction or the pathological process related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shiyu Li
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuting Liu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhenning Dai
- Department of Stomatology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, 510095, China
| | - Qian Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yichao Xu
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Youyu Chen
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China.
| | - Wenhua Huang
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Kiesslich S, Kamen AA. Vero cell upstream bioprocess development for the production of viral vectors and vaccines. Biotechnol Adv 2020; 44:107608. [PMID: 32768520 PMCID: PMC7405825 DOI: 10.1016/j.biotechadv.2020.107608] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
The Vero cell line is considered the most used continuous cell line for the production of viral vectors and vaccines. Historically, it is the first cell line that was approved by the WHO for the production of human vaccines. Comprehensive experimental data on the production of many viruses using the Vero cell line can be found in the literature. However, the vast majority of these processes is relying on the microcarrier technology. While this system is established for the large-scale manufacturing of viral vaccine, it is still quite complex and labor intensive. Moreover, scale-up remains difficult and is limited by the surface area given by the carriers. To overcome these and other drawbacks and to establish more efficient manufacturing processes, it is a priority to further develop the Vero cell platform by applying novel bioprocess technologies. Especially in times like the current COVID-19 pandemic, advanced and scalable platform technologies could provide more efficient and cost-effective solutions to meet the global vaccine demand. Herein, we review the prevailing literature on Vero cell bioprocess development for the production of viral vectors and vaccines with the aim to assess the recent advances in bioprocess development. We critically underline the need for further research activities and describe bottlenecks to improve the Vero cell platform by taking advantage of recent developments in the cell culture engineering field.
Collapse
Affiliation(s)
- Sascha Kiesslich
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
6
|
Loubière C, Sion C, De Isla N, Reppel L, Guedon E, Chevalot I, Olmos E. Impact of the type of microcarrier and agitation modes on the expansion performances of mesenchymal stem cells derived from umbilical cord. Biotechnol Prog 2019; 35:e2887. [PMID: 31353825 DOI: 10.1002/btpr.2887] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/09/2019] [Accepted: 07/10/2019] [Indexed: 12/27/2022]
Abstract
The present study proposed to compare the impact of agitation mode (static, orbital, and mechanical) on the culture of mesenchymal stem cells extracted from the Wharton's jelly of umbilical cords (WJ-MSC), in a clinical grade culture medium, using human platelet lysate and different xeno-free microcarriers. Attachment, expansion, and detachment performances were characterized by a new dedicated tool of microscopic image posttreatment, allowing an in situ cell counting without detachment step. Results showed that performances in static mode were not necessarily representative of those obtained in dynamic mode. Moreover, impacts on nutrient consumptions and metabolite productions were identified, such as a higher glutamine consumption when Cytodex-1 microcarriers were used. The detachment strategy used was relatively efficient for Star-Plus, Plastic-Plus, and Hillex II, but not sufficient for Cytodex-1. Despite Cytodex-1 presented promising attachment and expansion performances, Star-Plus and Plastic-Plus showed a better compromise, respectively, for the orbital and the mechanical agitation modes.
Collapse
Affiliation(s)
- Céline Loubière
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, Nancy, France
| | - Caroline Sion
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, Nancy, France
| | - Natalia De Isla
- CNRS, IMoPA, UMR 7365, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | - Loic Reppel
- CNRS, IMoPA, UMR 7365, Vandoeuvre-lès-Nancy, France.,CHRU de Nancy, Unité de Thérapie cellulaire et Tissus and FR 3209, Vandoeuvre-lès-Nancy, France.,Faculté de Pharmacie, Département de Microbiologie-Immunologie, Université de Lorraine, Nancy, France
| | - Emmanuel Guedon
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, Nancy, France
| | - Isabelle Chevalot
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, Nancy, France
| | - Eric Olmos
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, Nancy, France
| |
Collapse
|
7
|
Accelerating bioprocess development by analysis of all available data: A USP case study. Vaccine 2019; 37:7081-7089. [PMID: 31337593 DOI: 10.1016/j.vaccine.2019.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/08/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022]
Abstract
Bioprocess development generates extensive datasets from different unit operations and sources (e.g. time series, quality measurements). The development of such processes can be accelerated by evaluating all data generated during the experimental design. This can only be achieved by having a clearly defined data logging and analysis strategy. The latter is described in this manuscript. It consists in a combination of a feature based approach along with principal component analysis and partial least square regression. Application of this combined strategy is illustrated by applying it in an upstream processing (USP) case study. Data from the development and optimization of an animal component free USP of Sabin inactivated poliovirus vaccine (sIPV) was evaluated. During process development, 26 bioreactor runs at scales ranging from 2.3 to 16 L were performed. Several operational parameters were varied, and data was routinely analyzed following a design of experiments (DoE) methodology. With the strategy described here, it became possible to scrutinize all data from the 26 runs in a single data study. This included the DoE response parameters, all data generated by the bioreactor control systems, all offline data, and its derived calculations. This resulted in a more detailed, reliable and exact view on the most important parameters affecting bioreactor performance. In this case study, the strategy was applied for the analysis of previously produced data. Further development will use this data analysis methodology for continuous enhancing and accelerating process development, intensified DoE and integrated process modelling.
Collapse
|
8
|
Jiang Y, van der Welle JE, Rubingh O, van Eikenhorst G, Bakker WAM, Thomassen YE. Kinetic model for adherent Vero cell growth and poliovirus production in batch bioreactors. Process Biochem 2019; 81:156-164. [PMID: 31217725 PMCID: PMC6559155 DOI: 10.1016/j.procbio.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mathematical model for Vero cell growth in batch bioreactors. Mathematical model for poliovirus proliferation on Vero cells. Oxygen uptake rate as process analytical technology for simple process monitoring.
The production of poliovirus vaccines in adherent Vero cells in batch bioreactors usually consists of a two-step upstream process: (1) Vero cell cultivation on microcarriers and (2) poliovirus proliferation. In this study we developed a mathematical model to describe this two-step process. We introduced the calculation of the oxygen uptake rate (OUR) and a correction of measurement for the sampling effect in order to ensure the high quality data sets. Besides the data of the OUR, we selected glucose concentration, Vero cell concentration and the virus titer for daily in process control to evaluate the progress of the process. With the selected data sets, the described model can accurately describe poliovirus production by Vero cells. Several other regular in process control samples (e.g. lactate concentration, ammonia concentration, and amino acids concentration) were excluded from the model, simplifying the process control analysis and minimizing labor.
Collapse
Affiliation(s)
- Yang Jiang
- Intravacc, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | | - Olaf Rubingh
- Intravacc, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | | - Wilfried A M Bakker
- Intravacc, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Yvonne E Thomassen
- Intravacc, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
9
|
Abbate T, Dewasme L, Vande Wouwer A. Variable selection and parameter estimation of viral amplification in vero cell cultures dedicated to the production of a dengue vaccine. Biotechnol Prog 2018; 35:e2687. [PMID: 30009565 DOI: 10.1002/btpr.2687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/19/2018] [Indexed: 01/29/2023]
Abstract
In this study, a dynamic model of a Vero cell culture-based dengue vaccine production process is developed. The approach consists in describing the process dynamics as functions of the whole living (uninfected and infected) biomass whereas previous works are based on population balance approaches. Based on the assumption that infected biomass evolves faster than other variable, the model can be simplified using a slow-fast approximation. The structural identifiability of the model is analysed using differential algebra as implemented in the software DAISY. The model parameters are inferred from experimental datasets collected from an actual vaccine production process and the model predictive capability is confirmed both in direct and cross-validation. The model prediction shows the impact of the metabolism on virus yield and confirms observations reported in previous studies. Multi-modality and sensitivity analysis complement the parameter estimation, and allow to obtain confidence intervals on both parameters and state estimates. Finally, the model is used to compute the maximum infectious virus yield that can be obtained for different combinations of multiplicity of infection (MOI) and time of infection (TOI). © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2687, 2019.
Collapse
Affiliation(s)
- Thomas Abbate
- Automatic Control Laboratory, University of Mons, Mons, Belgium
| | - Laurent Dewasme
- Automatic Control Laboratory, University of Mons, Mons, Belgium
| | | |
Collapse
|
10
|
Grein TA, Loewe D, Dieken H, Salzig D, Weidner T, Czermak P. High titer oncolytic measles virus production process by integration of dielectric spectroscopy as online monitoring system. Biotechnol Bioeng 2018; 115:1186-1194. [DOI: 10.1002/bit.26538] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/30/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Tanja A. Grein
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
| | - Daniel Loewe
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
| | - Hauke Dieken
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
| | - Tobias Weidner
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
- Faculty of Biology and Chemistry; Justus Liebig University; Giessen Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME); Project group Bioresources; Giessen Germany
| |
Collapse
|
11
|
Petiot E, Cuperlovic-Culf M, Shen CF, Kamen A. Influence of HEK293 metabolism on the production of viral vectors and vaccine. Vaccine 2015; 33:5974-81. [DOI: 10.1016/j.vaccine.2015.05.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 12/17/2022]
|
12
|
Mathematical model of adherent Vero cell growth and poliovirus production in animal component free medium. Bioprocess Biosyst Eng 2014; 38:543-55. [PMID: 25294335 DOI: 10.1007/s00449-014-1294-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/23/2014] [Indexed: 12/12/2022]
Abstract
Sabin-IPV (or sIPV, inactivated polio vaccine based on attenuated Sabin strains) is anticipated to replace the oral polio vaccine for the endgame in polio eradication. Optimization of sIPV production will lead to a better economically feasible vaccine. To assist process optimization, we studied Sabin type 1 poliovirus (PV) infection kinetics on Vero cells in controlled bioreactor vessels. The aim of our study was to develop a descriptive mathematical model able to capture the dynamics of adherent Vero cell growth and PV infection kinetics in animal component free medium. The model predicts the cell density, metabolites profiles, and viral yields in time. We found that the multiplicity of infection (MOI) and the time of infection (TOI) within the investigated range did not affect maximal PV yields, but they did affect the process time. The latter may be reduced by selecting a low TOI and a high MOI. Additionally, we present a correlation between viral titers and D-antigen, a measure for immunogenicity, of Sabin type 1 PV. The developed model is adequate for further studies of the cell metabolism and infection kinetics and may be used to identify control strategies to increase viral productivity. Increased viral yields reduce costs of polio vaccines with large implications on public health.
Collapse
|
13
|
Trabelsi K, Majoul S, Rourou S, Kallel H. Process intensification for an enhanced replication of a newly adapted RM-65 sheep pox virus strain in Vero cells grown in stirred bioreactor. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Thomassen YE, Rubingh O, Wijffels RH, van der Pol LA, Bakker WAM. Improved poliovirus D-antigen yields by application of different Vero cell cultivation methods. Vaccine 2014; 32:2782-8. [PMID: 24583004 PMCID: PMC5355417 DOI: 10.1016/j.vaccine.2014.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vero cells were grown in batch, semi-batch, perfusion and recirculation strategies. At high cell densities (to 5 × 106 cells mL−1) cells were infected with poliovirus. Increased cell densities allowed 3 fold increase in d-antigen yield. Cell specific d-antigen yields were lower at higher cell densities. The semi-batch cultivation strategy is most promising for optimization.
Vero cells were grown adherent to microcarriers (Cytodex 1; 3 g L−1) using animal component free media in stirred-tank type bioreactors. Different strategies for media refreshment, daily media replacement (semi-batch), continuous media replacement (perfusion) and recirculation of media, were compared with batch cultivation. Cell densities increased using a feed strategy from 1 × 106 cells mL−1 during batch cultivation to 1.8, 2.7 and 5.0 × 106 cells mL−1 during semi-batch, perfusion and recirculation, respectively. The effects of these different cell culture strategies on subsequent poliovirus production were investigated. Increased cell densities allowed up to 3 times higher d-antigen levels when compared with that obtained from batch-wise Vero cell culture. However, the cell specific d-antigen production was lower when cells were infected at higher cell densities. This cell density effect is in good agreement with observations for different cell lines and virus types. From the evaluated alternative culture methods, application of a semi-batch mode of operations allowed the highest cell specific d-antigen production. The increased product yields that can easily be reached using these higher cell density cultivation methods, showed the possibility for better use of bioreactor capacity for the manufacturing of polio vaccines to ultimately reduce vaccine cost per dose. Further, the use of animal-component-free cell- and virus culture media shows opportunities for modernization of human viral vaccine manufacturing.
Collapse
Affiliation(s)
- Yvonne E Thomassen
- Institute for Translational Vaccinology, Process Development, PO BOX 450, Bilthoven 3720 AL, The Netherlands
| | - Olaf Rubingh
- Institute for Translational Vaccinology, Process Development, PO BOX 450, Bilthoven 3720 AL, The Netherlands
| | - René H Wijffels
- Wageningen University, Bioprocess Engineering, PO BOX 8129, Wageningen 6700 EV, The Netherlands
| | - Leo A van der Pol
- Institute for Translational Vaccinology, Process Development, PO BOX 450, Bilthoven 3720 AL, The Netherlands
| | - Wilfried A M Bakker
- Institute for Translational Vaccinology, Process Development, PO BOX 450, Bilthoven 3720 AL, The Netherlands.
| |
Collapse
|
15
|
Mosser M, Chevalot I, Olmos E, Blanchard F, Kapel R, Oriol E, Marc I, Marc A. Combination of yeast hydrolysates to improve CHO cell growth and IgG production. Cytotechnology 2012; 65:629-41. [PMID: 23239488 DOI: 10.1007/s10616-012-9519-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 11/18/2012] [Indexed: 11/28/2022] Open
Abstract
Many studies underlined the great benefits of hydrolysates used as additives in animal free media on cell culture performances. However, to precisely define hydrolysate supplementation strategies, a deeper understanding of their effect on cell growth and protein production is required. In the present study, the effect of addition of one yeast extract (YE) and two yeast peptones (named YP.A and YP.B) in a chemically defined medium was first assessed on cell culture performances. Interestingly, specific effects were found depending on the degree of degradation of yeast hydrolysates. The YE at 1 g L(-1) increased the maximal cell density by 70 %, while a mixture of YE (1 g L(-1)) and YP.A (4 g L(-1)) increased IgG production by 180 %. These conditions were then evaluated on the CHO cell kinetics all over cultures. Hydrolysates extended the cell growth phase in Erlenmeyer flask and increased the maximal growth rate in bioreactor up to 20 %. Cell growth stimulation induced by hydrolysates addition was linked with energetic metabolism improvement suggesting that they promote oxidative pathway. Furthermore, hydrolysates provided an additional source of substrate that supported cell growth despite glutamine limitation.
Collapse
Affiliation(s)
- Mathilde Mosser
- CNRS, Laboratoire Réactions et Génie des Procédés, UPR- 3349, 2 avenue de la forêt de Haye, 54505, Vandœuvre-lès-Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abrantes JL, Alves CM, Costa J, Almeida FCL, Sola-Penna M, Fontes CFL, Souza TML. Herpes simplex type 1 activates glycolysis through engagement of the enzyme 6-phosphofructo-1-kinase (PFK-1). Biochim Biophys Acta Mol Basis Dis 2012; 1822:1198-206. [PMID: 22542512 DOI: 10.1016/j.bbadis.2012.04.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 04/09/2012] [Accepted: 04/12/2012] [Indexed: 01/17/2023]
Abstract
UNLABELLED Viruses such as HIV, HCV, Mayaro and HCMV affect cellular metabolic pathways, including glycolysis. Although some studies have suggested that the inhibition of glycolysis affects HSV-1 replication and that HSV-1-infected eyes have increased lactate production, the mechanisms by which HSV-1 induces glycolysis have never been investigated in detail. In this study, we observed an increase in glucose uptake, lactate efflux and ATP content in HSV-1-infected cells. HSV-1 triggered a MOI-dependent increase in the activity of phosphofructokinase-1 (PFK-1), a key rate-limiting enzyme of the glycolytic pathway. After HSV-1 infection, we observed increased PFK-1 expression, which increased PFK-1 total activity, and the phosphorylation of this enzyme at serine residues. HSV-1-induced glycolysis was associated with increased ATP content, and these events were critical for viral replication. In summary, our results suggest that HSV-1 triggers glycolysis through a different mechanism than other herpesviruses, such as HCMV. Thus, this study contributes to a better understanding of HSV-1 pathogenesis and provides insights into novel targets for antiviral therapy. HIGHLIGHTS ►HSV-1 activates glycolysis by PFK-1 activation. ►In HSV-1-infected cells PFK-1 synthesis is up-regulated and phosphorylated at serine residues. ►PFK-1 knockdown impairs HSV-1 replication. ►HSV-1-mediated glycolysis activation increases ATP content.
Collapse
Affiliation(s)
- Juliana L Abrantes
- Laboratório de Estrutura e Regulação de Proteínas e ATPases, Programa de Pós-Graduação em Química Biológica, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | |
Collapse
|
17
|
Petiot E, El-Wajgali A, Esteban G, Gény C, Pinton H, Marc A. Real-time monitoring of adherent Vero cell density and apoptosis in bioreactor processes. Cytotechnology 2012; 64:429-41. [PMID: 22367019 DOI: 10.1007/s10616-011-9421-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 12/16/2011] [Indexed: 10/28/2022] Open
Abstract
This study proposes an easy to use in situ device, based on multi-frequency permittivity measurements, to monitor the growth and death of attached Vero cells cultivated on microporous microcarriers, without any cell sampling. Vero cell densities were on-line quantified up to 10(6) cell mL(-1). Some parameters which could potentially impact Vero cell morphological and physiological states were assessed through different culture operating conditions, such as media formulation or medium feed-harvest during cell growth phase. A new method of in situ cell death detection with dielectric spectroscopy was also successfully implemented. Thus, through permittivity frequency scanning, major rises of the apoptotic cell population in bioreactor cultures were detected by monitoring the characteristic frequency of the cell population, f(c), which is one of the culture dielectric parameters. Both cell density quantification and cell apoptosis detection are strategic information in cell-based production processes as they are involved in major events of the process, such as scale-up or choice of the viral infection conditions. This new application of dielectric spectroscopy to adherent cell culture processes makes it a very promising tool for risk-mitigation strategy in industrial processes. Therefore, our results contribute to the development of Process Analytical Technology in cell-based industrial processes.
Collapse
Affiliation(s)
- Emma Petiot
- Laboratoire Réactions et Génie des Procédés, UPR CNRS 3349, Nancy-Université, 2 avenue de la Forêt de Haye, 54505, Vandoeuvre-lès-Nancy Cedex, France,
| | | | | | | | | | | |
Collapse
|
18
|
Thomassen YE, van der Welle JE, van Eikenhorst G, van der Pol LA, Bakker WA. Transfer of an adherent Vero cell culture method between two different rocking motion type bioreactors with respect to cell growth and metabolic rates. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Petiot E, Jacob D, Lanthier S, Lohr V, Ansorge S, Kamen AA. Metabolic and kinetic analyses of influenza production in perfusion HEK293 cell culture. BMC Biotechnol 2011; 11:84. [PMID: 21884612 PMCID: PMC3175177 DOI: 10.1186/1472-6750-11-84] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/01/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell culture-based production of influenza vaccine remains an attractive alternative to egg-based production. Short response time and high production yields are the key success factors for the broader adoption of cell culture technology for industrial manufacturing of pandemic and seasonal influenza vaccines. Recently, HEK293SF cells have been successfully used to produce influenza viruses, achieving hemagglutinin (HA) and infectious viral particle (IVP) titers in the highest ranges reported to date. In the same study, it was suggested that beyond 4 × 10(6) cells/mL, viral production was limited by a lack of nutrients or an accumulation of toxic products. RESULTS To further improve viral titers at high cell densities, perfusion culture mode was evaluated. Productivities of both perfusion and batch culture modes were compared at an infection cell density of 6 × 10(6) cells/mL. The metabolism, including glycolysis, glutaminolysis and amino acids utilization as well as physiological indicators such as viability and apoptosis were extensively documented for the two modes of culture before and after viral infection to identify potential metabolic limitations. A 3 L bioreactor with a perfusion rate of 0.5 vol/day allowed us to reach maximal titers of 3.3 × 10(11) IVP/mL and 4.0 logHA units/mL, corresponding to a total production of 1.0 × 10(15) IVP and 7.8 logHA units after 3 days post-infection. Overall, perfusion mode titers were higher by almost one order of magnitude over the batch culture mode of production. This improvement was associated with an activation of the cell metabolism as seen by a 1.5-fold and 4-fold higher consumption rates of glucose and glutamine respectively. A shift in the viral production kinetics was also observed leading to an accumulation of more viable cells with a higher specific production and causing an increase in the total volumetric production of infectious influenza particles. CONCLUSIONS These results confirm that the HEK293SF cell is an excellent substrate for high yield production of influenza virus. Furthermore, there is great potential in further improving the production yields through better control of the cell culture environment and viral production kinetics. Once accomplished, this cell line can be promoted as an industrial platform for cost-effective manufacturing of the influenza seasonal vaccine as well as for periods of peak demand during pandemics.
Collapse
Affiliation(s)
- Emma Petiot
- Biotechnology Research Institute, 6100 Royalmount Avenue, Montreal, H4P 2R2 Québec, Canada
| | | | | | | | | | | |
Collapse
|