1
|
Mainali BB, Yoo JJ, Ladd MR. Tissue engineering and regenerative medicine approaches in colorectal surgery. Ann Coloproctol 2024; 40:336-349. [PMID: 39228197 PMCID: PMC11375227 DOI: 10.3393/ac.2024.00437.0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Tissue engineering and regenerative medicine (TERM) is an emerging field that has provided new therapeutic opportunities by delivering innovative solutions. The development of nontraditional therapies for previously unsolvable diseases and conditions has brought hope and excitement to countless individuals globally. Many regenerative medicine therapies have been developed and delivered to patients clinically. The technology platforms developed in regenerative medicine have been expanded to various medical areas; however, their applications in colorectal surgery remain limited. Applying TERM technologies to engineer biological tissue and organ substitutes may address the current therapeutic challenges and overcome some complications in colorectal surgery, such as inflammatory bowel diseases, short bowel syndrome, and diseases of motility and neuromuscular function. This review provides a comprehensive overview of TERM applications in colorectal surgery, highlighting the current state of the art, including preclinical and clinical studies, current challenges, and future perspectives. This article synthesizes the latest findings, providing a valuable resource for clinicians and researchers aiming to integrate TERM into colorectal surgical practice.
Collapse
Affiliation(s)
- Bigyan B Mainali
- Department of General Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, Wake Forest University, Winston-Salem, NC, USA
| | - Mitchell R Ladd
- Department of General Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
2
|
Torras N, Zabalo J, Abril E, Carré A, García-Díaz M, Martínez E. A bioprinted 3D gut model with crypt-villus structures to mimic the intestinal epithelial-stromal microenvironment. BIOMATERIALS ADVANCES 2023; 153:213534. [PMID: 37356284 DOI: 10.1016/j.bioadv.2023.213534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
The intestine is a complex tissue with a characteristic three-dimensional (3D) crypt-villus architecture, which plays a key role in the intestinal function. This function is also regulated by the intestinal stroma that actively supports the intestinal epithelium, maintaining the homeostasis of the tissue. Efforts to account for the 3D complex structure of the intestinal tissue have been focused mainly in mimicking the epithelial barrier, while solutions to include the stromal compartment are scarce and unpractical to be used in routine experiments. Here we demonstrate that by employing an optimized bioink formulation and the suitable printing parameters it is possible to produce fibroblast-laden crypt-villus structures by means of digital light projection stereolithography (DLP-SLA). This process provides excellent cell viability, accurate spatial resolution, and high printing throughput, resulting in a robust biofabrication approach that yields functional gut mucosa tissues compatible with conventional testing techniques.
Collapse
Affiliation(s)
- Núria Torras
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| | - Jon Zabalo
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Eduardo Abril
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Albane Carré
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - María García-Díaz
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| | - Elena Martínez
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain; Department of Electronics and Biomedical Engineering, University of Barcelona (UB), Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
3
|
Macedo MH, Torras N, García-Díaz M, Barrias C, Sarmento B, Martínez E. The shape of our gut: Dissecting its impact on drug absorption in a 3D bioprinted intestinal model. BIOMATERIALS ADVANCES 2023; 153:213564. [PMID: 37482042 DOI: 10.1016/j.bioadv.2023.213564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The small intestine is a complex organ with a characteristic architecture and a major site for drug and nutrient absorption. The three-dimensional (3D) topography organized in finger-like protrusions called villi increases surface area remarkably, granting a more efficient absorption process. The intestinal mucosa, where this process occurs, is a multilayered and multicell-type tissue barrier. In vitro intestinal models are routinely used to study different physiological and pathological processes in the gut, including compound absorption. Still, standard models are typically two-dimensional (2D) and represent only the epithelial barrier, lacking the cues offered by the 3D architecture and the stromal components present in vivo, often leading to inaccurate results. In this work, we studied the impact of the 3D architecture of the gut on drug transport using a bioprinted 3D model of the intestinal mucosa containing both the epithelial and the stromal compartments. Human intestinal fibroblasts were embedded in a previously optimized hydrogel bioink, and enterocytes and goblet cells were seeded on top to mimic the intestinal mucosa. The embedded fibroblasts thrived inside the hydrogel, remodeling the surrounding extracellular matrix. The epithelial cells fully covered the hydrogel scaffolds and formed a uniform cell layer with barrier properties close to in vivo. In particular, the villus-like model revealed overall increased permeability compared to a flat counterpart composed by the same hydrogel and cells. In addition, the efflux activity of the P-glycoprotein (P-gp) transporter was significantly reduced in the villus-like scaffold compared to a flat model, and the genetic expression of other drugs transporters was, in general, more relevant in the villus-like model. Globally, this study corroborates that the presence of the 3D architecture promotes a more physiological differentiation of the epithelial barrier, providing more accurate data on drug absorbance measurements.
Collapse
Affiliation(s)
- Maria Helena Macedo
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Núria Torras
- IBEC - Institute for Bioengineering of Catalonia, BIST - The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - María García-Díaz
- IBEC - Institute for Bioengineering of Catalonia, BIST - The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Cristina Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Elena Martínez
- IBEC - Institute for Bioengineering of Catalonia, BIST - The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain; CIBER-BBN - Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Avenida Monforte de Lemos 3-5, 28029 Madrid, Spain; Electronics and Biomedical Engineering Department, Universitat de Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
4
|
Donnaloja F, Izzo L, Campanile M, Perottoni S, Boeri L, Fanizza F, Sardelli L, Jacchetti E, Raimondi MT, Rito LD, Craparotta I, Bolis M, Giordano C, Albani D. Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device. APL Bioeng 2023; 7:036117. [PMID: 37736017 PMCID: PMC10511260 DOI: 10.1063/5.0144862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/08/2023] [Indexed: 09/23/2023] Open
Abstract
We developed an innovative millifluidic organ-on-a-chip device, named MINERVA 2.0, that is optically accessible and suitable to serial connection. In the present work, we evaluated MINERVA 2.0 as millifluidic gut epithelium-on-a-chip by using computational modeling and biological assessment. We also tested MINERVA 2.0 in a serially connected configuration prodromal to address the complexity of multiorgan interaction. Once cultured under perfusion in our device, human gut immortalized Caco-2 epithelial cells were able to survive at least up to 7 days and form a three-dimensional layer with detectable tight junctions (occludin and zonulin-1 positive). Functional layer development was supported by measurable trans-epithelial resistance and FITC-dextran permeability regulation, together with mucin-2 expression. The dynamic culturing led to a specific transcriptomic profile, assessed by RNASeq, with a total of 524 dysregulated transcripts (191 upregulated and 333 downregulated) between static and dynamic condition. Overall, the collected results suggest that our gut-on-a-chip millifluidic model displays key gut epithelium features and, thanks to its modular design, may be the basis to build a customizable multiorgan-on-a-chip platform.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Luca Izzo
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Marzia Campanile
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Simone Perottoni
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Francesca Fanizza
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Lorenzo Sardelli
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Manuela T. Raimondi
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Laura Di Rito
- Department of Oncology, Computational Oncology Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Craparotta
- Department of Oncology, Computational Oncology Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Bolis
- Department of Oncology, Computational Oncology Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
5
|
Kim R. Advanced Organotypic In Vitro Model Systems for Host-Microbial Coculture. BIOCHIP JOURNAL 2023; 17:1-27. [PMID: 37363268 PMCID: PMC10201494 DOI: 10.1007/s13206-023-00103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 06/28/2023]
Abstract
In vitro model systems have been advanced to recapitulate important physiological features of the target organ in vivo more closely than the conventional cell line cultures on a petri dish. The advanced organotypic model systems can be used as a complementary or alternative tool for various testing and screening. Numerous data from germ-free animal studies and genome sequencings of clinical samples indicate that human microbiota is an essential part of the human body, but current in vitro model systems rarely include them, which can be one of the reasons for the discrepancy in the tissue phenotypes and outcome of therapeutic intervention between in vivo and in vitro tissues. A coculture model system with appropriate microbes and host cells may have great potential to bridge the gap between the in vitro model and the in vivo counterpart. However, successfully integrating two species in one system introduces new variables to consider and poses new challenges to overcome. This review aims to provide perspectives on the important factors that should be considered for developing organotypic bacterial coculture models. Recent advances in various organotypic bacterial coculture models are highlighted. Finally, challenges and opportunities in developing organotypic microbial coculture models are also discussed.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| |
Collapse
|
6
|
Sanchez MM, Bagdasarian IA, Darch W, Morgan JT. Organotypic cultures as aging associated disease models. Aging (Albany NY) 2022; 14:9338-9383. [PMID: 36435511 PMCID: PMC9740367 DOI: 10.18632/aging.204361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Aging remains a primary risk factor for a host of diseases, including leading causes of death. Aging and associated diseases are inherently multifactorial, with numerous contributing factors and phenotypes at the molecular, cellular, tissue, and organismal scales. Despite the complexity of aging phenomena, models currently used in aging research possess limitations. Frequently used in vivo models often have important physiological differences, age at different rates, or are genetically engineered to match late disease phenotypes rather than early causes. Conversely, routinely used in vitro models lack the complex tissue-scale and systemic cues that are disrupted in aging. To fill in gaps between in vivo and traditional in vitro models, researchers have increasingly been turning to organotypic models, which provide increased physiological relevance with the accessibility and control of in vitro context. While powerful tools, the development of these models is a field of its own, and many aging researchers may be unaware of recent progress in organotypic models, or hesitant to include these models in their own work. In this review, we describe recent progress in tissue engineering applied to organotypic models, highlighting examples explicitly linked to aging and associated disease, as well as examples of models that are relevant to aging. We specifically highlight progress made in skin, gut, and skeletal muscle, and describe how recently demonstrated models have been used for aging studies or similar phenotypes. Throughout, this review emphasizes the accessibility of these models and aims to provide a resource for researchers seeking to leverage these powerful tools.
Collapse
Affiliation(s)
- Martina M. Sanchez
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - William Darch
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Altay G, Abad‐Lázaro A, Gualda EJ, Folch J, Insa C, Tosi S, Hernando‐Momblona X, Batlle E, Loza‐Álvarez P, Fernández‐Majada V, Martinez E. Modeling Biochemical Gradients In Vitro to Control Cell Compartmentalization in a Microengineered 3D Model of the Intestinal Epithelium. Adv Healthc Mater 2022; 11:e2201172. [PMID: 36073021 PMCID: PMC11468757 DOI: 10.1002/adhm.202201172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/29/2022] [Indexed: 01/28/2023]
Abstract
Gradients of signaling pathways within the intestinal stem cell (ISC) niche are instrumental for cellular compartmentalization and tissue function, yet how are they sensed by the epithelium is still not fully understood. Here a new in vitro model of the small intestine based on primary epithelial cells (i), apically accessible (ii), with native tissue mechanical properties and controlled mesh size (iii), 3D villus-like architecture (iv), and precisely controlled biomolecular gradients of the ISC niche (v) is presented. Biochemical gradients are formed through hydrogel-based scaffolds by free diffusion from a source to a sink chamber. To confirm the establishment of spatiotemporally controlled gradients, light-sheet fluorescence microscopy and in-silico modeling are employed. The ISC niche biochemical gradients coming from the stroma and applied along the villus axis lead to the in vivo-like compartmentalization of the proliferative and differentiated cells, while changing the composition and concentration of the biochemical factors affects the cellular organization along the villus axis. This novel 3D in vitro intestinal model derived from organoids recapitulates both the villus-like architecture and the gradients of ISC biochemical factors, thus opening the possibility to study in vitro the nature of such gradients and the resulting cellular response.
Collapse
Affiliation(s)
- Gizem Altay
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
- Institut de l'AuditionInstitut PasteurINSERMUniversité de ParisParis75012France
| | - Aina Abad‐Lázaro
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Emilio J. Gualda
- SLN Research FacilityInstitute of Photonic Sciences (ICFO)Mediterranean Technology ParkAv. Carl Friedrich Gauss 3 CastelldefelsBarcelona08860Spain
| | - Jordi Folch
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Claudia Insa
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Sébastien Tosi
- Advanced Digital Microscopy Core Facility (ADMCF)Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 10‐12Barcelona08028Spain
| | - Xavier Hernando‐Momblona
- Colorectal Cancer LaboratoryInstitute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 10‐12Barcelona08028Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Barcelona08028Spain
| | - Eduard Batlle
- Colorectal Cancer LaboratoryInstitute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 10‐12Barcelona08028Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Barcelona08028Spain
- ICREAPasseig Lluís Companys 23Barcelona08010Spain
| | - Pablo Loza‐Álvarez
- SLN Research FacilityInstitute of Photonic Sciences (ICFO)Mediterranean Technology ParkAv. Carl Friedrich Gauss 3 CastelldefelsBarcelona08860Spain
| | - Vanesa Fernández‐Majada
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Elena Martinez
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)Av. Monforte de Lemos 3‐5 Pabellón 11 Planta 0Madrid28029Spain
- Department of Electronics and Biomedical EngineeringUniversity of Barcelona (UB)Martí i Franquès 1Barcelona08028Spain
| |
Collapse
|
8
|
García-Díaz M, Cendra MDM, Alonso-Roman R, Urdániz M, Torrents E, Martínez E. Mimicking the Intestinal Host-Pathogen Interactions in a 3D In Vitro Model: The Role of the Mucus Layer. Pharmaceutics 2022; 14:1552. [PMID: 35893808 PMCID: PMC9331835 DOI: 10.3390/pharmaceutics14081552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
The intestinal mucus lines the luminal surface of the intestinal epithelium. This mucus is a dynamic semipermeable barrier and one of the first-line defense mechanisms against the outside environment, protecting the body against chemical, mechanical, or biological external insults. At the same time, the intestinal mucus accommodates the resident microbiota, providing nutrients and attachment sites, and therefore playing an essential role in the host-pathogen interactions and gut homeostasis. Underneath this mucus layer, the intestinal epithelium is organized into finger-like protrusions called villi and invaginations called crypts. This characteristic 3D architecture is known to influence the epithelial cell differentiation and function. However, when modelling in vitro the intestinal host-pathogen interactions, these two essential features, the intestinal mucus and the 3D topography are often not represented, thus limiting the relevance of the models. Here we present an in vitro model that mimics the small intestinal mucosa and its interactions with intestinal pathogens in a relevant manner, containing the secreted mucus layer and the epithelial barrier in a 3D villus-like hydrogel scaffold. This 3D architecture significantly enhanced the secretion of mucus. In infection with the pathogenic adherent invasive E. coli strain LF82, characteristic of Crohn's disease, we observed that this secreted mucus promoted the adhesion of the pathogen and at the same time had a protective effect upon its invasion. This pathogenic strain was able to survive inside the epithelial cells and trigger an inflammatory response that was milder when a thick mucus layer was present. Thus, we demonstrated that our model faithfully mimics the key features of the intestinal mucosa necessary to study the interactions with intestinal pathogens.
Collapse
Affiliation(s)
- María García-Díaz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - Maria del Mar Cendra
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - Raquel Alonso-Roman
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - María Urdániz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - Eduard Torrents
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Biology Faculty, University of Barcelona, 08028 Barcelona, Spain
| | - Elena Martínez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Maji S, Lee H. Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. Int J Mol Sci 2022; 23:2662. [PMID: 35269803 PMCID: PMC8910155 DOI: 10.3390/ijms23052662] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
The superiority of in vitro 3D cultures over conventional 2D cell cultures is well recognized by the scientific community for its relevance in mimicking the native tissue architecture and functionality. The recent paradigm shift in the field of tissue engineering toward the development of 3D in vitro models can be realized with its myriad of applications, including drug screening, developing alternative diagnostics, and regenerative medicine. Hydrogels are considered the most suitable biomaterial for developing an in vitro model owing to their similarity in features to the extracellular microenvironment of native tissue. In this review article, recent progress in the use of hydrogel-based biomaterial for the development of 3D in vitro biomimetic tissue models is highlighted. Discussions of hydrogel sources and the latest hybrid system with different combinations of biopolymers are also presented. The hydrogel crosslinking mechanism and design consideration are summarized, followed by different types of available hydrogel module systems along with recent microfabrication technologies. We also present the latest developments in engineering hydrogel-based 3D in vitro models targeting specific tissues. Finally, we discuss the challenges surrounding current in vitro platforms and 3D models in the light of future perspectives for an improved biomimetic in vitro organ system.
Collapse
Affiliation(s)
- Somnath Maji
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
| | - Hyungseok Lee
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
- Department of Smart Health Science and Technology, Kangwon National University (KNU), Chuncheon 24341, Korea
| |
Collapse
|
10
|
Organ-on-a-Chip for Studying Gut-Brain Interaction Mediated by Extracellular Vesicles in the Gut Microenvironment. Int J Mol Sci 2021; 22:ijms222413513. [PMID: 34948310 PMCID: PMC8707342 DOI: 10.3390/ijms222413513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are a group of membrane vesicles that play important roles in cell-to-cell and interspecies/interkingdom communications by modulating the pathophysiological conditions of recipient cells. Recent evidence has implied their potential roles in the gut–brain axis (GBA), which is a complex bidirectional communication system between the gut environment and brain pathophysiology. Despite the evidence, the roles of EVs in the gut microenvironment in the GBA are less highlighted. Moreover, there are critical challenges in the current GBA models and analyzing techniques for EVs, which may hinder the research. Currently, advances in organ-on-a-chip (OOC) technologies have provided a promising solution. Here, we review the potential effects of EVs occurring in the gut environment on brain physiology and behavior and discuss how to apply OOCs to research the GBA mediated by EVs in the gut microenvironment.
Collapse
|
11
|
Taebnia N, Zhang R, Kromann EB, Dolatshahi-Pirouz A, Andresen TL, Larsen NB. Dual-Material 3D-Printed Intestinal Model Devices with Integrated Villi-like Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58434-58446. [PMID: 34866391 DOI: 10.1021/acsami.1c22185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In vitro small intestinal models aim to mimic the in vivo intestinal function and structure, including the villi architecture of the native tissue. Accurate models in a scalable format are in great demand to advance, for example, the development of orally administered pharmaceutical products. Widely used planar intestinal cell monolayers for compound screening applications fail to recapitulate the three-dimensional (3D) microstructural characteristics of the intestinal villi arrays. This study employs stereolithographic 3D printing to manufacture biocompatible hydrogel-based scaffolds with villi-like micropillar arrays of tunable dimensions in poly(ethylene glycol) diacrylates (PEGDAs). The resulting 3D-printed microstructures are demonstrated to support a month-long culture and induce apicobasal polarization of Caco-2 epithelial cell layers along the villus axis, similar to the native intestinal microenvironment. Transport analysis requires confinement of compound transport to the epithelial cell layer within a compound diffusion-closed reservoir compartment. We meet this challenge by sequential printing of PEGDAs of different molecular weights into a monolithic device, where a diffusion-open villus-structured hydrogel bottom supports the cell culture and mass transport within the confines of a diffusion-closed solid wall. As a functional demonstrator of this scalable dual-material 3D micromanufacturing technology, we show that Caco-2 cells seeded in villi-wells form a tight epithelial barrier covering the villi-like micropillars and that compound-induced challenges to the barrier integrity can be monitored by standard high-throughput analysis tools (fluorescent tracer diffusion and transepithelial electrical resistance).
Collapse
Affiliation(s)
- Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Rujing Zhang
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Emil B Kromann
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Alireza Dolatshahi-Pirouz
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Thomas L Andresen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Niels B Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
All layers matter: Innovative three-dimensional epithelium-stroma-endothelium intestinal model for reliable permeability outcomes. J Control Release 2021; 341:414-430. [PMID: 34871636 DOI: 10.1016/j.jconrel.2021.11.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues. The main goal of this work was to develop an advanced three-dimensional (3D) in vitro intestinal model to test absorption in a more reliable manner, by better mimicking the native environment. The 3D model is composed of a collagen-based stromal layer with embedded fibroblasts mimicking the intestinal lamina propria and providing support for the epithelium, composed of enterocytes and mucus-secreting cells. An endothelial layer, surrogating the absorptive capillary network, is also present. The cellular crosstalk between the different cells present in the model is unveiled, disclosing key players, namely those involved in the contraction of collagen by fibroblasts. The developed 3D model presents lower levels of P-glycoprotein (P-gp) and Multidrug Resistance Protein 2 (MRP2) efflux transporters, which are normally overexpressed in traditional Caco-2 models, and are paramount in the absorption of many compounds. This, allied with transepithelial electrical resistance (TEER) values closer to physiological ranges, leads to improved and more reliable permeability outcomes, which are observed when comparing our results with in vivo data.
Collapse
|
13
|
Hagiwara Y, Kumagai H, Ouwerkerk N, Gijzen L, Annida R, Bokkers M, van Vught R, Yoshinari K, Katakawa Y, Motonaga K, Tajiri T. A Novel In Vitro Membrane Permeability Methodology Using Three-dimensional Caco-2 Tubules in a Microphysiological System Which Better Mimics In Vivo Physiological Conditions. J Pharm Sci 2021; 111:214-224. [PMID: 34838780 DOI: 10.1016/j.xphs.2021.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
The aim of this study was to develop an in vitro drug permeability methodology which mimics the gastrointestinal environment more accurately than conventional 2D methodologies through a three-dimensional (3D) Caco-2 tubules using a microphysiological system. Such a system offers significant advantages, including accelerated cellular polarization and more accurate mimicry of the in vivo environment. This methodology was confirmed by measuring the permeability of propranolol as a model compound, and subsequently applied to those of solifenacin and bile acids for a comprehensive understanding of permeability for the drug product in the human gastrointestinal tract. To protect the Caco-2 tubules from bile acid toxicity, a mucus layer was applied on the surface of Caco-2 tubules and it enables to use simulated intestinal fluid. The assessment using propranolol reproduced results equivalent to those obtained from conventional methodology, while that using solifenacin indicated fluctuations in the permeability of solifenacin due to various factors, including interaction with bile acids. We therefore suggest that this model will serve as an alternative testing system for measuring drug absorption in an environment closely resembling that of the human gastrointestinal tract.
Collapse
Affiliation(s)
- Yuki Hagiwara
- Analytical Research Laboratories, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan
| | - Harumi Kumagai
- Analytical Research Laboratories, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan
| | - Niels Ouwerkerk
- European Analytical Research Laboratories, Astellas Pharma Europe B.V., Leiden 2333 BE, the Netherlands
| | - Linda Gijzen
- Mimetas B.V., Oegstgeest 2342 DH, the Netherlands
| | | | | | | | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yoshifumi Katakawa
- Analytical Research Laboratories, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan
| | - Kei Motonaga
- Analytical Research Laboratories, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan
| | - Tomokazu Tajiri
- Pharmaceutical Science and Technology Laboratories, Astellas Pharma Inc., Tsukuba, Ibaraki 300-2698, Japan.
| |
Collapse
|
14
|
Zarrintaj P, Saeb MR, Stadler FJ, Yazdi MK, Nezhad MN, Mohebbi S, Seidi F, Ganjali MR, Mozafari M. Human Organs-on-Chips: A Review of the State-of-the-Art, Current Prospects, and Future Challenges. Adv Biol (Weinh) 2021; 6:e2000526. [PMID: 34837667 DOI: 10.1002/adbi.202000526] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/03/2021] [Indexed: 01/09/2023]
Abstract
New emerging technologies, remarkably miniaturized 3D organ models and microfluidics, enable simulation of the real in vitro microenvironment ex vivo more closely. There are many fascinating features of innovative organ-on-a-chip (OOC) technology, including the possibility of integrating semipermeable and/or stretchable membranes, creating continuous perfusion of fluids into microchannels and chambers (while maintaining laminar flow regime), embedding microdevices like microsensors, microstimulators, micro heaters, or different cell lines, along with other 3D cell culture technologies. OOC systems are designed to imitate the structure and function of human organs, ranging from breathing lungs to beating hearts. This technology is expected to be able to revolutionize cell biology studies, personalized precision medicine, drug development process, and cancer diagnosis/treatment. OOC systems can significantly reduce the cost associated with tedious drug development processes and the risk of adverse drug reactions in the body, which makes drug screening more effective. The review mainly focus on presenting an overview of the several previously developed OOC systems accompanied by subjects relevant to pharmacy-, cancer-, and placenta-on-a-chip. The challenging issues and opportunities related to these systems are discussed, along with a future perspective for this technology.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Mojtaba Nasiri Nezhad
- Department of Chemical Engineering, Urmia University of Technology, Urmia, 57166-419, Iran
| | - Shabnam Mohebbi
- Department of Chemical Engineering, Tabriz University, Tabriz, 51335-1996, Iran
| | - Farzad Seidi
- Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 14395-1179, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
15
|
Ghiselli F, Rossi B, Piva A, Grilli E. Assessing Intestinal Health. In Vitro and Ex vivo Gut Barrier Models of Farm Animals: Benefits and Limitations. Front Vet Sci 2021; 8:723387. [PMID: 34888373 PMCID: PMC8649998 DOI: 10.3389/fvets.2021.723387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Animal performance is determined by the functionality and health of the gastrointestinal tract (GIT). Complex mechanisms and interactions are involved in the regulation of GIT functionality and health. The understanding of these relationships could be crucial for developing strategies to improve animal production yields. The concept of "gut health" is not well defined, but this concept has begun to play a very important role in the field of animal science. However, a clear definition of GIT health and the means by which to measure it are lacking. In vitro and ex vivo models can facilitate these studies, creating well-controlled and repeatable conditions to understand how to improve animal gut health. Over the years, several models have been developed and used to study the beneficial or pathogenic relationships between the GIT and the external environment. This review aims to describe the most commonly used animals' in vitro or ex vivo models and techniques that are useful for better understanding the intestinal health of production animals, elucidating their benefits and limitations.
Collapse
Affiliation(s)
- Federico Ghiselli
- Servizio Produzioni Animali e Sicurezza Alimentare, Dipartimento di Scienze Mediche Veterinarie, University of Bologna, Bologna, Italy
| | | | - Andrea Piva
- Servizio Produzioni Animali e Sicurezza Alimentare, Dipartimento di Scienze Mediche Veterinarie, University of Bologna, Bologna, Italy
- Vetagro S.p.A., Reggio Emilia, Italy
| | - Ester Grilli
- Servizio Produzioni Animali e Sicurezza Alimentare, Dipartimento di Scienze Mediche Veterinarie, University of Bologna, Bologna, Italy
- Vetagro Inc., Chicago, IL, United States
| |
Collapse
|
16
|
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. Int J Mol Sci 2021; 22:12200. [PMID: 34830082 PMCID: PMC8618305 DOI: 10.3390/ijms222212200] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 01/09/2023] Open
Abstract
The traditional two-dimensional (2D) in vitro cell culture system (on a flat support) has long been used in cancer research. However, this system cannot be fully translated into clinical trials to ideally represent physiological conditions. This culture cannot mimic the natural tumor microenvironment due to the lack of cellular communication (cell-cell) and interaction (cell-cell and cell-matrix). To overcome these limitations, three-dimensional (3D) culture systems are increasingly developed in research and have become essential for tumor research, tissue engineering, and basic biology research. 3D culture has received much attention in the field of biomedicine due to its ability to mimic tissue structure and function. The 3D matrix presents a highly dynamic framework where its components are deposited, degraded, or modified to delineate functions and provide a platform where cells attach to perform their specific functions, including adhesion, proliferation, communication, and apoptosis. So far, various types of models belong to this culture: either the culture based on natural or synthetic adherent matrices used to design 3D scaffolds as biomaterials to form a 3D matrix or based on non-adherent and/or matrix-free matrices to form the spheroids. In this review, we first summarize a comparison between 2D and 3D cultures. Then, we focus on the different components of the natural extracellular matrix that can be used as supports in 3D culture. Then we detail different types of natural supports such as matrigel, hydrogels, hard supports, and different synthetic strategies of 3D matrices such as lyophilization, electrospiding, stereolithography, microfluid by citing the advantages and disadvantages of each of them. Finally, we summarize the different methods of generating normal and tumor spheroids, citing their respective advantages and disadvantages in order to obtain an ideal 3D model (matrix) that retains the following characteristics: better biocompatibility, good mechanical properties corresponding to the tumor tissue, degradability, controllable microstructure and chemical components like the tumor tissue, favorable nutrient exchange and easy separation of the cells from the matrix.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie Moléculaire et Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Liban;
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| |
Collapse
|
17
|
O'Farrell C, Stamatopoulos K, Simmons M, Batchelor H. In vitro models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021; 178:113924. [PMID: 34390774 DOI: 10.1016/j.addr.2021.113924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orally ingestible medical devices offer significant opportunity in the diagnosis and treatment of gastrointestinal conditions. Their development necessitates the use of models that simulate the gastrointestinal environment on both a macro and micro scale. An evolution in scientific technology has enabled a wide range of in vitro, ex vivo and in vivo models to be developed that replicate the gastrointestinal tract. This review describes the landscape of the existing range of in vitro tools that are available to characterize ingestible devices. Models are presented with details on their benefits and limitations with regards to the evaluation of ingestible devices and examples of their use in the evaluation of such devices is presented where available. The multitude of models available provides a suite of tools that can be used in the evaluation of ingestible devices that should be selected on the functionality of the device and the mechanism of its function.
Collapse
Affiliation(s)
- Connor O'Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Mark Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
18
|
Mitxelena-Iribarren O, Olaizola C, Arana S, Mujika M. Versatile membrane-based microfluidic platform for in vitro drug diffusion testing mimicking in vivo environments. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 39:102462. [PMID: 34592426 DOI: 10.1016/j.nano.2021.102462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023]
Abstract
Mimicking the diffusion that drugs suffer through different body tissues before reaching their target is a challenge. In this work, a versatile membrane-based microfluidic platform was developed to allow for the identification of drugs that would keep their cytotoxic properties after diffusing through such a barrier. As an application case, this paper reports on a microfluidic device capable of mimicking the diffusion that free or encapsulated anticancer drugs would suffer in the intestine before reaching the bloodstream. It not only presents the successful fabrication results for the platform but also demonstrates the significant effect that the analyzed drugs have over the viability of osteosarcoma cells. This intestine-like microfluidic platform works as a tool to allow for the identification of drugs whose cytotoxic performance remains effective enough once they enter the bloodstream. Therefore, it allows for the prediction of the best treatment available for each patient in the battle against cancer.
Collapse
Affiliation(s)
- Oihane Mitxelena-Iribarren
- CEIT-Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain; Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain.
| | | | - Sergio Arana
- CEIT-Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain; Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| | - Maite Mujika
- CEIT-Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain; Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| |
Collapse
|
19
|
Larsen JB, Taebnia N, Dolatshahi-Pirouz A, Eriksen AZ, Hjørringgaard C, Kristensen K, Larsen NW, Larsen NB, Marie R, Mündler AK, Parhamifar L, Urquhart AJ, Weller A, Mortensen KI, Flyvbjerg H, Andresen TL. Imaging therapeutic peptide transport across intestinal barriers. RSC Chem Biol 2021; 2:1115-1143. [PMID: 34458827 PMCID: PMC8341777 DOI: 10.1039/d1cb00024a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Oral delivery is a highly preferred method for drug administration due to high patient compliance. However, oral administration is intrinsically challenging for pharmacologically interesting drug classes, in particular pharmaceutical peptides, due to the biological barriers associated with the gastrointestinal tract. In this review, we start by summarizing the pharmacological performance of several clinically relevant orally administrated therapeutic peptides, highlighting their low bioavailabilities. Thus, there is a strong need to increase the transport of peptide drugs across the intestinal barrier to realize future treatment needs and further development in the field. Currently, progress is hampered by a lack of understanding of transport mechanisms that govern intestinal absorption and transport of peptide drugs, including the effects of the permeability enhancers commonly used to mediate uptake. We describe how, for the past decades, mechanistic insights have predominantly been gained using functional assays with end-point read-out capabilities, which only allow indirect study of peptide transport mechanisms. We then focus on fluorescence imaging that, on the other hand, provides opportunities to directly visualize and thus follow peptide transport at high spatiotemporal resolution. Consequently, it may provide new and detailed mechanistic understanding of the interplay between the physicochemical properties of peptides and cellular processes; an interplay that determines the efficiency of transport. We review current methodology and state of the art in the field of fluorescence imaging to study intestinal barrier transport of peptides, and provide a comprehensive overview of the imaging-compatible in vitro, ex vivo, and in vivo platforms that currently are being developed to accelerate this emerging field of research.
Collapse
Affiliation(s)
- Jannik Bruun Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Alireza Dolatshahi-Pirouz
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Anne Zebitz Eriksen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Claudia Hjørringgaard
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kasper Kristensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nanna Wichmann Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Niels Bent Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Rodolphe Marie
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ann-Kathrin Mündler
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ladan Parhamifar
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Andrew James Urquhart
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Arjen Weller
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kim I Mortensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Henrik Flyvbjerg
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Thomas Lars Andresen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| |
Collapse
|
20
|
Signore MA, De Pascali C, Giampetruzzi L, Siciliano PA, Francioso L. Gut-on-Chip microphysiological systems: Latest advances in the integration of sensing strategies and adoption of mature detection mechanisms. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
21
|
Castro F, Leite Pereira C, Helena Macedo M, Almeida A, José Silveira M, Dias S, Patrícia Cardoso A, José Oliveira M, Sarmento B. Advances on colorectal cancer 3D models: The needed translational technology for nanomedicine screening. Adv Drug Deliv Rev 2021; 175:113824. [PMID: 34090966 DOI: 10.1016/j.addr.2021.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is a heterogeneous and molecularly complex disease, associated with high mortality worldwide, exposing the urgent need for novel therapeutic approaches. Their development and translation to the clinic have been hampered, partially due to the absence of reliable cellular models that resemble key features of the human disease. While traditional 2D models are not able to provide consistent and predictive responses about the in vivo efficiency of the formulation, animal models frequently fail to recapitulate cancer progression and to reproduce adverse effects. On its turn, multicellular 3D systems, by mimicking key genetic, physical and mechanical cues of the tumor microenvironment, constitute a promising tool in cancer research. In addition, they constitute more physiological and relevant environment for anticancer drugs screening and for predicting patient's response towards personalized approaches, bridging the gap between simplified 2D models and unrepresentative animal models. In this review, we provide an overview of CRC 3D models for translational research, with focus on their potential for nanomedicines screening.
Collapse
|
22
|
Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021; 175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Current treatment strategies for inflammatory bowel disease (IBD) seek to alleviate the undesirable symptoms of the disorder. Despite the higher specificity of newer generation therapeutics, e.g. monoclonal antibodies, adverse effects still arise from their interference with non-specific systemic immune cascades. To circumvent such undesirable effects, both conventional and newer therapeutic options can benefit from various targeting strategies. Of course, both the development and the assessment of the efficiency of such targeted delivery systems necessitate the use of suitable in vivo and in vitro models representing relevant pathophysiological manifestations of the disorder. Accordingly, the current review seeks to provide a comprehensive discussion of the available preclinical models with emphasis on human in vitro models of IBD, along with their potentials and limitations. This is followed by an elaboration on the advancements in the field of biology- and nanotechnology-based targeted drug delivery systems and the potential rooms for improvement to facilitate their clinical translation.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Karim S Shalaby
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany; Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
23
|
Xu Y, Shrestha N, Préat V, Beloqui A. An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv Drug Deliv Rev 2021; 175:113795. [PMID: 33989702 DOI: 10.1016/j.addr.2021.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Oral administration is the most commonly used route for drug delivery owing to its cost-effectiveness, ease of administration, and high patient compliance. However, the absorption of orally delivered compounds is a complex process that greatly depends on the interplay between the characteristics of the drug/formulation and the gastrointestinal tract. In this contribution, we review the different preclinical models (in vitro, ex vivo and in vivo) from their development to application for studying the transport of drugs across intestinal barriers. This review also discusses the advantages and disadvantages of each model. Furthermore, the authors have reviewed the selection and validation of these models and how the limitations of the models can be addressed in future investigations. The correlation and predictability of the intestinal transport data from the preclinical models and human data are also explored. With the increasing popularity and prevalence of orally delivered drugs/formulations, sophisticated preclinical models with higher predictive capacity for absorption of oral formulations used in clinical studies will be needed.
Collapse
Affiliation(s)
- Yining Xu
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Neha Shrestha
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Véronique Préat
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Ana Beloqui
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| |
Collapse
|
24
|
Andrysiak K, Stępniewski J, Dulak J. Human-induced pluripotent stem cell-derived cardiomyocytes, 3D cardiac structures, and heart-on-a-chip as tools for drug research. Pflugers Arch 2021; 473:1061-1085. [PMID: 33629131 PMCID: PMC8245367 DOI: 10.1007/s00424-021-02536-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Development of new drugs is of high interest for the field of cardiac and cardiovascular diseases, which are a dominant cause of death worldwide. Before being allowed to be used and distributed, every new potentially therapeutic compound must be strictly validated during preclinical and clinical trials. The preclinical studies usually involve the in vitro and in vivo evaluation. Due to the increasing reporting of discrepancy in drug effects in animal and humans and the requirement to reduce the number of animals used in research, improvement of in vitro models based on human cells is indispensable. Primary cardiac cells are difficult to access and maintain in cell culture for extensive experiments; therefore, the human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) became an excellent alternative. This technology enables a production of high number of patient- and disease-specific cardiomyocytes and other cardiac cell types for a large-scale research. The drug effects can be extensively evaluated in the context of electrophysiological responses with a use of well-established tools, such as multielectrode array (MEA), patch clamp, or calcium ion oscillation measurements. Cardiotoxicity, which is a common reason for withdrawing drugs from marketing or rejection at final stages of clinical trials, can be easily verified with a use of hiPSC-CM model providing a prediction of human-specific responses and higher safety of clinical trials involving patient cohort. Abovementioned studies can be performed using two-dimensional cell culture providing a high-throughput and relatively lower costs. On the other hand, more complex structures, such as engineered heart tissue, organoids, or spheroids, frequently applied as co-culture systems, represent more physiological conditions and higher maturation rate of hiPSC-derived cells. Furthermore, heart-on-a-chip technology has recently become an increasingly popular tool, as it implements controllable culture conditions, application of various stimulations and continuous parameters read-out. This paper is an overview of possible use of cardiomyocytes and other cardiac cell types derived from hiPSC as in vitro models of heart in drug research area prepared on the basis of latest scientific reports and providing thorough discussion regarding their advantages and limitations.
Collapse
Affiliation(s)
- Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
25
|
Marrero D, Pujol-Vila F, Vera D, Gabriel G, Illa X, Elizalde-Torrent A, Alvarez M, Villa R. Gut-on-a-chip: Mimicking and monitoring the human intestine. Biosens Bioelectron 2021; 181:113156. [DOI: 10.1016/j.bios.2021.113156] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
|
26
|
Fedi A, Vitale C, Ponschin G, Ayehunie S, Fato M, Scaglione S. In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: A systematic review. J Control Release 2021; 335:247-268. [PMID: 34033859 DOI: 10.1016/j.jconrel.2021.05.028] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
Absorption, distribution, metabolism and excretion (ADME) studies represent a fundamental step in the early stages of drug discovery. In particular, the absorption of orally administered drugs, which occurs at the intestinal level, has gained attention since poor oral bioavailability often led to failures for new drug approval. In this context, several in vitro preclinical models have been recently developed and optimized to better resemble human physiology in the lab and serve as an animal alternative to accomplish the 3Rs principles. However, numerous models are ineffective in recapitulating the key features of the human small intestine epithelium and lack of prediction potential for drug absorption and metabolism during the preclinical stage. In this review, we provide an overview of in vitro models aimed at mimicking the intestinal barrier for pharmaceutical screening. After briefly describing how the human small intestine works, we present i) conventional 2D synthetic and cell-based systems, ii) 3D models replicating the main features of the intestinal architecture, iii) micro-physiological systems (MPSs) reproducing the dynamic stimuli to which cells are exposed in the native microenvironment. In this review, we will highlight the benefits and drawbacks of the leading intestinal models used for drug absorption and metabolism studies.
Collapse
Affiliation(s)
- Arianna Fedi
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy; National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy
| | - Chiara Vitale
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy
| | - Giulia Ponschin
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
| | | | - Marco Fato
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy; National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy
| | - Silvia Scaglione
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy.
| |
Collapse
|
27
|
Sung JH. Multi-organ-on-a-chip for pharmacokinetics and toxicokinetic study of drugs. Expert Opin Drug Metab Toxicol 2021; 17:969-986. [PMID: 33764248 DOI: 10.1080/17425255.2021.1908996] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Accurate prediction of pharmacokinetic (PK) and toxicokinetics (TK) of drugs is imperative for successful development of new pharmaceutics. Although conventional in vitro methods for predicting the PK and TK of drugs are well established, limitations still exist and more advanced chip-based in vitro platforms combined with mathematical models can help researchers overcome the limitations. Areas covered: We will review recent progress in the development of multi-organ-on-a-chip platforms for predicting PK and TK of drugs, as well as mathematical approaches that can be combined with these platforms for experiment design, data analysis and in vitro-in vivo extrapolation (IVIVE) for application to humans. Expert opinion: Although there remain some challenges to be addressed, the remarkable progress in the area of multi-organ-on-a-chip in recent years indicate that we will see tangible outcomes that can be utilized in the pharmaceutical industry in near future.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, sejong, Republic of Korea
| |
Collapse
|
28
|
Ghiselli F, Rossi B, Felici M, Parigi M, Tosi G, Fiorentini L, Massi P, Piva A, Grilli E. Isolation, culture, and characterization of chicken intestinal epithelial cells. BMC Mol Cell Biol 2021; 22:12. [PMID: 33579204 PMCID: PMC7881477 DOI: 10.1186/s12860-021-00349-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/31/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Enterocytes exert an absorptive and protective function in the intestine, and they encounter many different challenging factors such as feed, bacteria, and parasites. An intestinal epithelial in vitro model can help to understand how enterocytes are affected by these factors and contribute to the development of strategies against pathogens. RESULTS The present study describes a novel method to culture and maintain primary chicken enterocytes and their characterization by immunofluorescence and biomolecular approaches. Starting from 19-day-old chicken embryos it was possible to isolate viable intestinal cell aggregates that can expand and produce a self-maintaining intestinal epithelial cell population that survives until 12 days in culture. These cells resulted positive in immunofluorescence to Cytokeratin 18, Zonula occludens 1, Villin, and Occludin that are common intestinal epithelial markers, and negative to Vimentin that is expressed by endothelial cells. Cells were cultured also on Transwell® permeable supports and trans-epithelial electrical resistance, was measured. This value gradually increased reaching 64 Ω*cm2 7 days after seeding and it remained stable until day 12. CONCLUSIONS Based on these results it was confirmed that it is possible to isolate and maintain chicken intestinal epithelial cells in culture and that they can be suitable as in vitro intestinal model for further studies.
Collapse
Affiliation(s)
- Federico Ghiselli
- DIMEVET, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia, 40064, Bologna, BO, Italy
| | - Barbara Rossi
- Vetagro S.p.A., Via Ignazio Porro, 2, 42124, Reggio Emilia, RE, Italy
| | - Martina Felici
- DIMEVET, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia, 40064, Bologna, BO, Italy
| | - Maria Parigi
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia Romagna, Sede Territoriale di Forlì, Via Don Eugenio Servadei, 47122, Forlì, FC, Italy
| | - Giovanni Tosi
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia Romagna, Sede Territoriale di Forlì, Via Don Eugenio Servadei, 47122, Forlì, FC, Italy
| | - Laura Fiorentini
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia Romagna, Sede Territoriale di Forlì, Via Don Eugenio Servadei, 47122, Forlì, FC, Italy
| | - Paola Massi
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia Romagna, Sede Territoriale di Forlì, Via Don Eugenio Servadei, 47122, Forlì, FC, Italy
| | - Andrea Piva
- DIMEVET, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia, 40064, Bologna, BO, Italy.,Vetagro S.p.A., Via Ignazio Porro, 2, 42124, Reggio Emilia, RE, Italy
| | - Ester Grilli
- DIMEVET, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia, 40064, Bologna, BO, Italy. .,Vetagro, Inc., 116 W. Jackson Blwd., Suite #320, Chicago, IL, 60604, USA.
| |
Collapse
|
29
|
Agarwal T, Onesto V, Lamboni L, Ansari A, Maiti TK, Makvandi P, Vosough M, Yang G. Engineering biomimetic intestinal topological features in 3D tissue models: retrospects and prospects. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00120-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Creff J, Malaquin L, Besson A. In vitro models of intestinal epithelium: Toward bioengineered systems. J Tissue Eng 2021; 12:2041731420985202. [PMID: 34104387 PMCID: PMC8164551 DOI: 10.1177/2041731420985202] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022] Open
Abstract
The intestinal epithelium, the fastest renewing tissue in human, is a complex
tissue hosting multiple cell types with a dynamic and multiparametric
microenvironment, making it particularly challenging to recreate in
vitro. Convergence of recent advances in cellular biology and
microfabrication technologies have led to the development of various
bioengineered systems to model and study the intestinal epithelium. Theses
microfabricated in vitro models may constitute an alternative
to current approaches for studying the fundamental mechanisms governing
intestinal homeostasis and pathologies, as well as for in vitro
drug screening and testing. Herein, we review the recent advances in
bioengineered in vitro intestinal models.
Collapse
Affiliation(s)
- Justine Creff
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse Cedex, France.,LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | | | - Arnaud Besson
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse Cedex, France
| |
Collapse
|
31
|
Moysidou CM, Barberio C, Owens RM. Advances in Engineering Human Tissue Models. Front Bioeng Biotechnol 2021; 8:620962. [PMID: 33585419 PMCID: PMC7877542 DOI: 10.3389/fbioe.2020.620962] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Research in cell biology greatly relies on cell-based in vitro assays and models that facilitate the investigation and understanding of specific biological events and processes under different conditions. The quality of such experimental models and particularly the level at which they represent cell behavior in the native tissue, is of critical importance for our understanding of cell interactions within tissues and organs. Conventionally, in vitro models are based on experimental manipulation of mammalian cells, grown as monolayers on flat, two-dimensional (2D) substrates. Despite the amazing progress and discoveries achieved with flat biology models, our ability to translate biological insights has been limited, since the 2D environment does not reflect the physiological behavior of cells in real tissues. Advances in 3D cell biology and engineering have led to the development of a new generation of cell culture formats that can better recapitulate the in vivo microenvironment, allowing us to examine cells and their interactions in a more biomimetic context. Modern biomedical research has at its disposal novel technological approaches that promote development of more sophisticated and robust tissue engineering in vitro models, including scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips. Even though such systems are necessarily simplified to capture a particular range of physiology, their ability to model specific processes of human biology is greatly valued for their potential to close the gap between conventional animal studies and human (patho-) physiology. Here, we review recent advances in 3D biomimetic cultures, focusing on the technological bricks available to develop more physiologically relevant in vitro models of human tissues. By highlighting applications and examples of several physiological and disease models, we identify the limitations and challenges which the field needs to address in order to more effectively incorporate synthetic biomimetic culture platforms into biomedical research.
Collapse
Affiliation(s)
| | | | - Róisín Meabh Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Boys AJ, Barron SL, Tilev D, Owens RM. Building Scaffolds for Tubular Tissue Engineering. Front Bioeng Biotechnol 2020; 8:589960. [PMID: 33363127 PMCID: PMC7758256 DOI: 10.3389/fbioe.2020.589960] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hollow organs and tissue systems drive various functions in the body. Many of these hollow or tubular systems, such as vasculature, the intestines, and the trachea, are common targets for tissue engineering, given their relevance to numerous diseases and body functions. As the field of tissue engineering has developed, numerous benchtop models have been produced as platforms for basic science and drug testing. Production of tubular scaffolds for different tissue engineering applications possesses many commonalities, such as the necessity for producing an intact tubular opening and for formation of semi-permeable epithelia or endothelia. As such, the field has converged on a series of manufacturing techniques for producing these structures. In this review, we discuss some of the most common tissue engineered applications within the context of tubular tissues and the methods by which these structures can be produced. We provide an overview of the general structure and anatomy for these tissue systems along with a series of general design criteria for tubular tissue engineering. We categorize methods for manufacturing tubular scaffolds as follows: casting, electrospinning, rolling, 3D printing, and decellularization. We discuss state-of-the-art models within the context of vascular, intestinal, and tracheal tissue engineering. Finally, we conclude with a discussion of the future for these fields.
Collapse
Affiliation(s)
| | | | | | - Roisin M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
33
|
Onfroy-Roy L, Hamel D, Foncy J, Malaquin L, Ferrand A. Extracellular Matrix Mechanical Properties and Regulation of the Intestinal Stem Cells: When Mechanics Control Fate. Cells 2020; 9:cells9122629. [PMID: 33297478 PMCID: PMC7762382 DOI: 10.3390/cells9122629] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Intestinal stem cells (ISC) are crucial players in colon epithelium physiology. The accurate control of their auto-renewal, proliferation and differentiation capacities provides a constant flow of regeneration, maintaining the epithelial intestinal barrier integrity. Under stress conditions, colon epithelium homeostasis in disrupted, evolving towards pathologies such as inflammatory bowel diseases or colorectal cancer. A specific environment, namely the ISC niche constituted by the surrounding mesenchymal stem cells, the factors they secrete and the extracellular matrix (ECM), tightly controls ISC homeostasis. Colon ECM exerts physical constraint on the enclosed stem cells through peculiar topography, stiffness and deformability. However, little is known on the molecular and cellular events involved in ECM regulation of the ISC phenotype and fate. To address this question, combining accurately reproduced colon ECM mechanical parameters to primary ISC cultures such as organoids is an appropriated approach. Here, we review colon ECM physical properties at physiological and pathological states and their bioengineered in vitro reproduction applications to ISC studies.
Collapse
Affiliation(s)
- Lauriane Onfroy-Roy
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France;
- Correspondence: (L.O.-R.); (A.F.); Tel.: +33-5-62-744-522 (A.F.)
| | - Dimitri Hamel
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France;
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France; (J.F.); (L.M.)
| | - Julie Foncy
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France; (J.F.); (L.M.)
| | - Laurent Malaquin
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France; (J.F.); (L.M.)
| | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France;
- Correspondence: (L.O.-R.); (A.F.); Tel.: +33-5-62-744-522 (A.F.)
| |
Collapse
|
34
|
Gijzen L, Marescotti D, Raineri E, Nicolas A, Lanz HL, Guerrera D, van Vught R, Joore J, Vulto P, Peitsch MC, Hoeng J, Lo Sasso G, Kurek D. An Intestine-on-a-Chip Model of Plug-and-Play Modularity to Study Inflammatory Processes. SLAS Technol 2020; 25:585-597. [PMID: 32576063 PMCID: PMC7684793 DOI: 10.1177/2472630320924999] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022]
Abstract
Development of efficient drugs and therapies for the treatment of inflammatory conditions in the intestine is often hampered by the lack of reliable, robust, and high-throughput in vitro and in vivo models. Current models generally fail to recapitulate key aspects of the intestine, resulting in low translatability to the human situation. Here, an immunocompetent 3D perfused intestine-on-a-chip platform was developed and characterized for studying intestinal inflammation. Forty independent polarized 3D perfused epithelial tubular structures were grown from cells of mixed epithelial origin, including enterocytes (Caco-2) and goblet cells (HT29-MTX-E12). Immune cells THP-1 and MUTZ-3, which can be activated, were added to the system and assessed for cytokine release. Intestinal inflammation was mimicked through exposure to tumor necrosis factor-α (TNFα) and interleukin (IL)-1β. The effects were quantified by measuring transepithelial electrical resistance (TEER) and proinflammatory cytokine secretion on the apical and basal sides. Cytokines induced an inflammatory state in the culture, as demonstrated by the impaired barrier function and increased IL-8 secretion. Exposure to the known anti-inflammatory drug TPCA-1 prevented the inflammatory state. The model provides biological modularity for key aspects of intestinal inflammation, making use of well-established cell lines. This allows robust assays that can be tailored in complexity to serve all preclinical stages in the drug discovery and development process.
Collapse
Affiliation(s)
| | | | | | | | | | - Diego Guerrera
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | | | | | | | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | | |
Collapse
|
35
|
Macedo MH, Martínez E, Barrias CC, Sarmento B. Development of an Improved 3D in vitro Intestinal Model to Perform Permeability Studies of Paracellular Compounds. Front Bioeng Biotechnol 2020; 8:524018. [PMID: 33042961 PMCID: PMC7527803 DOI: 10.3389/fbioe.2020.524018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
The small intestine is the primary site of drug absorption following oral administration, making paramount the proper monitoring of the absorption process. In vitro tools to predict intestinal absorption are particularly important in preclinical drug development since they are less laborious and cost-intensive and raise less ethical considerations compared to in vivo studies. The Caco-2 model is considered the gold standard of in vitro intestinal models regarding the prediction of absorption of orally delivered compounds. However, this model presents several drawbacks, such as the expression of tighter tight junctions, not being suitable to perform permeability of paracellular compounds. Besides, cells are representative of only one intestinal cell type, without considering the role of non-absorptive cells on the absorption pathway of drugs. In the present study, we developed a new three-dimensional (3D) intestinal model that aims to bridge the gap between in vitro tools and animal studies. Our 3D model comprises a collagen layer with human intestinal fibroblasts (HIFs) embedded, mimicking the intestinal lamina propria and providing 3D support for the epithelium, composed of Caco-2 cells and mucus-producing HT29-MTX cells, creating a model that can better resemble, both in terms of composition and regarding the outcomes of drug permeability when testing paracellular compounds, the human small intestine. The optimization of the collagen layer with HIFs was performed, testing different collagen concentrations and HIF seeding densities in order to avoid collagen contraction before day 14, maintaining HIF metabolically active inside the collagen disks during time in culture. HIF morphology and extracellular matrix (ECM) deposition were assessed, confirming that fibroblasts presented a normal and healthy elongated shape and secreted fibronectin and laminin, remodeling the collagen matrix. Regarding the epithelial layer, transepithelial electrical resistance (TEER) values decreased when cells were in the 3D configuration, comparing with the 2D analogs (Caco-2 and coculture of Caco-2+HT29-MTX models), becoming more similar with in vivo values. The permeability assay with fluorescein isothiocyanate (FITC)–Dextran 4 kDa showed that absorption in the 3D models is significantly higher than that in the 2D models, confirming the importance of using a more biorelevant model when testing the paracellular permeability of compounds.
Collapse
Affiliation(s)
- Maria Helena Macedo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Elena Martínez
- Institute for Bioengineering of Catalonia, Barcelona, Spain.,Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain.,Department of Electronics and Biomedical Engineering, Universitat de Barcelona, Barcelona, Spain
| | - Cristina C Barrias
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,CESPU-Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
| |
Collapse
|
36
|
Darling NJ, Mobbs CL, González-Hau AL, Freer M, Przyborski S. Bioengineering Novel in vitro Co-culture Models That Represent the Human Intestinal Mucosa With Improved Caco-2 Structure and Barrier Function. Front Bioeng Biotechnol 2020; 8:992. [PMID: 32984279 PMCID: PMC7487342 DOI: 10.3389/fbioe.2020.00992] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
The Caco-2 monolayer is the most widely used in vitro model of the human intestinal mucosa to study absorption. However, models lack communication from other cells present in the native intestine, such as signals from fibroblasts in the lamina propria. In this study, we have investigated the effects of fibroblasts upon the Caco-2 epithelium through two mechanisms: indirect signaling from fibroblasts and direct contact with fibroblasts. Culture of Caco-2 cells with paracrine signals from fibroblasts, through the use of conditioned media, did not induce a significant change in epithelial cell morphology or function. To examine the effects of direct contact between the epithelium and fibroblasts, we developed novel, humanized three-dimensional (3D) co-culture models whereby Caco-2 cells are grown on the surface of a subepithelial-like tissue construct containing intestinal or dermal fibroblasts. In our models, we observed endogenous extracellular matrix production from the fibroblasts that provides support to the above epithelium. The Caco-2 epithelium displayed morphological changes in 3D co-culture including enhanced polarization and the formation of a basement membrane-like attachment to the underlying stromal compartment. An important structural alteration was the significantly straightened lateral membrane that closely mimics the structure of the in vivo intestinal mucosa. This enhanced lateral membrane phenotype, in correlation with an reduction in TEER to levels more similar to the human intestine, is thought to be responsible for the increased paracellular permeability observed in 3D co-cultures. Our results demonstrate that direct contact between epithelial and mesenchymal cells results in an enhanced epithelial barrier. The in vitro models described herein have the potential to be used for studying intestinal epithelial-fibroblast interactions and could provide more accurate tools for drug permeability studies.
Collapse
Affiliation(s)
- Nicole J Darling
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Claire L Mobbs
- Department of Biosciences, Durham University, Durham, United Kingdom.,Reprocell Europe Ltd, Sedgefield, United Kingdom
| | | | - Matthew Freer
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, United Kingdom.,Reprocell Europe Ltd, Sedgefield, United Kingdom
| |
Collapse
|
37
|
Volpe DA. Advances in cell-based permeability assays to screen drugs for intestinal absorption. Expert Opin Drug Discov 2020; 15:539-549. [DOI: 10.1080/17460441.2020.1735347] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Donna A. Volpe
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
38
|
Snyder J, Wang CM, Zhang AQ, Li Y, Luchan J, Hosic S, Koppes R, Carrier RL, Koppes A. Materials and Microenvironments for Engineering the Intestinal Epithelium. Ann Biomed Eng 2020; 48:1916-1940. [DOI: 10.1007/s10439-020-02470-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
|
39
|
Xiang Y, Wen H, Yu Y, Li M, Fu X, Huang S. Gut-on-chip: Recreating human intestine in vitro. J Tissue Eng 2020; 11:2041731420965318. [PMID: 33282173 PMCID: PMC7682210 DOI: 10.1177/2041731420965318] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023] Open
Abstract
The human gut is important for food digestion and absorption, as well as a venue for a large number of microorganisms that coexist with the host. Although numerous in vitro models have been proposed to study intestinal pathology or interactions between intestinal microbes and host, they are far from recapitulating the real intestinal microenvironment in vivo. To assist researchers in further understanding gut physiology, the intestinal microbiome, and disease processes, a novel technology primarily based on microfluidics and cell biology, called "gut-on-chip," was developed to simulate the structure, function, and microenvironment of the human gut. In this review, we first introduce various types of gut-on-chip systems, then highlight their applications in drug pharmacokinetics, host-gut microbiota crosstalk, and nutrition metabolism. Finally, we discuss challenges in this field and prospects for better understanding interactions between intestinal flora and human hosts, and then provide guidance for clinical treatment of related diseases.
Collapse
Affiliation(s)
- Yunqing Xiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wen
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiongfei Fu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuqiang Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Lee SH, Choi N, Sung JH. Pharmacokinetic and pharmacodynamic insights from microfluidic intestine-on-a-chip models. Expert Opin Drug Metab Toxicol 2019; 15:1005-1019. [PMID: 31794278 DOI: 10.1080/17425255.2019.1700950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: After administration, a drug undergoes absorption, distribution, metabolism, and elimination (ADME) before exerting its effect on the body. The combination of these process yields the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of a drug. Although accurate prediction of PK and PD profiles is essential for drug development, conventional in vitro models are limited by their lack of physiological relevance. Recently, microtechnology-based in vitro model systems, termed 'organ-on-a-chip,' have emerged as a potential solution.Areas covered: Orally administered drugs are absorbed through the intestinal wall and transported to the liver before entering systemic circulation, which plays an important role in the PK and PD profiles. Recently developed, chip-based in vitro models can be useful models for simulating such processes and will be covered in this paper.Expert opinion: The potential of intestine-on-a-chip models combined with conventional PK-PD modeling has been demonstrated with promising preliminary results. However, there are several challenges to overcome. Development of the intestinal wall, integration of the gut microbiome, and the provision of an intestine-specific environment must be achieved to realize in vivo-like intestinal model and enhance the efficiency of drug development.
Collapse
Affiliation(s)
- Seung Hwan Lee
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Fois CAM, Le TYL, Schindeler A, Naficy S, McClure DD, Read MN, Valtchev P, Khademhosseini A, Dehghani F. Models of the Gut for Analyzing the Impact of Food and Drugs. Adv Healthc Mater 2019; 8:e1900968. [PMID: 31592579 DOI: 10.1002/adhm.201900968] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/30/2019] [Indexed: 12/16/2022]
Abstract
Models of the human gastrointestinal tract (GIT) can be powerful tools for examining the biological interactions of food products and pharmaceuticals. This can be done under normal healthy conditions or using models of disease-many of which have no curative therapy. This report outlines the field of gastrointestinal modeling, with a particular focus on the intestine. Traditional in vivo animal models are compared to a range of in vitro models. In vitro systems are elaborated over time, recently culminating with microfluidic intestines-on-chips (IsOC) and 3D bioengineered models. Macroscale models are also reviewed for their important contribution in the microbiota studies. Lastly, it is discussed how in silico approaches may have utility in predicting and interpreting experimental data. The various advantages and limitations of the different systems are contrasted. It is posited that only through complementary use of these models will salient research questions be able to be addressed.
Collapse
Affiliation(s)
- Chiara Anna Maria Fois
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Thi Yen Loan Le
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Dale David McClure
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Mark Norman Read
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Ali Khademhosseini
- Department of Chemical and Biomolecular Engineering Department of Bioengineering Department of Radiology California NanoSystems Institute (CNSI) University of California Los Angeles CA 90095 USA
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
42
|
Development of a villi-like micropatterned porous membrane for intestinal magnesium and calcium uptake studies. Acta Biomater 2019; 99:110-120. [PMID: 31465881 DOI: 10.1016/j.actbio.2019.08.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022]
Abstract
Intestinal enterocytes are key players in the absorption of magnesium (Mg2+) and calcium (Ca2+). Understanding the exact molecular mechanisms by which their absorption behavior is regulated could greatly improve treatment strategies for stimulating intestinal absorption in diseases with Mg2+ and/or Ca2+ deficiency. However, such studies are hampered by the lack of in vitro intestinal cell models mimicking the mechanical and physiological properties of the gut. In this study we develop an in vitro gut model based on porous micropatterned membranes with villi-like surface topography and mechanical properties closely mimicking that of intestinal tissue. These membranes are prepared via phase separation micromolding using poly-ε-caprolactone/poly-lactic-glycolic acid (PCL/PLGA) polymer blend and can facilitate cellular differentiation of Caco-2 cells similar to native enterocytes. In fact, cells cultured on these micropatterned membranes form a brush border of microvilli with spatial differences in morphology and tight junction formation along the villous-base axis. Moreover, cells cultured on our membranes show a 2-fold increased alkaline phosphatase activity at the end of differentiation. Finally, we demonstrate that cells cultured on our micropatterned membranes have a 4- and 1.5-fold increased uptake of 25Mg and 45Ca, respectively, compared to non-patterned membranes. These results indicate that the new membranes can mimic the intestinal environment and therefore can have a great impact on mineral uptake in vitro. STATEMENT OF SIGNIFICANCE: This study presents the development of an in vitro gut model consisting of villi-like PCL/PLGA micropatterned membranes. These membranes are prepared via phase separation micromolding (PSμM), a technique which allows tailoring of the membrane surface topography combined with membrane porosity and interconnectivity which are important parameters for membranes used for in vitro transport studies. The culture of Caco-2 cells on these micropatterned membranes shows that they facilitate cellular differentiation similar to gut enterocytes. Our data indicate that mimicking the 3D geometry of the gut is very important for improving the physiological relevance of in vitro gut models. In the future, our micropatterned membranes with segment-specific geometries, in combination with isotopic measurements, would be applied to perform detailed ion uptake and transport studies.
Collapse
|
43
|
Gargava A, Ahn S, Bentley WE, Raghavan SR. Rapid Electroformation of Biopolymer Gels in Prescribed Shapes and Patterns: A Simpler Alternative to 3-D Printing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37103-37111. [PMID: 31566952 DOI: 10.1021/acsami.9b12575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We demonstrate the use of electric fields to rapidly form gels of the biopolymer alginate (Alg) in specific three-dimensional (3-D) shapes and patterns. In our approach, we start with a gel of the biopolymer agarose, which is thermoresponsive and hence can be molded into a specific shape. The agarose mold is then loaded with Ca2+ cations and placed in a beaker containing an Alg solution. The inner surface of the beaker is surrounded by aluminum foil (cathode), and a copper wire (anode) is stuck in the agarose mold. These are connected to a direct current (DC) power source, and when a potential of ∼10 V is applied, an Alg gel is formed in a shape that replicates the mold. Gelation occurs because the Ca2+ ions electrophoretically migrate away from the mold, whereupon they cross-link the Alg chains adjacent to the mold. At low Ca2+ (0.01 wt %), the Alg gel layer grows outward from the mold surface at a steady rate of about 0.8 mm/min, and the gel stops growing when the field is switched off. After a gel of desired thickness is formed, the agarose mold can be melted away to leave behind an Alg gel in a precise shape. Alg gels formed in this manner are transparent and robust. This process is particularly convenient to form Alg gels in the form of hollow tubes, including tubes with multiple concentric layers, each with a different payload. The technique is safe for encapsulation of biological species within a given Alg layer. We also create Alg gels in specific patterns by directing gel growth around selected regions. Overall, our technique enables lab-scale manufacturing of alginate gels in 3-D without the need for an expensive 3-D printer.
Collapse
|
44
|
Creff J, Courson R, Mangeat T, Foncy J, Souleille S, Thibault C, Besson A, Malaquin L. Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography. Biomaterials 2019; 221:119404. [PMID: 31419651 DOI: 10.1016/j.biomaterials.2019.119404] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
The small intestine is a complex tissue with a crypt/villus architecture and high tissue polarity. Maintenance of tissue integrity and function is supported by a constant renewal of the epithelium, with proliferative cells located in the crypts and differentiated cells migrating upward to the top of villi. So far, most in vitro studies have been limited to 2D surfaces or 3D organoid cultures that do not fully recapitulate the tissue 3D architecture, microenvironment and cell compartmentalization found in vivo. Here, we report the development of a 3D model that reproduces more faithfully the architecture of the intestinal epithelium in vitro. We developed a new fabrication process combining a photopolymerizable hydrogel that supports the growth of intestinal cell lines with high-resolution stereolithography 3D printing. This approach offers the possibility to create artificial 3D scaffolds matching the dimensions and architecture of mouse intestinal crypts and villi. We demonstrate that these 3D culture models support the growth and differentiation of Caco-2 cells for 3 weeks. These models may constitute a complementary approach to organoid cultures to study intestinal homeostasis by allowing guided self-organization and controlled differentiation, as well as for in vitro drug screening and testing.
Collapse
Affiliation(s)
- Justine Creff
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, Toulouse Cedex, France; LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France
| | - Rémi Courson
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France
| | - Thomas Mangeat
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, Toulouse Cedex, France
| | - Julie Foncy
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France
| | | | - C Thibault
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France; Université de Toulouse, Institut National des Sciences Appliquées-INSA, F-31400 Toulouse, France
| | - Arnaud Besson
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, Toulouse Cedex, France.
| | - Laurent Malaquin
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France.
| |
Collapse
|
45
|
Wang Y, Shao Z, Zheng W, Xie Y, Luo G, Ding M, Liang Q. A 3D construct of the intestinal canal with wrinkle morphology on a centrifugation configuring microfluidic chip. Biofabrication 2019; 11:045001. [DOI: 10.1088/1758-5090/ab21b0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Costa J, Ahluwalia A. Advances and Current Challenges in Intestinal in vitro Model Engineering: A Digest. Front Bioeng Biotechnol 2019; 7:144. [PMID: 31275931 PMCID: PMC6591368 DOI: 10.3389/fbioe.2019.00144] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022] Open
Abstract
The physiological environment of the intestine is characterized by its variegated composition, numerous functions and unique dynamic conditions, making it challenging to recreate the organ in vitro. This review outlines the requirements for engineering physiologically relevant intestinal in vitro models, mainly focusing on the importance of the mechano-structural cues that are often neglected in classic cell culture systems. More precisely: the topography, motility and flow present in the intestinal epithelium. After defining quantitative descriptors for these features, we describe the current state of the art, citing relevant approaches used to address one (or more) of the elements in question, pursuing a progressive conceptual construction of an "ideal" biomimetic intestinal model. The review concludes with a critical assessment of the currently available methods to summarize the important features of the intestinal tissue in the light of their different applications.
Collapse
Affiliation(s)
| | - Arti Ahluwalia
- Research Center “E. Piaggio” and Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
47
|
|
48
|
Patient JD, Hajiali H, Harris K, Abrahamsson B, Tannergren C, White LJ, Ghaemmaghami AM, Williams PM, Roberts CJ, Rose FRAJ. Nanofibrous Scaffolds Support a 3D in vitro Permeability Model of the Human Intestinal Epithelium. Front Pharmacol 2019; 10:456. [PMID: 31133850 PMCID: PMC6524416 DOI: 10.3389/fphar.2019.00456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Advances in drug research not only depend on high throughput screening to evaluate large numbers of lead compounds but also on the development of in vitro models which can simulate human tissues in terms of drug permeability and functions. Potential failures, such as poor permeability or interaction with efflux drug transporters, can be identified in epithelial Caco-2 monolayer models and can impact a drug candidate's progression onto the next stages of the drug development process. Whilst monolayer models demonstrate reasonably good prediction of in vivo permeability for some compounds, more developed in vitro tools are needed to assess new entities that enable closer in vivo in vitro correlation. In this study, an in vitro model of the human intestinal epithelium was developed by utilizing nanofibers, fabricated using electrospinning, to mimic the structure of the basement membrane. We assessed Caco-2 cell response to these materials and investigated the physiological properties of these cells cultured on the fibrous supports, focusing on barrier integrity and drug-permeability properties. The obtained data illustrate that 2D Caco-2 Transwell® cultures exhibit artificially high trans-epithelial electrical resistance (TEER) compared to cells cultured on the 3D nanofibrous scaffolds which show TEER values similar to ex vivo porcine tissue (also measured in this study). Furthermore, our results demonstrate that the 3D nanofibrous scaffolds influence the barrier integrity of the Caco-2 monolayer to confer drug-absorption properties that more closely mimic native gut tissue particularly for studying passive epithelial transport. We propose that this 3D model is a suitable in vitro model for investigating drug absorption and intestinal metabolism.
Collapse
Affiliation(s)
- Jamie D. Patient
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Hadi Hajiali
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | | | | | | | - Lisa J. White
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Amir M. Ghaemmaghami
- School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Philip M. Williams
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Clive J. Roberts
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
49
|
Huang J, Ren Y, Wu X, Li Z, Ren J. Gut bioengineering promotes gut repair and pharmaceutical research: a review. J Tissue Eng 2019; 10:2041731419839846. [PMID: 31037215 PMCID: PMC6475831 DOI: 10.1177/2041731419839846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract has a diverse set of physiological functions, including peristalsis, immune defense, and nutrient absorptions. These functions are mediated by various intestinal cells such as epithelial cells, interstitial cells, smooth muscle cells, and neurocytes. The loss or dysfunction of specific cells directly results in GI disease, while supplementation of normal cells promotes gut healing. Gut bioengineering has been developing for this purpose to reconstruct the damaged tissues. Moreover, GI tract provides an accessible route for drug delivery, but the collateral damages induced by side effects cannot be ignored. Bioengineered intestinal tissues provide three-dimensional platforms that mimic the in vivo environment to study drug functions. Given the importance of gut bioengineering in current research, in this review, we summarize the advances in the technologies of gut bioengineering and their applications. We were able to identify several ground-breaking discoveries in our review, while more work is needed to promote the clinical translation of gut bioengineering.
Collapse
Affiliation(s)
- Jinjian Huang
- School of Medicine, Southeast University, Nanjing, China.,Laboratory for Trauma and Surgical Infections, Department of Surgery, Jinling Hospital, Nanjing, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Xiuwen Wu
- Laboratory for Trauma and Surgical Infections, Department of Surgery, Jinling Hospital, Nanjing, China
| | - Zongan Li
- School of NARI Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China
| | - Jianan Ren
- School of Medicine, Southeast University, Nanjing, China.,Laboratory for Trauma and Surgical Infections, Department of Surgery, Jinling Hospital, Nanjing, China
| |
Collapse
|
50
|
Marx U, Walles H, Hoffmann S, Lindner G, Horland R, Sonntag F, Klotzbach U, Sakharov D, Tonevitsky A, Lauster R. ‘Human-on-a-chip’ Developments: A Translational Cutting-edge Alternative to Systemic Safety Assessment and Efficiency Evaluation of Substances in Laboratory Animals and Man? Altern Lab Anim 2019; 40:235-57. [DOI: 10.1177/026119291204000504] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Uwe Marx
- Technische Universität Berlin, Department of Biotechnology, Berlin, Germany
| | | | - Silke Hoffmann
- Technische Universität Berlin, Department of Biotechnology, Berlin, Germany
| | - Gerd Lindner
- Technische Universität Berlin, Department of Biotechnology, Berlin, Germany
| | - Reyk Horland
- Technische Universität Berlin, Department of Biotechnology, Berlin, Germany
| | - Frank Sonntag
- Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Dresden, Germany
| | - Udo Klotzbach
- Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Dresden, Germany
| | | | | | - Roland Lauster
- Technische Universität Berlin, Department of Biotechnology, Berlin, Germany
| |
Collapse
|