1
|
Moran MJ, Chen J, Piret JM, Balcarcel RR. Super7 passaging method to improve Chinese hamster ovary cell fed-batch performance. Biotechnol Bioeng 2024; 121:3068-3075. [PMID: 38659198 DOI: 10.1002/bit.28723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
Chinese hamster ovary (CHO) cells are widely used to manufacture biopharmaceuticals, most of all monoclonal antibodies (mAbs). Some CHO cell lines exhibit production instability, where the productivity of the cells decreases as a function of time in culture. To counter this, we designed a passaging strategy that, rather than maximizing the time spent in log-growth phase, mimics the first 7 days of a fed-batch production process. Cultures passaged using this method had lower net growth rates and were more oxidative throughout 6 weeks of passaging. Fed-batch cultures inoculated by cells passaged using this method had increased net growth rates, oxidative metabolism, and volumetric productivity compared to cells passaged using a conventional strategy. Cells from unstable cell lines passaged by this new method produced 80%-160% more mAbs per unit volume than cells passaged by a conventional method. This new method, named Super7, provides the ability to mitigate the impact of production instability in CHO-K1 cell lines without a need for further cell line creation, genetic engineering, or medium development.
Collapse
Affiliation(s)
- Matthew J Moran
- Bayer U.S. LLC, Pharmaceuticals, BD Cell Culture Development, Berkeley, California, USA
| | - Jin Chen
- Bayer U.S. LLC, Pharmaceuticals, BD Cell Culture Development, Berkeley, California, USA
| | - James M Piret
- Department of Chemical & Biological Engineering, Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - R Robert Balcarcel
- Bayer U.S. LLC, Pharmaceuticals, BD Cell Culture Development, Berkeley, California, USA
| |
Collapse
|
2
|
Splichal RC, Chen K, Walton SP, Chan C. The Role of Endoplasmic Reticulum Stress on Reducing Recombinant Protein Production in Mammalian Cells. Biochem Eng J 2024; 210:109434. [PMID: 39220803 PMCID: PMC11360842 DOI: 10.1016/j.bej.2024.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Therapeutic recombinant protein production relies on industrial scale culture of mammalian cells to produce active proteins in quantities sufficient for clinical use. The combination of stresses from industrial cell culture environment and recombinant protein production can overwhelm the protein synthesis machinery in the endoplasmic reticulum (ER). This leads to a buildup of improperly folded proteins which induces ER stress. Cells respond to ER stress by activating the Unfolded Protein Response (UPR). To restore proteostasis, ER sensor proteins reduce global protein synthesis and increase chaperone protein synthesis, and if that is insufficient the proteins are degraded. If proteostasis is still not restored, apoptosis is initiated. Increasing evidence suggests crosstalk between ER proteostasis and DNA damage repair (DDR) pathways. External factors (e.g., metabolites) from the cellular environment as well as internal factors (e.g., transgene copy number) can impact genome stability. Failure to maintain genome integrity reduces cell viability and in turn protein production. This review focuses on the association between ER stress and processes that affect protein production and secretion. The processes mediated by ER stress, including inhibition of global protein translation, chaperone protein production, degradation of misfolded proteins, DNA repair, and protein secretion, impact recombinant protein production. Recombinant protein production can be reduced by ER stress through increased autophagy and protein degradation, reduced protein secretion, and reduced DDR response.
Collapse
Affiliation(s)
- R. Chauncey Splichal
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Kevin Chen
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - S. Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI, USA
- Department of Computer Science and Engineering, Michigan State University, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Medical Devices, Michigan State University, MI, USA
| |
Collapse
|
3
|
Desmurget C, Perilleux A, Souquet J, Borth N, Douet J. Molecular biomarkers identification and applications in CHO bioprocessing. J Biotechnol 2024; 392:11-24. [PMID: 38852681 DOI: 10.1016/j.jbiotec.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Biomarkers are valuable tools in clinical research where they allow to predict susceptibility to diseases, or response to specific treatments. Likewise, biomarkers can be extremely useful in the biomanufacturing of therapeutic proteins. Indeed, constraints such as short timelines and the need to find hyper-productive cells could benefit from a data-driven approach during cell line and process development. Many companies still rely on large screening capacities to develop productive cell lines, but as they reach a limit of production, there is a need to go from empirical to rationale procedures. Similarly, during bioprocessing runs, substrate consumption and metabolism wastes are commonly monitored. None of them possess the ability to predict the culture behavior in the bioreactor. Big data driven approaches are being adapted to the study of industrial mammalian cell lines, enabled by the publication of Chinese hamster and CHO genome assemblies which allowed the use of next-generation sequencing with these cells, as well as continuous proteome and metabolome annotation. However, if these different -omics technologies contributed to the characterization of CHO cells, there is a significant effort remaining to apply this knowledge to biomanufacturing methods. The correlation of a complex phenotype such as high productivity or rapid growth to the presence or expression level of a specific biomarker could save time and effort in the screening of manufacturing cell lines or culture conditions. In this review we will first discuss the different biological molecules that can be identified and quantified in cells, their detection techniques, and associated challenges. We will then review how these markers are used during the different steps of cell line and bioprocess development, and the inherent limitations of this strategy.
Collapse
Affiliation(s)
- Caroline Desmurget
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Arnaud Perilleux
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Jonathan Souquet
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julien Douet
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland.
| |
Collapse
|
4
|
Hisada T, Imai Y, Takemoto Y, Kanie K, Kato R. Prediction of antibody production performance change in Chinese hamster ovary cells using morphological profiling. J Biosci Bioeng 2024; 137:453-462. [PMID: 38472072 DOI: 10.1016/j.jbiosc.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 03/14/2024]
Abstract
Monoclonal antibodies (mAbs) represent a significant segment of biopharmaceuticals, with the market for mAb therapeutics expected to reach $200 billion in 2021. Chinese Hamster Ovary (CHO) cells are the industry standard for large-scale mAb production owing to their adaptability and genetic engineering capabilities. However, maintaining consistent product quality is challenging, primarily because of the inherent genetic instability of CHO cells. In this study, we address the need for advanced technologies for quality monitoring of host cells in biopharmaceuticals. We highlight the limitations of traditional cell assessment techniques such as flow cytometry and propose a noninvasive, label-free image-based analysis method. By utilizing advanced image processing and machine learning, this technique aims to non-invasively and quantitatively evaluate subtle quality changes in suspension cells. The research aims to investigate the use of morphological analysis for identifying subtle alterations in mAb productivity of CHO cells, employing cells stimulated by compounds as a model for this study. Our results show that the mAb productivity of CHO cells (day 8) can be predicted only from their early morphological profile (day 3). Our study also discusses the importance of strategic methods for forecasting host cell mAb productivity using morphological profiles, as inferred from our machine learning models specialized in predictive score prediction and anomaly prediction.
Collapse
Affiliation(s)
- Takumi Hisada
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yuta Imai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yuto Takemoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Kei Kanie
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, 1 Umanobe, Takaya, Higashi-Hiroshima 739-2116, Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; Institute of Nano-Life-Systems, Institute for Innovation for Future Society, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
5
|
Cordova LT, Dahodwala H, Cooley R, Lee KH. Prediction of CHO cell line stability using expression of DNA repair genes. Biotechnol J 2024; 19:e2300425. [PMID: 37970758 DOI: 10.1002/biot.202300425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Chinese hamster ovary (CHO) cells are essential to biopharmaceutical manufacturing and production instability, the loss of productivity over time, is a long-standing challenge in the industry. Accurate prediction of cell line stability could enable efficient screening to identify clones suitable for manufacturing saving significant time and costs. DNA repair genes may offer biomarkers to address this need. In this study, over 40 cell lines representing various host lineages from three companies/organizations were evaluated for expression of five DNA repair genes (Fam35a, Lig4, Palb2, Pari, and Xrcc6). Expression measured in cells with less than 30 population doubling levels (PDLs) was correlated to stability profiles at 60+ PDL. Principal component analysis identified markers which separate stable and unstable CHO-DG44 cell lines. Notably, two genes, Lig4 and Xrcc6, showed higher expression in unstable CHO-DG44 cell lines with copy number loss identified as the mechanism of production instability. Expression levels across all cell ages showed lower DNA repair gene expression was associated with increased cell age. Collectively, DNA repair genes provide critical insight into long-term behavior of CHO cells and their expression levels have potential to predict cell line stability in certain cases.
Collapse
Affiliation(s)
- Lauren T Cordova
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Hussain Dahodwala
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, Delaware, USA
| | - Rebecca Cooley
- Pfizer, Inc, 875 Chesterfield Pkwy W, Chesterfield, Missouri, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, Delaware, USA
| |
Collapse
|
6
|
Barnard GC, Zhou M, Shen A, Yuk IH, Laird MW. Utilizing targeted integration CHO pools to potentially accelerate the GMP manufacturing of monoclonal and bispecific antibodies. Biotechnol Prog 2024; 40:e3399. [PMID: 37874920 DOI: 10.1002/btpr.3399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023]
Abstract
Monoclonal antibodies (mAbs) are effective therapeutic agents against many acute infectious diseases including COVID-19, Ebola, RSV, Clostridium difficile, and Anthrax. mAbs can therefore help combat a future pandemic. Unfortunately, mAb development typically takes years, limiting its potential to save lives during a pandemic. Therefore "pandemic mAb" timelines need to be shortened. One acceleration tool is "deferred cloning" and leverages new Chinese hamster ovary (CHO) technology based on targeted gene integration (TI). CHO pools, instead of CHO clones, can be used for Phase I/II clinical material production. A final CHO clone (producing the mAb with a similar product quality profile and preferably with a higher titer) can then be used for Phase III trials and commercial manufacturing. This substitution reduces timelines by ~3 months. We evaluated our novel CHO TI platform to enable deferred cloning. We created four unique CHO pools expressing three unique mAbs (mAb1, mAb2, and mAb3), and a bispecific mAb (BsAb1). We then performed single-cell cloning for mAb1 and mAb2, identifying three high-expressing clones from each pool. CHO pools and clones were inoculated side-by-side in ambr15 bioreactors. CHO pools yielded mAb titers as high as 10.4 g/L (mAb3) and 7.1 g/L (BsAb1). Subcloning yielded CHO clones expressing higher titers relative to the CHO pools while yielding similar product quality profiles. Finally, we showed that CHO TI pools were stable by performing a 3-month cell aging study. In summary, our CHO TI platform can increase the speed to clinic for a future "pandemic mAb."
Collapse
Affiliation(s)
- Gavin C Barnard
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Michelle Zhou
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Amy Shen
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Inn H Yuk
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Michael W Laird
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| |
Collapse
|
7
|
Huang Z, Habib A, Zhao G, Ding X. CRISPR-Cas9 Mediated Stable Expression of Exogenous Proteins in the CHO Cell Line through Site-Specific Integration. Int J Mol Sci 2023; 24:16767. [PMID: 38069090 PMCID: PMC10706275 DOI: 10.3390/ijms242316767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are a popular choice in biopharmaceuticals because of their beneficial traits, including high-density suspension culture, safety, and exogenously produced proteins that closely resemble natural proteins. Nevertheless, a decline in the expression of exogenous proteins is noted as culture time progresses. This is a consequence of foreign gene recombination into chromosomes by random integration. The current investigation employs CRISPR-Cas9 technology to integrate foreign genes into a particular chromosomal location for sustained expression. Results demonstrate the successful integration of enhanced green fluorescent protein (EGFP) and human serum albumin (HSA) near base 434814407 on chromosome NC_048595.1 of CHO-K1 cells. Over 60 successive passages, monoclonal cell lines were produced that consistently expressed all relevant external proteins without discernible variation in expression levels. In conclusion, the CHO-K1 cell locus, NC_048595.1, proves an advantageous locus for stable exogenous protein expression. This study provides a viable approach to establishing a CHO cell line capable of enduring reliable exogenous protein expression.
Collapse
Affiliation(s)
- Zhipeng Huang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Arslan Habib
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guoping Zhao
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoming Ding
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
8
|
Torres M, Betts Z, Scholey R, Elvin M, Place S, Hayes A, Dickson AJ. Long term culture promotes changes to growth, gene expression, and metabolism in CHO cells that are independent of production stability. Biotechnol Bioeng 2023; 120:2389-2402. [PMID: 37060548 DOI: 10.1002/bit.28399] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Phenotypic stability of Chinese hamster ovary (CHO) cells over long term culture (LTC) presents one of the most pressing challenges in the development of therapeutic protein manufacturing processess. However, our current understanding of the consequences of LTC on recombinant (r-) CHO cell lines is still limited, particularly as clonally-derived cell lines present distinct production stability phenotypes. This study evaluated changes of culture performance, global gene expression, and cell metabolism of two clonally-derived CHO cell lines with a stable or unstable phenotype during the LTC (early [EP] vs. late [LP] culture passages). Our findings indicated that LTC altered the behavior of CHO cells in culture, in terms of growth, overall gene expression, and cell metabolism. Regardless whether cells were categorized as stable or unstable in terms of r-protein production, CHO cells at LP presented an earlier decline in cell viability and loss of any observable stationary phase. These changes were parallelled by the upregulation of genes involved in cell proliferation and survival pathways (i.e., MAPK/ERK, PI3K-Akt). Stable and unstable CHO cell lines both showed increased consumption of glucose and amino acids at LP, with a parallel accumulation of greater amounts of lactate and TCA cycle intermediates. In terms of production stability, we found that decreased r-protein production in the unstable cell line directly correlated to the loss in r-gene copy number and r-mRNA expression. Our data revealed that LTC produced ubiquitious effects on CHO cell phenotypes, changes that were rooted in alterations in cell transcriptome and metabolome. Overall, we found that CHO cells adapted their cellular function to proliferation and survival during the LTC, some of these changes may well have limited effects on overall yield or specific productivity of the desired r-product, but they may be critical toward the capacity of cells to handle r-proteins with specific molecular features.
Collapse
Affiliation(s)
- Mauro Torres
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Zeynep Betts
- Department of Biology, Kocaeli University, İzmit, Turkey
| | - Rachel Scholey
- Bioinformatics Core Facility, University of Manchester, Manchester, UK
| | - Mark Elvin
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Svetlana Place
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Andrew Hayes
- Genomic Technologies Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Lukšić F, Mijakovac A, Josipović G, Vičić Bočkor V, Krištić J, Cindrić A, Vinicki M, Rokić F, Vugrek O, Lauc G, Zoldoš V. Long-Term Culturing of FreeStyle 293-F Cells Affects Immunoglobulin G Glycome Composition. Biomolecules 2023; 13:1245. [PMID: 37627310 PMCID: PMC10452533 DOI: 10.3390/biom13081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Glycosylation of IgG regulates the effector function of this antibody in the immune response. Glycosylated IgG is a potent therapeutic used for both research and clinical purposes. While there is ample research on how different cell culture conditions affect IgG glycosylation, the data are missing on the stability of IgG glycome during long cell passaging, i.e., cell "aging". To test this, we performed three independent time course experiments in FreeStyle 293-F cells, which secrete IgG with a human-like glycosylation pattern and are frequently used to generate defined IgG glycoforms. During long-term cell culturing, IgG glycome stayed fairly stable except for galactosylation, which appeared extremely variable. Cell transcriptome analysis revealed no correlation in galactosyltransferase B4GALT1 expression with galactosylation change, but with expression of EEF1A1 and SLC38A10, genes previously associated with IgG galactosylation through GWAS. The FreeStyle 293-F cell-based system for IgG production is a good model for studies of mechanisms underlying IgG glycosylation, but results from the present study point to the utmost importance of the need to control IgG galactosylation in both in vitro and in vivo systems. This is especially important for improving the production of precisely glycosylated IgG for therapeutic purposes, since IgG galactosylation affects the inflammatory potential of IgG.
Collapse
Affiliation(s)
- Fran Lukšić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Anika Mijakovac
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Goran Josipović
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Vedrana Vičić Bočkor
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | | | - Ana Cindrić
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Martina Vinicki
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Filip Rokić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Oliver Vugrek
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Vlatka Zoldoš
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Feng T, Minevich G, Liu P, Qin HX, Wozniak G, Pham J, Pham K, Korgaonkar A, Kurnellas M, Defranoux NA, Long H, Mitra A, Hu F. AAV- GRN partially corrects motor deficits and ALS/FTLD-related pathology in Tmem106b-/-Grn-/- mice. iScience 2023; 26:107247. [PMID: 37519899 PMCID: PMC10371829 DOI: 10.1016/j.isci.2023.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Loss of function of progranulin (PGRN), encoded by the granulin (GRN) gene, is implicated in several neurodegenerative diseases. Several therapeutics to boost PGRN levels are currently in clinical trials. However, it is difficult to test the efficacy of PGRN-enhancing drugs in mouse models due to the mild phenotypes of Grn-/- mice. Recently, mice deficient in both PGRN and TMEM106B were shown to develop severe motor deficits and pathology. Here, we show that intracerebral ventricle injection of PGRN-expressing AAV1/9 viruses partially rescues motor deficits, neuronal loss, glial activation, and lysosomal abnormalities in Tmem106b-/-Grn-/- mice. Widespread expression of PGRN is detected in both the brain and spinal cord for both AAV subtypes. However, AAV9 but not AAV1-mediated expression of PGRN results in high levels of PGRN in the serum. Together, these data support using the Tmem106b-/-Grn-/- mouse strain as a robust mouse model to determine the efficacy of PGRN-elevating therapeutics.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Pengan Liu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Henry Xin Qin
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Jenny Pham
- Alector Inc, South San Francisco, CA 94080, USA
| | - Khanh Pham
- Alector Inc, South San Francisco, CA 94080, USA
| | | | | | | | - Hua Long
- Alector Inc, South San Francisco, CA 94080, USA
| | | | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Kalkan AK, Palaz F, Sofija S, Elmousa N, Ledezma Y, Cachat E, Rios-Solis L. Improving recombinant protein production in CHO cells using the CRISPR-Cas system. Biotechnol Adv 2023; 64:108115. [PMID: 36758652 DOI: 10.1016/j.biotechadv.2023.108115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Chinese hamster ovary (CHO) cells are among the most widely used mammalian cell lines in the biopharmaceutical industry. Therefore, it is not surprising that significant efforts have been made around the engineering of CHO cells using genetic engineering methods such as the CRISPR-Cas system. In this review, we summarize key recent studies that have used different CRISPR-Cas systems such as Cas9, Cas13 or dCas9 fused with effector domains to improve recombinant protein (r-protein) production in CHO cells. Here, every relevant stage of production was considered, underscoring the advantages and limitations of these systems, as well as discussing their bottlenecks and probable solutions. A special emphasis was given on how these systems could disrupt and/or regulate genes related to glycan composition, which has relevant effects over r-protein properties and in vivo activity. Furthermore, the related promising future applications of CRISPR to achieve a tunable, reversible, or highly stable editing of CHO cells are discussed. Overall, the studies covered in this review show that despite the complexity of mammalian cells, the synthetic biology community has developed many mature strategies to improve r-protein production using CHO cells. In this regard, CRISPR-Cas technology clearly provides efficient and flexible genetic manipulation and allows for the generation of more productive CHO cell lines, leading to more cost-efficient production of biopharmaceuticals, however, there is still a need for many emerging techniques in CRISPR to be reported in CHO cells; therefore, more research in these cells is needed to realize the full potential of this technology.
Collapse
Affiliation(s)
- Ali Kerem Kalkan
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Environmental Engineering Department, Gebze Technical University, Turkey
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Semeniuk Sofija
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nada Elmousa
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Yuri Ledezma
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK; Biology Department, Faculty of Pure and Natural Sciences, Universidad Mayor de San Andrés, Bolivia
| | - Elise Cachat
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences University of Edinburgh, Edinburgh EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Leonardo Rios-Solis
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK; School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
12
|
Clappier C, Böttner D, Heinzelmann D, Stadermann A, Schulz P, Schmidt M, Lindner B. Deciphering integration loci of CHO manufacturing cell lines using long read nanopore sequencing. N Biotechnol 2023; 75:31-39. [PMID: 36925062 DOI: 10.1016/j.nbt.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Despite advances in genetic characterization of Chinese hamster ovary (CHO) cell lines regarding identification of integration sites using next generation sequencing, e.g. targeted locus amplification sequencing (TLA-seq), the concatemer structure of the integrated vectors remains elusive. Here, the entire integration locus of two CHO manufacturing cell lines was reconstructed combining CRISPR/Cas9 target enrichment, nanopore sequencing and the Canu de novo assembly pipeline. An IgG producing CHO cell line integrated 3 vector copies, which were near full-length and contained all relevant vector elements such as transgenes and their promoters on each of the vector copies. In contrast, a second CHO cell line producing a bivalent bispecific antibody integrated 7 highly fragmented vector copies in different orientations leading to head-to-head and tail-to-tail fusions. The size of the vector fragments ranged from 3.0 to 11.4 kbp each carrying 1-3 transgenes. The breakpoints of the genome-vector and vector-vector junctions were validated using Sanger sequencing and Southern blotting. A comparison to TLA-seq data confirmed the genomic breakpoints, but most of the breakpoints of the vector-vector fusions were missed by TLA-seq. For the first time, the complete transgene locus of CHO manufacturing cell lines could be deciphered. Strikingly, the application of the nanopore long-read sequencing technology led to novel insights into the complexity of genomic transgene integrations of CHO manufacturing cell lines generated via random integration.
Collapse
Affiliation(s)
- Christian Clappier
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Dennis Böttner
- Research, Cardiometabolic Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Daniel Heinzelmann
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Anna Stadermann
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Patrick Schulz
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Moritz Schmidt
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Benjamin Lindner
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany.
| |
Collapse
|
13
|
Kaur R, Jain R, Budholiya N, Rathore AS. Long term culturing of CHO cells: phenotypic drift and quality attributes of the expressed monoclonal antibody. Biotechnol Lett 2023; 45:357-370. [PMID: 36707452 DOI: 10.1007/s10529-023-03346-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/13/2022] [Accepted: 01/05/2023] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Establishing cell lines with enhanced protein production requires a deep understanding of the cellular dynamics and cell line stability. The aim of the study is to investigate the impact of long term culturing (LTC) on cell morphology and altered cellular functions possibly leading to phenotypic drift, impacting product yield and quality. Study highlights the orthogonal cellular and analytical assay toolbox to define cell line stability for optimal culture performance and product quality. METHODS We investigated recombinant monoclonal antibody (mAb) expressing CHO cells for 60 passages or 180 generations and assessed the cell growth characteristics and morphology by confocal and scanning electron microscopy. Quality attributes of expressed mAb is accessed by performing charge variants, glycan, and host cell protein analysis. RESULTS We observed a 1.65-fold increase in viable cell population and 1.3-fold increase in cell specific growth rate. A 2.5-fold decrease in antibody titer and abatement of actin filament indicate cellular phenotypic drift. Mitochondrial membrane potential (∆ΨM) signified cell health and metabolic activity during LTC. Host cell protein production is reduced by 1.8-fold. Charge heterogeneity was perturbed with 12.5% and 43% reduction in abundance of acidic and basic charge variants respectively. Glycan profile indicated a decline in fucosylation with 17% increase in galactosylated species as compared with early passaged cells. CONCLUSION LTC impinges on cellular phenotype as well as the quality of the expressed antibody, suggesting a defined subculturing limit to retain stable protein expression and cell morphology to achieve consistent product quality. Study signifies the changes in cellular and metabolic markers, suggesting cellular and analytical toolbox which could play a significant role in defining cell characteristics and ensured product quality.
Collapse
Affiliation(s)
- Rajinder Kaur
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Jain
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Niharika Budholiya
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
14
|
Contributions of Adaptive Laboratory Evolution towards the Enhancement of the Biotechnological Potential of Non-Conventional Yeast Species. J Fungi (Basel) 2023; 9:jof9020186. [PMID: 36836301 PMCID: PMC9964053 DOI: 10.3390/jof9020186] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Changes in biological properties over several generations, induced by controlling short-term evolutionary processes in the laboratory through selective pressure, and whole-genome re-sequencing, help determine the genetic basis of microorganism's adaptive laboratory evolution (ALE). Due to the versatility of this technique and the imminent urgency for alternatives to petroleum-based strategies, ALE has been actively conducted for several yeasts, primarily using the conventional species Saccharomyces cerevisiae, but also non-conventional yeasts. As a hot topic at the moment since genetically modified organisms are a debatable subject and a global consensus on their employment has not yet been attained, a panoply of new studies employing ALE approaches have emerged and many different applications have been exploited in this context. In the present review, we gathered, for the first time, relevant studies showing the ALE of non-conventional yeast species towards their biotechnological improvement, cataloging them according to the aim of the study, and comparing them considering the species used, the outcome of the experiment, and the employed methodology. This review sheds light on the applicability of ALE as a powerful tool to enhance species features and improve their performance in biotechnology, with emphasis on the non-conventional yeast species, as an alternative or in combination with genome editing approaches.
Collapse
|
15
|
Chitwood DG, Wang Q, Klaubert SR, Green K, Wu CH, Harcum SW, Saski CA. Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions. Sci Rep 2023; 13:1200. [PMID: 36681715 PMCID: PMC9862248 DOI: 10.1038/s41598-023-27962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Chinese hamster ovary (CHO) cell lines are widely used to manufacture biopharmaceuticals. However, CHO cells are not an optimal expression host due to the intrinsic plasticity of the CHO genome. Genome plasticity can lead to chromosomal rearrangements, transgene exclusion, and phenotypic drift. A poorly understood genomic element of CHO cell line instability is extrachromosomal circular DNA (eccDNA) in gene expression and regulation. EccDNA can facilitate ultra-high gene expression and are found within many eukaryotes including humans, yeast, and plants. EccDNA confers genetic heterogeneity, providing selective advantages to individual cells in response to dynamic environments. In CHO cell cultures, maintaining genetic homogeneity is critical to ensuring consistent productivity and product quality. Understanding eccDNA structure, function, and microevolutionary dynamics under various culture conditions could reveal potential engineering targets for cell line optimization. In this study, eccDNA sequences were investigated at the beginning and end of two-week fed-batch cultures in an ambr®250 bioreactor under control and lactate-stressed conditions. This work characterized structure and function of eccDNA in a CHO-K1 clone. Gene annotation identified 1551 unique eccDNA genes including cancer driver genes and genes involved in protein production. Furthermore, RNA-seq data is integrated to identify transcriptionally active eccDNA genes.
Collapse
Affiliation(s)
- Dylan G Chitwood
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Qinghua Wang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Stephanie R Klaubert
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Kiana Green
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Sarah W Harcum
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
16
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Gupta S, Shah B, Fung CS, Chan PK, Wakefield DL, Kuhns S, Goudar CT, Piret JM. Engineering protein glycosylation in CHO cells to be highly similar to murine host cells. Front Bioeng Biotechnol 2023; 11:1113994. [PMID: 36873370 PMCID: PMC9978007 DOI: 10.3389/fbioe.2023.1113994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Since 2015 more than 34 biosimilars have been approved by the FDA. This new era of biosimilar competition has stimulated renewed technology development focused on therapeutic protein or biologic manufacturing. One challenge in biosimilar development is the genetic differences in the host cell lines used to manufacture the biologics. For example, many biologics approved between 1994 and 2011 were expressed in murine NS0 and SP2/0 cell lines. Chinese Hamster ovary (CHO) cells, however, have since become the preferred hosts for production due to their increased productivity, ease of use, and stability. Differences between murine and hamster glycosylation have been identified in biologics produced using murine and CHO cells. In the case of monoclonal antibodies (mAbs), glycan structure can significantly affect critical antibody effector function, binding activity, stability, efficacy, and in vivo half-life. In an attempt to leverage the intrinsic advantages of the CHO expression system and match the reference biologic murine glycosylation, we engineered a CHO cell expressing an antibody that was originally produced in a murine cell line to produce murine-like glycans. Specifically, we overexpressed cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) and N-acetyllactosaminide alpha-1,3-galactosyltransferase (GGTA) to obtain glycans with N-glycolylneuraminic acid (Neu5Gc) and galactose-α-1,3-galactose (alpha gal). The resulting CHO cells were shown to produce mAbs with murine glycans, and they were then analyzed by the spectrum of analytical methods typically used to demonstrate analytical similarity as a part of demonstrating biosimilarity. This included high-resolution mass spectrometry, biochemical, as well as cell-based assays. Through selection and optimization in fed-batch cultures, two CHO cell clones were identified with similar growth and productivity criteria to the original cell line. They maintained stable production for 65 population doubling times while matching the glycosylation profile and function of the reference product expressed in murine cells. This study demonstrates the feasibility of engineering CHO cells to express mAbs with murine glycans to facilitate the development of biosimilars that are highly similar to marketed reference products expressed in murine cells. Furthermore, this technology can potentially reduce the residual uncertainty regarding biosimilarity, resulting in a higher probability of regulatory approval and potentially reduced costs and time in development.
Collapse
Affiliation(s)
- Shivani Gupta
- Amgen, Inc., San Francisco, CA, United States.,Michael Smith Laboratories, and Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | - Scott Kuhns
- Amgen, Inc., Thousand Oaks, CA, United States
| | | | - James M Piret
- Michael Smith Laboratories, and Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Hertel O, Neuss A, Busche T, Brandt D, Kalinowski J, Bahnemann J, Noll T. Enhancing stability of recombinant CHO cells by CRISPR/Cas9-mediated site-specific integration into regions with distinct histone modifications. Front Bioeng Biotechnol 2022; 10:1010719. [PMID: 36312557 PMCID: PMC9606416 DOI: 10.3389/fbioe.2022.1010719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are the most important platform for producing biotherapeutics. Random integration of a transgene into epigenetically instable regions of the genome results in silencing of the gene of interest and loss of productivity during upstream processing. Therefore, cost- and time-intensive long-term stability studies must be performed. Site-specific integration into safe harbors is a strategy to overcome these limitations of conventional cell line design. Recent publications predict safe harbors in CHO cells based on omics data sets or by learning from random integrations, but those predictions remain theory. In this study, we established a CRISPR/Cas9-mediated site-specific integration strategy based on ChIP-seq data to improve stability of recombinant CHO cells. Therefore, a ChIP experiment from the exponential and stationary growth phase of a fed-batch cultivation of CHO-K1 cells yielded 709 potentially stable integration sites. The reporter gene eGFP was integrated into three regions harboring specific modifications by CRISPR/Cas9. Targeted Cas9 nanopore sequencing showed site-specific integration in all 3 cell pools with a specificity between 23 and 73%. Subsequently, the cells with the three different integration sites were compared with the randomly integrated donor vector in terms of transcript level, productivity, gene copy numbers and stability. All site-specific integrations showed an increase in productivity and transcript levels of up to 7.4-fold. In a long-term cultivation over 70 generations, two of the site-specific integrations showed a stable productivity (>70%) independent of selection pressure.
Collapse
Affiliation(s)
- Oliver Hertel
- Cell Culture Technology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- *Correspondence: Oliver Hertel,
| | - Anne Neuss
- Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - David Brandt
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | - Thomas Noll
- Cell Culture Technology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
19
|
Hamaker NK, Min L, Lee KH. Comprehensive Assessment of Host Cell Protein Expression after Extended Culture and Bioreactor Production of CHO Cell Lines. Biotechnol Bioeng 2022; 119:2221-2238. [PMID: 35508759 DOI: 10.1002/bit.28128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/12/2022]
Abstract
The biomanufacturing industry is advancing toward continuous processes that will involve longer culture durations and older cell ages. These upstream trends may bring unforeseen challenges for downstream purification due to fluctuations in host cell protein (HCP) levels. To understand the extent of HCP expression instability exhibited by Chinese hamster ovary (CHO) cells over these time scales, an industry-wide consortium collaborated to develop a study to characterize age-dependent changes in HCP levels across 30, 60, and 90 cell doublings, representing a period of approximately 60 days. A monoclonal antibody (mAb)-producing cell line with bulk productivity up to 3 g/L in a bioreactor was aged in parallel with its parental CHO-K1 host. Subsequently, both cell types at each age were cultivated in an automated bioreactor system to generate harvested cell culture fluid (HCCF) for HCP analysis. More than 1,500 HCPs were quantified using complementary proteomic techniques, two-dimensional electrophoresis (2DE) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). While up to 13% of proteins showed variable expression with age, more changes were observed when comparing between the two cell lines with up to 47% of HCPs differentially expressed. A small subset (50 HCPs) with age-dependent expression were previously reported to be problematic as high-risk and/or difficult-to-remove impurities; however, the vast majority of these were down-regulated with age. Our findings suggest that HCP expression changes over this time scale may not be as dramatic and pose as great of a challenge to downstream processing as originally expected but that monitoring of variably expressed problematic HCPs remains critical. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nathaniel K Hamaker
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
20
|
Spahn PN, Zhang X, Hu Q, Lu H, Hamaker NK, Hefzi H, Li S, Kuo CC, Huang Y, Lee JC, Davis AJ, Ly P, Lee KH, Lewis NE. Restoration of DNA repair mitigates genome instability and increases productivity of Chinese hamster ovary cells. Biotechnol Bioeng 2022; 119:963-982. [PMID: 34953085 PMCID: PMC8821244 DOI: 10.1002/bit.28016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/11/2022]
Abstract
Chinese hamster ovary (CHO) cells are the primary host for manufacturing of therapeutic proteins. However, productivity loss is a major problem and is associated with genome instability, as chromosomal aberrations reduce transgene copy number and decrease protein expression. We analyzed whole-genome sequencing data from 11 CHO cell lines and found deleterious single-nucleotide variants in DNA repair genes. Comparison with primary Chinese hamster cells confirmed DNA repair to be compromised in CHO. Correction of key DNA repair genes by single-nucleotide variant reversal or expression of intact complementary DNAs successfully improved DNA repair and mitigated karyotypic instability. Moreover, overexpression of intact copies of LIG4 and XRCC6 in a CHO cell line expressing secreted alkaline phosphatase mitigated transgene copy loss and improved protein titer retention. These results show that correction of DNA repair genes yields improvements in genome stability in CHO, and provide new opportunities for cell line development for sustainable protein expression.
Collapse
Affiliation(s)
- Philipp N. Spahn
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, San Diego, La Jolla, CA 92093
| | - Xiaolin Zhang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711
| | - Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Huiming Lu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nathaniel K. Hamaker
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711
| | - Hooman Hefzi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Shangzhong Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Chih-Chung Kuo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Yingxiang Huang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Jamie C. Lee
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Anthony J. Davis
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kelvin H. Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, These authors jointly supervised this work: Kelvin H. Lee, , 302-831-0344, Nathan E. Lewis, , 858-997-5844
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, San Diego, La Jolla, CA 92093, Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, These authors jointly supervised this work: Kelvin H. Lee, , 302-831-0344, Nathan E. Lewis, , 858-997-5844
| |
Collapse
|
21
|
Marx N, Eisenhut P, Weinguny M, Klanert G, Borth N. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol Adv 2022; 56:107924. [PMID: 35149147 DOI: 10.1016/j.biotechadv.2022.107924] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in omics technologies and the broad availability of big datasets have revolutionized our understanding of Chinese hamster ovary cells in their role as the most prevalent host for production of complex biopharmaceuticals. In consequence, our perception of this "workhorse of the biopharmaceutical industry" has successively shifted from that of a nicely working, but unknown recombinant protein producing black box to a biological system governed by multiple complex regulatory layers that might possibly be harnessed and manipulated at will. Despite the tremendous progress that has been made to characterize CHO cells on various omics levels, our understanding is still far from complete. The well-known inherent genetic plasticity of any immortalized and rapidly dividing cell line also characterizes CHO cells and can lead to problematic instability of recombinant protein production. While the high mutational frequency has been a focus of CHO cell research for decades, the impact of epigenetics and its role in differential gene expression has only recently been addressed. In this review we provide an overview about the current understanding of epigenetic regulation in CHO cells and discuss its significance for shaping the cell's phenotype. We also look into current state-of-the-art technology that can be applied to harness and manipulate the epigenetic network so as to nudge CHO cells towards a specific phenotype. Here, we revise current strategies on site-directed integration and random as well as targeted epigenome modifications. Finally, we address open questions that need to be investigated to exploit the full repertoire of fine-tuned control of multiplexed gene expression using epigenetic and systems biology tools.
Collapse
Affiliation(s)
- Nicolas Marx
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Eisenhut
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Marcus Weinguny
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|
22
|
Screening of CHO-K1 endogenous promoters for expressing recombinant proteins in mammalian cell cultures. Plasmid 2022; 119-120:102620. [DOI: 10.1016/j.plasmid.2022.102620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/28/2022]
|
23
|
Altamura R, Doshi J, Benenson Y. Rational design and construction of multi-copy biomanufacturing islands in mammalian cells. Nucleic Acids Res 2022; 50:561-578. [PMID: 34893882 PMCID: PMC8754653 DOI: 10.1093/nar/gkab1214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 11/14/2022] Open
Abstract
Cell line development is a critical step in the establishment of a biopharmaceutical manufacturing process. Current protocols rely on random transgene integration and amplification. Due to considerable variability in transgene integration profiles, this workflow results in laborious screening campaigns before stable producers can be identified. Alternative approaches for transgene dosage increase and integration are therefore highly desirable. In this study, we present a novel strategy for the rapid design, construction, and genomic integration of engineered multiple-copy gene constructs consisting of up to 10 gene expression cassettes. Key to this strategy is the diversification, at the sequence level, of the individual gene cassettes without altering their protein products. We show a computational workflow for coding and regulatory sequence diversification and optimization followed by experimental assembly of up to nine gene copies and a sentinel reporter on a contiguous scaffold. Transient transfections in CHO cells indicates that protein expression increases with the gene copy number on the scaffold. Further, we stably integrate these cassettes into a pre-validated genomic locus. Altogether, our findings point to the feasibility of engineering a fully mapped multi-copy recombinant protein 'production island' in a mammalian cell line with greatly reduced screening effort, improved stability, and predictable product titers.
Collapse
Affiliation(s)
- Raffaele Altamura
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Jiten Doshi
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Yaakov Benenson
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
24
|
Tihanyi B, Nyitray L. Recent advances in CHO cell line development for recombinant protein production. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:25-34. [PMID: 34895638 DOI: 10.1016/j.ddtec.2021.02.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
Recombinant proteins used in biomedical research, diagnostics and different therapies are mostly produced in Chinese hamster ovary cells in the pharmaceutical industry. These biotherapeutics, monoclonal antibodies in particular, have shown remarkable market growth in the past few decades. The increasing demand for high amounts of biologics requires continuous optimization and improvement of production technologies. Research aims at discovering better means and methods for reaching higher volumetric capacity, while maintaining stable product quality. An increasing number of complex novel protein therapeutics, such as viral antigens, vaccines, bi- and tri-specific monoclonal antibodies, are currently entering industrial production pipelines. These biomolecules are, in many cases, difficult to express and require tailored product-specific solutions to improve their transient or stable production. All these requirements boost the development of more efficient expression optimization systems and high-throughput screening platforms to facilitate the design of product-specific cell line engineering and production strategies. In this minireview, we provide an overview on recent advances in CHO cell line development, targeted genome manipulation techniques, selection systems and screening methods currently used in recombinant protein production.
Collapse
Affiliation(s)
- Borbála Tihanyi
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary.
| |
Collapse
|
25
|
Zeh N, Schlossbauer P, Raab N, Klingler F, Handrick R, Otte K. Cell line development for continuous high cell density biomanufacturing: Exploiting hypoxia for improved productivity. Metab Eng Commun 2021; 13:e00181. [PMID: 34401326 PMCID: PMC8348152 DOI: 10.1016/j.mec.2021.e00181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023] Open
Abstract
Oxygen deficiency (hypoxia) induces adverse effects during biotherapeutic protein production leading to reduced productivity and cell growth. Hypoxic conditions occur during classical batch fermentations using high cell densities or perfusion processes. Here we present an effort to create novel engineered Chinese hamster ovary (CHO) cell lines by exploiting encountered hypoxic bioprocess conditions to reinforce cellular production capacities. After verifying the conservation of the hypoxia-responsive pathway in CHO cell lines by analyzing oxygen sensing proteins HIF1a, HIF1β and VDL, hypoxia-response-elements (HREs) were functionally analyzed and used to create hypoxia-responsive expression vectors. Subsequently engineered hypoxia sensitive CHO cell lines significantly induced protein expression (SEAP) during adverse oxygen limitation encountered during batch fermentations as well as high cell density perfusion processes (2.7 fold). We also exploited this novel cell system to establish a highly effective oxygen shift as innovative bioprocessing strategy using hypoxia induction to improve production titers. Thus, substantial improvements can be made to optimize CHO cell productivity for novel bioprocessing challenges as oxygen limitation, providing an avenue to establish better cell systems by exploiting adverse process conditions for optimized biotherapeutic production.
Collapse
Affiliation(s)
- Nikolas Zeh
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Patrick Schlossbauer
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Nadja Raab
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Florian Klingler
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - René Handrick
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| |
Collapse
|
26
|
Michalec-Wawiórka B, Czapiński J, Filipek K, Rulak P, Czerwonka A, Tchórzewski M, Rivero-Müller A. An Improved Vector System for Homogeneous and Stable Gene Regulation. Int J Mol Sci 2021; 22:ijms22105206. [PMID: 34069024 PMCID: PMC8157167 DOI: 10.3390/ijms22105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022] Open
Abstract
Precise analysis of the genetic expression and functioning of proteins requires experimental approaches that, among others, enable tight control of gene expression at the transcriptional level. Doxycycline-induced Tet-On/Tet-Off expression systems provide such an opportunity, and are frequently used to regulate the activity of genes in eukaryotic cells. Since its development, the Tet-system has evolved tight gene control in mammalian cells; however, some challenges are still unaddressed. In the current set up, the establishment of the standard Tet-based system in target cells is time-consuming and laborious and has been shown to be inefficient, especially in a long-term perspective. In this work, we present an optimized inducible expression system, which enables rapid generation of doxycycline-responsive cells according to a one- or two-step protocol. The reported modifications of the Tet-On system expand the toolbox for regulated mammalian gene expression and provide high, stable, and homogenous expression of the Tet-On3G transactivator, which is of fundamental importance in the regulation of transgenes.
Collapse
Affiliation(s)
- Barbara Michalec-Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (K.F.); (P.R.); (M.T.)
- Correspondence:
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (J.C.); (A.C.); (A.R.-M.)
- Postgraduate School of Molecular Medicine, 02-091 Warsaw, Poland
| | - Kamil Filipek
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (K.F.); (P.R.); (M.T.)
| | - Patrycja Rulak
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (K.F.); (P.R.); (M.T.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (J.C.); (A.C.); (A.R.-M.)
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (K.F.); (P.R.); (M.T.)
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (J.C.); (A.C.); (A.R.-M.)
| |
Collapse
|
27
|
Li ES, Saha MS. Optimizing Calcium Detection Methods in Animal Systems: A Sandbox for Synthetic Biology. Biomolecules 2021; 11:343. [PMID: 33668387 PMCID: PMC7996158 DOI: 10.3390/biom11030343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022] Open
Abstract
Since the 1970s, the emergence and expansion of novel methods for calcium ion (Ca2+) detection have found diverse applications in vitro and in vivo across a series of model animal systems. Matched with advances in fluorescence imaging techniques, the improvements in the functional range and stability of various calcium indicators have significantly enhanced more accurate study of intracellular Ca2+ dynamics and its effects on cell signaling, growth, differentiation, and regulation. Nonetheless, the current limitations broadly presented by organic calcium dyes, genetically encoded calcium indicators, and calcium-responsive nanoparticles suggest a potential path toward more rapid optimization by taking advantage of a synthetic biology approach. This engineering-oriented discipline applies principles of modularity and standardization to redesign and interrogate endogenous biological systems. This review will elucidate how novel synthetic biology technologies constructed for eukaryotic systems can offer a promising toolkit for interfacing with calcium signaling and overcoming barriers in order to accelerate the process of Ca2+ detection optimization.
Collapse
Affiliation(s)
| | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, VA 23185, USA;
| |
Collapse
|
28
|
Wang X, Zhang W, Jia Y, Wang M, Yi D, Wang TY. Woodchuck hepatitis post-transcriptional regulatory element improves transgene expression and stability mediated by episomal vectors in CHO-K1 cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1285-1288. [PMID: 33196825 DOI: 10.1093/abbs/gmaa105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xiaoyin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| | - Weili Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yanlong Jia
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, China
| | - Meng Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| | - Dandan Yi
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| | - Tian-yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
29
|
Hilliard W, Lee KH. Systematic identification of safe harbor regions in the CHO genome through a comprehensive epigenome analysis. Biotechnol Bioeng 2020; 118:659-675. [PMID: 33049068 DOI: 10.1002/bit.27599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/07/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
The Chinese hamster ovary (CHO) cell lines that are used to produce commercial quantities of therapeutic proteins commonly exhibit a decrease in productivity over time in culture, a phenomenon termed production instability. Random integration of the transgenes encoding the protein of interest into locations in the CHO genome that are vulnerable to genetic and epigenetic instability often causes production instability through copy number loss and silencing of expression. Several recent publications have shown that these cell line development challenges can be overcome by using site-specific integration (SSI) technology to insert the transgenes at genomic loci, often called "hotspots," that are transcriptionally permissive and have enhanced stability relative to the rest of the genome. However, extensive characterization of the CHO epigenome is needed to identify hotspots that maintain their desirable epigenetic properties in an industrial bioprocess environment and maximize transcription from a single integrated transgene copy. To this end, the epigenomes and transcriptomes of two distantly related cell lines, an industrially relevant monoclonal antibody-producing cell line and its parental CHO-K1 host, were characterized using high throughput chromosome conformation capture and RNAseq to analyze changes in the epigenome that occur during cell line development and associated changes in system-wide gene expression. In total, 10.9% of the CHO genome contained transcriptionally permissive three-dimensional chromatin structures with enhanced genetic and epigenetic stability relative to the rest of the genome. These safe harbor regions also showed good agreement with published CHO epigenome data, demonstrating that this method was suitable for finding genomic regions with epigenetic markers of active and stable gene expression. These regions significantly reduce the genomic search space when looking for CHO hotspots with widespread applicability and can guide future studies with the goal of maximizing the potential of SSI technology in industrial production CHO cell lines.
Collapse
Affiliation(s)
- William Hilliard
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
30
|
Balcerek J, Bednarek M, Sobieściak TD, Pietrucha T, Jaros S. Toward Shortened the Time-to-Market for Biopharmaceutical Proteins: Improved Fab Protein Expression Stability Using the Cre/lox System in a Multi-Use Clonal Cell Line. J Pharm Sci 2020; 110:946-951. [PMID: 33058893 DOI: 10.1016/j.xphs.2020.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/05/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Stable gene integration and rapid selection of high-expressing clones are important when developing biopharmaceutical systems to produce a protein of interest. According to regulatory guidelines, the final production clones should be stable through multiple cell generations. To achieve long-term stable expression of Fab genes via recombinase-mediated cassette exchange (RMCE), we modified mutual configurations of the lox sequences. By inversion of the spacer orientation, we avoided the loss of the integrated gene after several dozen cycles of cell division. This feature also prevents reversible transgene integration. Although the RMCE allows us to generate transgenic lines rapidly relative to current methods, it remains difficult to obtain stable industrial cell lines for long-term culturing and for the initial development stage. In this study, we present an approach to shortening the timeline for therapeutic protein development. Our approach provides easy access to the same clonal cell line in the initial development phase, and also for the production of biopharmaceutical proteins.
Collapse
Affiliation(s)
- Julita Balcerek
- Mabion S.A. Scientific-Industrial Complex of Medical Biotechnology, ul. Langiewicza 60, 95-050 Konstantynów Łódzki, Poland
| | - Marta Bednarek
- Mabion S.A. Scientific-Industrial Complex of Medical Biotechnology, ul. Langiewicza 60, 95-050 Konstantynów Łódzki, Poland
| | - Tomasz D Sobieściak
- Mabion S.A. Scientific-Industrial Complex of Medical Biotechnology, ul. Langiewicza 60, 95-050 Konstantynów Łódzki, Poland.
| | - Tadeusz Pietrucha
- Medical University of Lodz, ul. Żeligowskiego 7/9, 90-752 Łódź, Poland
| | - Sławomir Jaros
- Mabion S.A. Scientific-Industrial Complex of Medical Biotechnology, ul. Langiewicza 60, 95-050 Konstantynów Łódzki, Poland
| |
Collapse
|
31
|
Chai YR, Cao XX, Ge MM, Mi CL, Guo X, Wang TY. Knockout of cytidine monophosphate-N-acetylneuraminic acid hydroxylase in Chinese hamster ovary cells by CRISPR/Cas9-based gene-editing technology. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Fusion with matrix attachment regions enhances expression of recombinant protein in human HT-1080 cells. J Biosci Bioeng 2020; 130:533-538. [PMID: 32773266 DOI: 10.1016/j.jbiosc.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/23/2022]
Abstract
Like endogenous proteins, recombinant foreign proteins produced in human cell lines also need post-translational modifications. However, high and long-term expression of a gene of interest (GOI) presents significant challenges for recombinant protein production in human cells. In this work, the effect of human matrix attachment region elements (MARs), including the β-globin MAR (gMAR), chicken lysozyme MAR (cMAR), and a combination of these two, on the stable expression of GOI was assessed in human HT-1080 cells. After transfection with vectors containing the MAR elements and eGFP, stably HT-1080 cell pools were obtained under selective pressure. eGFP protein expression was analyzed by flow cytometry, while transgene copy number and eGFP mRNA expression levels were determined with qPCR and qRT-PCR technology. We found that MARs could not enhance transfection efficiency, but gMAR could significantly increase eGFP expression in stable HT-1080 cell pools by approximately 2.69-fold. Moreover, gMAR could also increase eGFP expression stability during long-term culture. Lastly, we showed that the effect of the MARs on transgenes was related to the gene copy number. In summary, this study found that MARs could both enhance the transgene expression and stability in HT-1080 cells.
Collapse
|
33
|
Lee S, Kim P. Current Status and Applications of Adaptive Laboratory Evolution in Industrial Microorganisms. J Microbiol Biotechnol 2020; 30:793-803. [PMID: 32423186 PMCID: PMC9728180 DOI: 10.4014/jmb.2003.03072] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022]
Abstract
Adaptive laboratory evolution (ALE) is an evolutionary engineering approach in artificial conditions that improves organisms through the imitation of natural evolution. Due to the development of multi-level omics technologies in recent decades, ALE can be performed for various purposes at the laboratory level. This review delineates the basics of the experimental design of ALE based on several ALE studies of industrial microbial strains and updates current strategies combined with progressed metabolic engineering, in silico modeling and automation to maximize the evolution efficiency. Moreover, the review sheds light on the applicability of ALE as a strain development approach that complies with non-recombinant preferences in various food industries. Overall, recent progress in the utilization of ALE for strain development leading to successful industrialization is discussed.
Collapse
Affiliation(s)
- SuRin Lee
- Department of Biotechnology, the Catholic University of Korea, Gyeonggi 14662, Republic of Korea
| | - Pil Kim
- Department of Biotechnology, the Catholic University of Korea, Gyeonggi 14662, Republic of Korea,Corresponding author Phone : +82-2164-4922 Fax : +82-2-2164-4865 E-mail:
| |
Collapse
|
34
|
Yi DD, Wang XY, Zhang WL, Wang M, Zhang JH, Wang TY. Construction of an expression vector mediated by the dual promoter for prokaryotic and mammalian cell expression system. Mol Biol Rep 2020; 47:5185-5190. [PMID: 32564228 DOI: 10.1007/s11033-020-05593-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to construct an expression vector mediated by the dual promoter that can simultaneously drive the recombinant protein production in eukaryotic and prokaryotic cells. The prokaryotic T7 promoter and ribosome binding site (RBS) was cloned downstream of CMV promoter in the eukaryotic expression vector pIRES-neo, and T7 termination sequence was inserted upstream of neomycin phosphotransferase gene to generate the dual promoter vector. The enhanced green fluorescent protein (eGFP) gene was used as reporter gene. Then, the resultant vector was transfected into Chinese hamster ovary (CHO) cells and transformed into Escherichia coli (E. coli) BL21, and the eGFP expression levels were analyzed by fluorescence microscopy, flow cytometry and Western blot, respectively. Fluorescence microscopy revealed that the eGFP was expressed in both CHO cells and E. coli BL21. Flow cytometry showed that the eGFP expression level had no significant difference between the dual promoter vector and control vector in transfected CHO cells. Western blot analysis indicated the eGFP expressed in transformed E. coli. In conclusion, a prokaryotic-eukaryotic double expression vector was successfully constructed, which has potential applications in rapid cloning and expression of recombinant proteins in both prokaryotic and eukaryotic expression systems.
Collapse
Affiliation(s)
- Dan-Dan Yi
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Wei-Li Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Meng Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jun-He Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
35
|
Zhao X, Jin C, Dong T, Sun Z, Zheng X, Feng B, Cheng Z, Li X, Tao Y, Wu H. Characterization of promoters for adeno-associated virus mediated efficient Cas9 activation in adult Cas9 knock-in murine cochleae. Hear Res 2020; 394:107999. [PMID: 32611519 DOI: 10.1016/j.heares.2020.107999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 11/27/2022]
Abstract
CRISPR/Cas9 gene editing enables the treatment of hearing loss in congenitally deaf neonatal mice via both viral and non-viral delivery. While adeno-associated virus (AAV)-mediated gene delivery systems have been shown to be effective tools for gene replacement in the inner ear, application of the AAV-mediated CRISPR/Cas9 gene-editing approach for this purpose is yet to be documented. Based on our previous findings, we focused on the effects of several AAVs delivered via canalostomy injection in adult mice. Among the AAVs examined, AAV8 showed the greatest efficiency and specificity in transducing inner hair cells (IHC). The ability of Cre-expressing AAV8 to activate Cas9 in floxed-Cas9 knock-in (Cas9 KI) mice was further evaluated. We compared the effects of six different promoters (CMV, CAG, hSyn, CaMKIIa, GFAP, and ALB) of AAV8 delivered to the inner ear of adult Cas9 KI mice. Our findings showed that three AAV groups (CMV, CAG and hSyn promoters) infected the inner ear efficiently with different tropisms. Notably, AAVs with CMV, CAG, and hSyn promoters infected diverse cell types in mature murine cochleae, including IHCs. In particular, AAV8-hSyn showed high affinity to IHCs and spiral ganglion neurons (SGN). Neither the AAV8 virus itself (except AAV8-CAG) nor the surgical procedures used caused damage to HCs or impaired normal hearing. Our findings indicated that injection of AAV-Cre into mature inner ear efficiently induces Cas9 activation to achieve safe and efficient gene editing and different constituent promoters confer diverse infection patterns in cochlea, expanding the repertoire of gene-editing tools for regulating gene expression in target cells of the inner ear as part of the collective effort to rescue genetic hearing loss and develop effective gene therapy techniques.
Collapse
Affiliation(s)
- Xingle Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Chenxi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Tingting Dong
- Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China; Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Zhuoer Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Xiaofei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Baoyi Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Zhenzhe Cheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Xiang Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China.
| |
Collapse
|
36
|
Srirangan K, Loignon M, Durocher Y. The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster ovary cells: retrospective analysis and future directions. Crit Rev Biotechnol 2020; 40:833-851. [DOI: 10.1080/07388551.2020.1768043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kajan Srirangan
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Martin Loignon
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
37
|
Kim YJ, Han SK, Yoon S, Kim CW. Rich production media as a platform for CHO cell line development. AMB Express 2020; 10:93. [PMID: 32415509 PMCID: PMC7229095 DOI: 10.1186/s13568-020-01025-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 11/10/2022] Open
Abstract
Recent cell culture media for mammalian cells can be abundantly formulated with nutrients supporting production, but such media can be limited to use in host cell culture, transfection, cell cloning, and cell growth under the low cell density conditions. In many cases, appropriate platform media are used for cell line development, and then replaced with rich media for production. In this study, we demonstrate rich chemically defined media for Chinese hamster ovary (CHO) cells that are suitable as basal media both for cell line development and for final production of culture process. Set up for transfection, semi-solid media optimization, mini-pool screening, and single cell cloning media development were performed, and final clones were obtained with higher productivity in fed-batch culture mode using rich formulated media comparing with lean formulated media. Developed methods may remove the requirements for cell adaptation to production media after cell line development, and relieve the clonality issues associated with changing the culture media. Furthermore, established methods have advantages over traditional approaches, including saving resources and decreasing the time and the effort required to optimize the production process.
Collapse
|
38
|
Wang TY, Guo X. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems. Appl Microbiol Biotechnol 2020; 104:5673-5688. [PMID: 32372203 DOI: 10.1007/s00253-020-10640-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Human tissue plasminogen activator was the first recombinant therapy protein that successfully produced in Chinese hamster ovary cells in 1986 and approved for clinical use. Since then, more and more therapeutic proteins are being manufactured in mammalian cells, and the technologies for recombinant protein production in this expression system have developed rapidly, with the optimization of both upstream and downstream processes. One of the most promising strategies is expression vector cassette optimization based on the expression vector cassette. In this review paper, these approaches and developments are summarized, and the future strategy on the utilizing of expression cassettes for the production of recombinant therapeutic proteins in mammalian cells is discussed.
Collapse
Affiliation(s)
- Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiao Guo
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Perildicals Publishing House, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
39
|
Abstract
A bispecific antibody (bsAb) can simultaneously bind two different epitopes or antigens, allowing for multiple mechanistic functions with synergistic effects. BsAbs have attracted significant scientific attentions and efforts towards their development as drugs for cancers. There are 21 bsAbs currently undergoing clinical trials in China. Here, we review their platform technologies, expression and production, and biological activities and bioassay of these bsAbs, and summarize their structural formats and mechanisms of actions. T-cell redirection and checkpoint inhibition are two main mechanisms of the bsAbs that we discuss in detail. Furthermore, we provide our perspective on the future of bsAb development in China, including CD3-bsAbs for solid tumors and related cytokine release syndromes, expression and chemistry, manufacturing and controls, clinical development, and immunogenicity.
Collapse
Affiliation(s)
- Jing Zhang
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Jizu Yi
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| |
Collapse
|
40
|
Lieske PL, Wei W, Crowe KB, Figueroa B, Zhang L. HIF-1 Signaling Pathway Implicated in Phenotypic Instability in a Chinese Hamster Ovary Production Cell Line. Biotechnol J 2020; 15:e1900306. [PMID: 31872551 DOI: 10.1002/biot.201900306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/14/2019] [Indexed: 12/13/2022]
Abstract
Monitoring genotypic and phenotypic stability is crucial during the development of recombinant Chinese hamster ovary (CHO) cell lines. Although genotypic instability is well-studied, there are few reports on phenotypic instability. Here, a case study of two clonal cell lines derived from Pfizer's site-specific integration expression platform that expresses the same monoclonal antibody is described. It is shown that both cell lines (herein referred to as "Cell Line A" and "Cell Line B") are genotypically stable up to 130 generations. However, when both cell lines are run side-by-side in a fed-batch production assay, productivity from Cell Line A later generation cells is much lower when compared to earlier generation cells. Phenotypically, later generation Cell Line A cells display increased lactate production, decreased productivity, and decreased cell viability. Metabolic analysis reveals that Cell Line A exhibits increased glycolysis activity and capacity at higher generational age. Whole transcriptomic sequencing shows significant upregulation of the hypoxia-inducible factor 1-alpha (HIF-1α) signaling pathway and associated downstream targets. Furthermore, Western blot analysis confirms elevated HIF-1α protein in Cell Line A cells at later generation. These results suggest a novel role for HIF-1α in the age-associated metabolic changes that result in the phenotypic instability of a recombinant CHO cell line.
Collapse
Affiliation(s)
| | - Wei Wei
- Cell Line Development, Pfizer Inc., Andover, MA, 01810, USA
| | | | - Bruno Figueroa
- Cell Culture Development, Sanofi R&D Biologics Development, Framingham, MA, 01701, USA
| | - Lin Zhang
- Cell Line Development, Pfizer Inc., Andover, MA, 01810, USA
| |
Collapse
|
41
|
Dahodwala H, Lee KH. The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr Opin Biotechnol 2019; 60:128-137. [DOI: 10.1016/j.copbio.2019.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/04/2018] [Accepted: 01/21/2019] [Indexed: 02/08/2023]
|
42
|
A human expression system based on HEK293 for the stable production of recombinant erythropoietin. Sci Rep 2019; 9:16768. [PMID: 31727983 PMCID: PMC6856173 DOI: 10.1038/s41598-019-53391-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/31/2019] [Indexed: 12/23/2022] Open
Abstract
Mammalian host cell lines are the preferred expression systems for the manufacture of complex therapeutics and recombinant proteins. However, the most utilized mammalian host systems, namely Chinese hamster ovary (CHO), Sp2/0 and NS0 mouse myeloma cells, can produce glycoproteins with non-human glycans that may potentially illicit immunogenic responses. Hence, we developed a fully human expression system based on HEK293 cells for the stable and high titer production of recombinant proteins by first knocking out GLUL (encoding glutamine synthetase) using CRISPR-Cas9 system. Expression vectors using human GLUL as selection marker were then generated, with recombinant human erythropoietin (EPO) as our model protein. Selection was performed using methionine sulfoximine (MSX) to select for high EPO expression cells. EPO production of up to 92700 U/mL of EPO as analyzed by ELISA or 696 mg/L by densitometry was demonstrated in a 2 L stirred-tank fed batch bioreactor. Mass spectrometry analysis revealed that N-glycosylation of the produced EPO was similar to endogenous human proteins and non-human glycan epitopes were not detected. Collectively, our results highlight the use of a human cellular expression system for the high titer and xenogeneic-free production of EPO and possibly other complex recombinant proteins.
Collapse
|
43
|
Rugbjerg P, Sommer MOA. Overcoming genetic heterogeneity in industrial fermentations. Nat Biotechnol 2019; 37:869-876. [DOI: 10.1038/s41587-019-0171-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
|
44
|
Wang XY, Yi DD, Wang TY, Wu YF, Chai YR, Xu DH, Zhao CP, Song C. Enhancing expression level and stability of transgene mediated by episomal vector via buffering DNA methyltransferase in transfected CHO cells. J Cell Biochem 2019; 120:15661-15670. [PMID: 31074065 DOI: 10.1002/jcb.28835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Nonviral episomal vectors present attractive alternative vehicles for gene therapy applications. Previously, we have established a new type of nonviral episomal vector-mediated by the characteristic motifs of matrix attachment regions (MARs), which is driven by the cytomegalovirus (CMV) promoter. However, the CMV promoter is intrinsically susceptible to silencing, resulting in declined productivity during long-term culture. In this study, Chinese hamster ovary (CHO) cells and DNA methyltransferase-deficient (Dnmt3a-deficient) CHO cells were transfected with plasmid-mediated by MAR, or CHO cells were treated with the DNA methylation inhibitor 5-Aza-2'-deoxycytidine. Flow cytometry, plasmid rescue experiments, fluorescence in-situ hybridization (FISH), and bisulfite sequencing were performed to observe transgene expression, its state of existence, and the CpG methylation level of the CMV promoter. The results indicated that all DNA methylation inhibitor and methyltransferase deficient cells could increase transgene expression levels and stability in the presence or absence of selection pressure after a 60-generation culture. Plasmid rescue assay and FISH analysis showed that the vector still existed episomally after long-time culture. Moreover, a relatively lower CMV promoter methylation level was observed in Dnmt3a-deficient cell lines and CHO cells treated with 5-Aza-2'-deoxycytidine. In addition, Dnmt3a-deficient cells were superior to the DNA methylation inhibitor treatment regarding the transgene expression and long-term stability. Our study provides the first evidence that lower DNA methyltransferase can enhance expression level and stability of transgenes mediated by episomal vectors in transfected CHO cells.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dan-Dan Yi
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan-Fang Wu
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, University of Zhengzhou, Zhengzhou, Henan, China
| | - Dan-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chao Song
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
45
|
Bandyopadhyay AA, O’Brien SA, Zhao L, Fu HY, Vishwanathan N, Hu WS. Recurring genomic structural variation leads to clonal instability and loss of productivity. Biotechnol Bioeng 2019; 116:41-53. [PMID: 30144379 PMCID: PMC7058117 DOI: 10.1002/bit.26823] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022]
Abstract
Chinese hamster ovary cells, commonly used in the production of therapeutic proteins, are aneuploid. Their chromosomes bear structural abnormality and undergo changes in structure and number during cell proliferation. Some production cell lines are unstable and lose their productivity over time in the manufacturing process and during the product's life cycle. To better understand the link between genomic structural changes and productivity stability, an immunoglobulin G producing cell line was successively single-cell cloned to obtain subclones that retained or lost productivity, and their genomic features were compared. Although each subclone started with a single karyotype, the progeny quickly diversified to a population with a distribution of chromosome numbers that is not distinctive from the parent and among subclones. The comparative genomic hybridization (CGH) analysis showed that the extent of copy variation of gene coding regions among different subclones stayed at levels of a few percent. Genome regions that were prone to loss of copies, including one with a product transgene integration site, were identified in CGH. The loss of the transgene copy was accompanied by loss of transgene transcript level. Sequence analysis of the host cell and parental producing cell showed prominent structural variations within the regions prone to loss of copies. Taken together, we demonstrated the transient nature of clonal homogeneity in cell line development and the retention of a population distribution of chromosome numbers; we further demonstrated that structural variation in the transgene integration region caused cell line instability. Future cell line development may target the transgene into structurally stable regions.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455-0132 USA
| |
Collapse
|
46
|
|
47
|
Passaro C, Alayo Q, De Laura I, McNulty J, Grauwet K, Ito H, Bhaskaran V, Mineo M, Lawler SE, Shah K, Speranza MC, Goins W, McLaughlin E, Fernandez S, Reardon DA, Freeman GJ, Chiocca EA, Nakashima H. Arming an Oncolytic Herpes Simplex Virus Type 1 with a Single-chain Fragment Variable Antibody against PD-1 for Experimental Glioblastoma Therapy. Clin Cancer Res 2018; 25:290-299. [PMID: 30279232 DOI: 10.1158/1078-0432.ccr-18-2311] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/27/2018] [Accepted: 09/28/2018] [Indexed: 01/09/2023]
Abstract
PURPOSE Glioblastoma (GBM) is resistant to standard of care. Immune checkpoints inhibitors (such as anti-PD-1 mAbs) efficiently restore antitumor T-cell activity. We engineered a new oncolytic herpes simplex virus (oHSV) expressing a single-chain antibody against PD-1 (scFvPD-1) to evaluate its efficacy in mouse models of GBM. EXPERIMENTAL DESIGN NG34scFvPD-1 expresses the human GADD34 gene transcriptionally controlled by the Nestin promoter to allow replication in GBM cells and a scFvPD-1 cDNA transcriptionally controlled by the CMV promoter. ELISA assays were performed to detect binding of scFvPD-1 to mouse and human PD-1. In vitro cytotoxicity and replication assays were performed to measure NG34scFvPD-1 oncolysis, and scFvPD-1 expression and secretion were determined. In vivo survival studies using orthotopic mouse GBM models were performed to evaluate the therapeutic potency of NG34scFvPD-1. RESULTS NG34scFvPD-1-infected GBM cells express and secrete scFvPD-1 that binds mouse PD-1. The introduction of the scFvPD-1 sequence in the viral backbone does not alter the oncolytic properties of NG34scFvPD-1. In situ NG34scFvPD-1 treatment improved the survival with a tail of durable survivorship in 2 syngeneic immunocompetent mouse models of GBM. Mice that survived the first GBM challenge rejected the second challenge of GBM when implanted in the contralateral hemisphere. However, this was not true when athymic mice were employed as the recipients of the second challenge, consistent with the need for an intact immune system to obtain a memory response. CONCLUSIONS NG34scFvPD-1 treatment induces a durable antitumor response in 2 preclinical mouse models of GBM with evidence for antitumor memory.
Collapse
Affiliation(s)
- Carmela Passaro
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Quazim Alayo
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Isabella De Laura
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - John McNulty
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Korneel Grauwet
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Hirotaka Ito
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Vivek Bhaskaran
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Marco Mineo
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Sean E Lawler
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Khalid Shah
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts.,Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Maria C Speranza
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts
| | - William Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Eric McLaughlin
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | | | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, and Brigham and Women's Hospital, Boston, Massachusetts
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts
| | - E Antonio Chiocca
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts.
| | - Hiroshi Nakashima
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
48
|
Jia Y, Guo X, Lu J, Wang X, Qiu L, Wang T. CRISPR/Cas9-mediated gene knockout for DNA methyltransferase Dnmt3a in CHO cells displays enhanced transgenic expression and long-term stability. J Cell Mol Med 2018; 22:4106-4116. [PMID: 29851281 PMCID: PMC6111867 DOI: 10.1111/jcmm.13687] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
CHO cells are the preferred host for the production of complex pharmaceutical proteins in the biopharmaceutical industry, and genome engineering of CHO cells would benefit product yield and stability. Here, we demonstrated the efficacy of a Dnmt3a-deficient CHO cell line created by CRISPR/Cas9 genome editing technology through gene disruptions in Dnmt3a, which encode the proteins involved in DNA methyltransferases. The transgenes, which were driven by the 2 commonly used CMV and EF1α promoters, were evaluated for their expression level and stability. The methylation levels of CpG sites in the promoter regions and the global DNA were compared in the transfected cells. The Dnmt3a-deficent CHO cell line based on Dnmt3a KO displayed an enhanced long-term stability of transgene expression under the control of the CMV promoter in transfected cells in over 60 passages. Under the CMV promoter, the Dnmt3a-deficent cell line with a high transgene expression displayed a low methylation rate in the promoter region and global DNA. Under the EF1α promoter, the Dnmt3a-deficient and normal cell lines with low transgene expression exhibited high DNA methylation rates. These findings provide insight into cell line modification and design for improved recombinant protein production in CHO and other mammalian cells.
Collapse
Affiliation(s)
- Yan‐Long Jia
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Xiao Guo
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Jiang‐Tao Lu
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Xiao‐Yin Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| | - Le‐Le Qiu
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| | - Tian‐Yun Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| |
Collapse
|
49
|
Patel NA, Anderson CR, Terkildsen SE, Davis RC, Pack LD, Bhargava S, Clarke HR. Antibody expression stability in CHO clonally derived cell lines and their subclones: Role of methylation in phenotypic and epigenetic heterogeneity. Biotechnol Prog 2018; 34:635-649. [DOI: 10.1002/btpr.2655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/24/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Neha A. Patel
- Dept. of Bioprocess Development; Seattle Genetics; Bothell WA 98021
| | | | | | - Ray C. Davis
- Dept. of Bioprocess Development; Seattle Genetics; Bothell WA 98021
| | - Laura D. Pack
- Dept. of CMC Statistics; Seattle Genetics; Bothell WA 98021
| | - Swapnil Bhargava
- Dept. of Bioprocess Development; Seattle Genetics; Bothell WA 98021
| | | |
Collapse
|
50
|
Kopru CZ, Cagnan I, Akar I, Esendagli G, Korkusuz P, Gunel-Ozcan A. Dual Effect of Glucocorticoid-Induced Tumor Necrosis Factor-Related Receptor Ligand Carrying Mesenchymal Stromal Cells on Small Cell Lung Cancer: A Preliminary in vitro Study. Cytotherapy 2018; 20:930-940. [PMID: 30180943 DOI: 10.1016/j.jcyt.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND AIMS TNFR family member glucocorticoid-induced tumor necrosis factor-related receptor (GITR/TNFRSF18) activation by its ligand glucocorticoid-induced TNF-related receptor ligand (GITRL) have important roles in proliferation, death and differentiation of cells. Some types of small cell lung cancers (SCLCs) express GITR. Because mesenchymal stromal cells (MSCs) may target tumor cells, we aimed to investigate the effect of MSCs carrying GITRL overexpressing plasmid on the proliferation and viability of a GITR+ SCLC cell line (SCLC-21H) compared with a GITR- SCLC cell line (NCI-H82). METHODS Electroporation was used to transfer pGITRL (GITRL gene carrying plasmid) or pCR3 (mock plasmid) into MSCs. Flow cytometry and semi-quantitative polymerase chain reaction were used to characterize the transfected MSCs. Following SCLC-21H or NCI-H82 cell lines were co-cultured with pGITRL-MSCs. RESULTS Proliferation of NCI-H82 was increased in all types of co-cultures while SCLC-21H cells did not. GITRL expressing MSCs were able to induce cell death of SCLC-21H through the upregulation of SIVA1 apoptosis inducing factor. CONCLUSIONS The influence of MSCs on SCLC cells can vary according to the cancer cell subtypes as obtained in SCLC-21H and NCI-H82 and enabling GITR-GITRL interaction can induce cell death of SCLC cell lines.
Collapse
Affiliation(s)
- Cagla Zubeyde Kopru
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Ilgin Cagnan
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Irem Akar
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Aysen Gunel-Ozcan
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
| |
Collapse
|