1
|
Santos AA, Kretzer LG, Dourado EDR, Rosa CA, Stambuk BU, Alves SL. Expression of a periplasmic β-glucosidase from Yarrowia lipolytica allows efficient cellobiose-xylose co-fermentation by industrial xylose-fermenting Saccharomyces cerevisiae strains. Braz J Microbiol 2024:10.1007/s42770-024-01609-2. [PMID: 39739240 DOI: 10.1007/s42770-024-01609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025] Open
Abstract
This study aimed to compare the effects of cellobiose hydrolysis, whether occurring inside or outside the cell, on the ability of Saccharomyces cerevisiae strains to ferment this sugar and then apply the most effective strategy to industrial S. cerevisiae strains. Firstly, two recombinant laboratory S. cerevisiae strains were engineered: CEN.PK-X-Bgl1YL, expressing the periplasmic β-glucosidase BGL1 from Yarrowia lipolytica; and CEN.PK-X-B7-T2, co-expressing the intracellular β-glucosidase SpBGL7 from Spathaspora passalidarum and the cellobiose transporter MgCBT2 from Meyerozyma guilliermondii. Both engineered strains were able to grown in media with cellobiose and to ferment this disaccharide. However, CEN.PK-X-Bgl1YL, which hydrolyzes cellobiose extracellularly, exhibited faster growth and superior batch fermentation performance. Furthermore, enzymatic and transport activities revealed that sugar uptake was possibly the limiting factor in cellobiose fermentation by CEN.PK-X-B7-T2. Since extracellular hydrolysis with the periplasmic β-glucosidase was more efficient for cellobiose fermentation, we integrated the BGL1 gene into two industrial xylose-fermenting S. cerevisiae strains. The resulting strains (MP-C5H1-Bgl1YL and MP-P5-Bgl1YL) efficiently co-consumed ∼ 22 g L- 1 of cellobiose and ∼ 22 g L- 1 of xylose in 24 h, achieving high ethanol production levels (∼ 17 g L- 1 titer, ∼ 0.50 g L- 1 h- 1 volumetric productivity, and 0.40 g g- 1 ethanol yield). Our findings suggest that the expression of periplasmic β-glucosidases in S. cerevisiae could be an effective strategy to overcome the disaccharide transport problem, thus enabling efficient cellobiose fermentation or even cellobiose-xylose co-fermentation.
Collapse
Affiliation(s)
- Angela A Santos
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Laboratory of Yeast Biotechnology and Molecular Biology (LBMBL), Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Leonardo G Kretzer
- Laboratory of Yeast Biotechnology and Molecular Biology (LBMBL), Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Erika D R Dourado
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Laboratory of Yeast Biotechnology and Molecular Biology (LBMBL), Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Carlos A Rosa
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Boris U Stambuk
- Laboratory of Yeast Biotechnology and Molecular Biology (LBMBL), Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Sérgio L Alves
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil.
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
2
|
Vasylyshyn R, Dmytruk O, Sybirnyy A, Ruchała J. Engineering of Ogataea polymorpha strains with ability for high-temperature alcoholic fermentation of cellobiose. FEMS Yeast Res 2024; 24:foae007. [PMID: 38400543 PMCID: PMC10929770 DOI: 10.1093/femsyr/foae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024] Open
Abstract
Successful conversion of cellulosic biomass into biofuels requires organisms capable of efficiently utilizing xylose as well as cellodextrins and glucose. Ogataea (Hansenula) polymorpha is the natural xylose-metabolizing organism and is one of the most thermotolerant yeasts known, with a maximum growth temperature above 50°C. Cellobiose-fermenting strains, derivatives of an improved ethanol producer from xylose O. polymorpha BEP/cat8∆, were constructed in this work by the introduction of heterologous genes encoding cellodextrin transporters (CDTs) and intracellular enzymes (β-glucosidase or cellobiose phosphorylase) that hydrolyze cellobiose. For this purpose, the genes gh1-1 of β-glucosidase, CDT-1m and CDT-2m of cellodextrin transporters from Neurospora crassa and the CBP gene coding for cellobiose phosphorylase from Saccharophagus degradans, were successfully expressed in O. polymorpha. Through metabolic engineering and mutagenesis, strains BEP/cat8∆/gh1-1/CDT-1m and BEP/cat8∆/CBP-1/CDT-2mAM were developed, showing improved parameters for high-temperature alcoholic fermentation of cellobiose. The study highlights the need for further optimization to enhance ethanol yields and elucidate cellobiose metabolism intricacies in O. polymorpha yeast. This is the first report of the successful development of stable methylotrophic thermotolerant strains of O. polymorpha capable of coutilizing cellobiose, glucose, and xylose under high-temperature alcoholic fermentation conditions at 45°C.
Collapse
Affiliation(s)
- Roksolana Vasylyshyn
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Olena Dmytruk
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Andriy Sybirnyy
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Justyna Ruchała
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
3
|
Liang B, Zhang X, Meng C, Wang L, Yang J. Directed evolution of tripartite ATP-independent periplasmic transporter for 3-Hydroxypropionate biosynthesis. Appl Microbiol Biotechnol 2023; 107:663-676. [PMID: 36525041 DOI: 10.1007/s00253-022-12330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/28/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Our previous study's introduction of the malonic acid assimilation pathway into Escherichia coli enabled biosynthesis of 3-Hydroxypropionate (3-HP) from malonate. However, the relatively low uptake activity of tripartite ATP-independent periplasmic (TRAP) malonic acid transporter (MatPQM) is considered rate-limiting in malonate utilization. Here, to improve the transport performance of this importer, MatP variants were obtained via directed evolution and a novel developed enzyme-inhibition-based high throughput screening approach. This plate chromogenic screening method is based on the fact that malonic acid inhibits both of succinate dehydrogenase activity and further the capability of the reduction of methylene-blue to methylene-white. The best mutant E103G/S194G/Y218H/L235P/N272S showed twofold increased transport efficiency compared to the wild-type. ITC assay and structural analysis revealed that increased binding affinity of the mutant to the ligand was the reason for improved uptake activity of MatPQM. Finally, the engineered strain harboring the evolved mutant produced 20.08 g/L 3-HP with the yield of 0.87 mol/mol malonate in a bioreactor. Therefore, the well-established directed evolution strategy can be regarded as the reference work for other TRAP-type transporters engineering. And, this transporter mutant with enhanced malonic acid uptake activity has broad applications in the microbial biosynthesis of malonyl-CoA-derived valuable compounds in bacteria. KEY POINTS: • We reported directed evolution of a TRAP-type malonic acid transporter. • We found the enhanced malonate uptake activity of mutant lies in improved affinity. • We enhanced 3-HP bioproduction with high yield by employing the best mutant.
Collapse
Affiliation(s)
- Bo Liang
- College of Food Science & Engineering, Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xinping Zhang
- College of Food Science & Engineering, Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chenfei Meng
- College of Food Science & Engineering, Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lu Wang
- College of Food Science & Engineering, Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jianming Yang
- College of Food Science & Engineering, Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao, China.
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
4
|
Antoniêto ACC, Nogueira KMV, Mendes V, Maués DB, Oshiquiri LH, Zenaide-Neto H, de Paula RG, Gaffey J, Tabatabaei M, Gupta VK, Silva RN. Use of carbohydrate-directed enzymes for the potential exploitation of sugarcane bagasse to obtain value-added biotechnological products. Int J Biol Macromol 2022; 221:456-471. [PMID: 36070819 DOI: 10.1016/j.ijbiomac.2022.08.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
Microorganisms, such as fungi and bacteria, are crucial players in the production of enzymatic cocktails for biomass hydrolysis or the bioconversion of plant biomass into products with industrial relevance. The biotechnology industry can exploit lignocellulosic biomass for the production of high-value chemicals. The generation of biotechnological products from lignocellulosic feedstock presents several bottlenecks, including low efficiency of enzymatic hydrolysis, high cost of enzymes, and limitations on microbe metabolic performance. Genetic engineering offers a route for developing improved microbial strains for biotechnological applications in high-value product biosynthesis. Sugarcane bagasse, for example, is an agro-industrial waste that is abundantly produced in sugar and first-generation processing plants. Here, we review the potential conversion of its feedstock into relevant industrial products via microbial production and discuss the advances that have been made in improving strains for biotechnological applications.
Collapse
Affiliation(s)
- Amanda Cristina Campos Antoniêto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Karoline Maria Vieira Nogueira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Vanessa Mendes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - David Batista Maués
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Letícia Harumi Oshiquiri
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Hermano Zenaide-Neto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Renato Graciano de Paula
- Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitória, ES 29047-105, Brazil
| | - James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Kerry, Ireland; BiOrbic, Bioeconomy Research Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
5
|
Zhai Z, Su J, Ali A, Xu L, Wahid F. Biological denitrification potential of cellulase-producing Cupriavidus sp. ZY7 and denitrifying Aquabacterium sp. XL4 at low carbon-to-nitrogen ratio: Performance and synergistic properties. BIORESOURCE TECHNOLOGY 2022; 360:127600. [PMID: 35820558 DOI: 10.1016/j.biortech.2022.127600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
This study emphasizes on the cellulase production characteristics of strain ZY7 and its collaboration with nitrate-dependent ferrous oxidizing (NFO) strain XL4 to achieve efficient denitrification at low carbon-to-nitrogen (C/N) ratio. Results indicated that the denitrification efficiency increased from 65.47 to 97.99% at 24 h after co-culture at C/N of 1.0. Three-dimensional fluorescence excitation-emission matrix (3D-EEM) showed significant changes in the intensity of soluble microbial products (SMP), fulvic-like materials, and aromatic proteins after co-culture. Bio-precipitates were characterized by Scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR), and X-ray diffraction (XRD), which showed that cellulose structure was disrupted and the metabolites were potential carbon source for denitrification. In addition, cellulase activity suggested that the hydrolysis of β-1,4-glycosidic bonds and oligosaccharides may be the rate-limiting steps in cellulose degradation. This work promoted the understanding of denitrification characteristics of co-culture and expanded the application of cellulose degrading bacteria in sewage treatment.
Collapse
Affiliation(s)
- Zhenyu Zhai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fazli Wahid
- Department of Agriculture, The University of Swabi, Swabi 23561, Pakistan
| |
Collapse
|
6
|
Jenkins Sánchez LR, Claus S, Muth LT, Salvador López JM, Van Bogaert I. Force in numbers: high-throughput screening approaches to unlock microbial transport. Curr Opin Biotechnol 2021; 74:204-210. [PMID: 34968868 DOI: 10.1016/j.copbio.2021.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022]
Abstract
Biological membranes are inherently complex, making transport processes in microbial cell factories a significant bottleneck. Lack of knowledge on transport proteins' characteristics and the need for advanced technical equipment often hamper transporter identification and optimization. For these reasons, moving away from individual characterization and towards high-throughput mining, engineering, and screening of transporters is an increasingly attractive approach. Superior transporters can be selected from large libraries by coupling their activity to growth, for substrates that function as feedstocks or toxic compounds. Other compounds can be screened thanks to recent advances in the design and deployment of synthetic genetic circuits (biosensors). Furthermore, novel strategies are rapidly increasing the repertoire of biomolecule transporters susceptible to high-throughput selection methods.
Collapse
Affiliation(s)
- Liam Richard Jenkins Sánchez
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Silke Claus
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Liv Teresa Muth
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - José Manuel Salvador López
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Inge Van Bogaert
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, Ghent, 9000, Belgium.
| |
Collapse
|
7
|
Aliyu H, Gorte O, Neumann A, Ochsenreither K. Global Transcriptome Profile of the Oleaginous Yeast Saitozyma podzolica DSM 27192 Cultivated in Glucose and Xylose. J Fungi (Basel) 2021; 7:758. [PMID: 34575796 PMCID: PMC8466774 DOI: 10.3390/jof7090758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
Unlike conventional yeasts, several oleaginous yeasts, including Saitozyma podzolica DSM 27192, possess the innate ability to grow and produce biochemicals from plant-derived lignocellulosic components such as hexose and pentose sugars. To elucidate the genetic basis of S. podzolica growth and lipid production on glucose and xylose, we performed comparative temporal transcriptome analysis using RNA-seq method. Approximately 3.4 and 22.2% of the 10,670 expressed genes were differentially (FDR < 0.05, and log2FC > 1.5) expressed under batch and fed batch modes, respectively. Our analysis revealed that a higher number of sugar transporter genes were significantly overrepresented in xylose relative to glucose-grown cultures. Given the low homology between proteins encoded by most of these genes and those of the well-characterised transporters, it is plausible to conclude that S. podzolica possesses a cache of putatively novel sugar transporters. The analysis also suggests that S. podzolica potentially channels carbon flux from xylose via both the non-oxidative pentose phosphate and potentially via the first steps of the Weimberg pathways to yield xylonic acid. However, only the ATP citrate lyase (ACL) gene showed significant upregulation among the essential oleaginous pathway genes under nitrogen limitation in xylose compared to glucose cultivation. Combined, these findings pave the way toward the design of strategies or the engineering of efficient biomass hydrolysate utilization in S. podzolica for the production of various biochemicals.
Collapse
Affiliation(s)
- Habibu Aliyu
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.G.); (A.N.)
| | | | | | - Katrin Ochsenreither
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.G.); (A.N.)
| |
Collapse
|
8
|
Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed Evolution: Methodologies and Applications. Chem Rev 2021; 121:12384-12444. [PMID: 34297541 DOI: 10.1021/acs.chemrev.1c00260] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed evolution aims to expedite the natural evolution process of biological molecules and systems in a test tube through iterative rounds of gene diversifications and library screening/selection. It has become one of the most powerful and widespread tools for engineering improved or novel functions in proteins, metabolic pathways, and even whole genomes. This review describes the commonly used gene diversification strategies, screening/selection methods, and recently developed continuous evolution strategies for directed evolution. Moreover, we highlight some representative applications of directed evolution in engineering nucleic acids, proteins, pathways, genetic circuits, viruses, and whole cells. Finally, we discuss the challenges and future perspectives in directed evolution.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tianhao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephan T Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Podolsky IA, Seppälä S, Xu H, Jin YS, O'Malley MA. A SWEET surprise: Anaerobic fungal sugar transporters and chimeras enhance sugar uptake in yeast. Metab Eng 2021; 66:137-147. [PMID: 33887459 DOI: 10.1016/j.ymben.2021.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023]
Abstract
In the yeast Saccharomyces cerevisiae, microbial fuels and chemicals production on lignocellulosic hydrolysates is constrained by poor sugar transport. For biotechnological applications, it is desirable to source transporters with novel or enhanced function from nonconventional organisms in complement to engineering known transporters. Here, we identified and functionally screened genes from three strains of early-branching anaerobic fungi (Neocallimastigomycota) that encode sugar transporters from the recently discovered Sugars Will Eventually be Exported Transporter (SWEET) superfamily in Saccharomyces cerevisiae. A novel fungal SWEET, NcSWEET1, was identified that localized to the plasma membrane and complemented growth in a hexose transporter-deficient yeast strain. Single cross-over chimeras were constructed from a leading NcSWEET1 expression-enabling domain paired with all other candidate SWEETs to broadly scan the sequence and functional space for enhanced variants. This led to the identification of a chimera, NcSW1/PfSW2:TM5-7, that enhanced the growth rate significantly on glucose, fructose, and mannose. Additional chimeras with varied cross-over junctions identified residues in TM1 that affect substrate selectivity. Furthermore, we demonstrate that NcSWEET1 and the enhanced NcSW1/PfSW2:TM5-7 variant facilitated novel co-consumption of glucose and xylose in S. cerevisiae. NcSWEET1 utilized 40.1% of both sugars, exceeding the 17.3% utilization demonstrated by the control HXT7(F79S) strain. Our results suggest that SWEETs from anaerobic fungi are beneficial tools for enhancing glucose and xylose co-utilization and offers a promising step towards biotechnological application of SWEETs in S. cerevisiae.
Collapse
Affiliation(s)
- Igor A Podolsky
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Haiqing Xu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Center for Advanced Bioenergy and Bioproduct Innovation (CABBI), Urbana, IL, 61801, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA, 94608, USA.
| |
Collapse
|
10
|
Bermejo PM, Raghavendran V, Gombert AK. Neither 1G nor 2G fuel ethanol: setting the ground for a sugarcane-based biorefinery using an iSUCCELL yeast platform. FEMS Yeast Res 2020; 20:5836716. [PMID: 32401320 DOI: 10.1093/femsyr/foaa027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/11/2020] [Indexed: 11/12/2022] Open
Abstract
First-generation (1G) fuel ethanol production in sugarcane-based biorefineries is an established economic enterprise in Brazil. Second-generation (2G) fuel ethanol from lignocellulosic materials, though extensively investigated, is currently facing severe difficulties to become economically viable. Some of the challenges inherent to these processes could be resolved by efficiently separating and partially hydrolysing the cellulosic fraction of the lignocellulosic materials into the disaccharide cellobiose. Here, we propose an alternative biorefinery, where the sucrose-rich stream from the 1G process is mixed with a cellobiose-rich stream in the fermentation step. The advantages of mixing are 3-fold: (i) decreased concentrations of metabolic inhibitors that are typically produced during pretreatment and hydrolysis of lignocellulosic materials; (ii) decreased cooling times after enzymatic hydrolysis prior to fermentation; and (iii) decreased availability of free glucose for contaminating microorganisms and undesired glucose repression effects. The iSUCCELL platform will be built upon the robust Saccharomyces cerevisiae strains currently present in 1G biorefineries, which offer competitive advantage in non-aseptic environments, and into which intracellular hydrolyses of sucrose and cellobiose will be engineered. It is expected that high yields of ethanol can be achieved in a process with cell recycling, lower contamination levels and decreased antibiotic use, when compared to current 2G technologies.
Collapse
Affiliation(s)
| | - Vijayendran Raghavendran
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | |
Collapse
|
11
|
de Ruijter JC, Igarashi K, Penttilä M. The Lipomyces starkeyi gene Ls120451 encodes a cellobiose transporter that enables cellobiose fermentation in Saccharomyces cerevisiae. FEMS Yeast Res 2020; 20:foaa019. [PMID: 32310262 PMCID: PMC7204792 DOI: 10.1093/femsyr/foaa019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Processed lignocellulosic biomass is a source of mixed sugars that can be used for microbial fermentation into fuels or higher value products, like chemicals. Previously, the yeast Saccharomyces cerevisiae was engineered to utilize its cellodextrins through the heterologous expression of sugar transporters together with an intracellular expressed β-glucosidase. In this study, we screened a selection of eight (putative) cellodextrin transporters from different yeast and fungal hosts in order to extend the catalogue of available cellobiose transporters for cellobiose fermentation in S. cerevisiae. We confirmed that several in silico predicted cellodextrin transporters from Aspergillus niger were capable of transporting cellobiose with low affinity. In addition, we found a novel cellobiose transporter from the yeast Lipomyces starkeyi, encoded by the gene Ls120451. This transporter allowed efficient growth on cellobiose, while it also grew on glucose and lactose, but not cellotriose nor cellotetraose. We characterized the transporter more in-depth together with the transporter CdtG from Penicillium oxalicum. CdtG showed to be slightly more efficient in cellobiose consumption than Ls120451 at concentrations below 1.0 g/L. Ls120451 was more efficient in cellobiose consumption at higher concentrations and strains expressing this transporter grew slightly slower, but produced up to 30% more ethanol than CdtG.
Collapse
Affiliation(s)
- Jorg C de Ruijter
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland
| | - Kiyohiko Igarashi
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yajoi, Bunkyo, Tokyo 113–8657, Japan
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland
| |
Collapse
|
12
|
Li J, Zhang Y, Li J, Sun T, Tian C. Metabolic engineering of the cellulolytic thermophilic fungus Myceliophthora thermophila to produce ethanol from cellobiose. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:23. [PMID: 32021654 PMCID: PMC6995234 DOI: 10.1186/s13068-020-1661-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/21/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cellulosic biomass is a promising resource for bioethanol production. However, various sugars in plant biomass hydrolysates including cellodextrins, cellobiose, glucose, xylose, and arabinose, are poorly fermented by microbes. The commonly used ethanol-producing microbe Saccharomyces cerevisiae can usually only utilize glucose, although metabolically engineered strains that utilize xylose have been developed. Direct fermentation of cellobiose could avoid glucose repression during biomass fermentation, but applications of an engineered cellobiose-utilizing S. cerevisiae are still limited because of its long lag phase. Bioethanol production from biomass-derived sugars by a cellulolytic filamentous fungus would have many advantages for the biorefinery industry. RESULTS We selected Myceliophthora thermophila, a cellulolytic thermophilic filamentous fungus for metabolic engineering to produce ethanol from glucose and cellobiose. Ethanol production was increased by 57% from glucose but not cellobiose after introduction of ScADH1 into the wild-type (WT) strain. Further overexpression of a glucose transporter GLT-1 or the cellodextrin transport system (CDT-1/CDT-2) from N. crassa increased ethanol production by 131% from glucose or by 200% from cellobiose, respectively. Transcriptomic analysis of the engineered cellobiose-utilizing strain and WT when grown on cellobiose showed that genes involved in oxidation-reduction reactions and the stress response were downregulated, whereas those involved in protein biosynthesis were upregulated in this effective ethanol production strain. Turning down the expression of pyc gene results the final engineered strain with the ethanol production was further increased by 23%, reaching up to 11.3 g/L on cellobiose. CONCLUSIONS This is the first attempt to engineer the cellulolytic fungus M. thermophila to produce bioethanol from biomass-derived sugars such as glucose and cellobiose. The ethanol production can be improved about 4 times up to 11 grams per liter on cellobiose after a couple of genetic engineering. These results show that M. thermophila is a promising platform for bioethanol production from cellulosic materials in the future.
Collapse
Affiliation(s)
- Jinyang Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yongli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Tao Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
13
|
Wilken SE, Swift CL, Podolsky IA, Lankiewicz TS, Seppälä S, O'Malley MA. Linking ‘omics’ to function unlocks the biotech potential of non-model fungi. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2019.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Hollands K, Baron CM, Gibson KJ, Kelly KJ, Krasley EA, Laffend LA, Lauchli RM, Maggio-Hall LA, Nelson MJ, Prasad JC, Ren Y, Rice BA, Rice GH, Rothman SC. Engineering two species of yeast as cell factories for 2'-fucosyllactose. Metab Eng 2019; 52:232-242. [PMID: 30557615 DOI: 10.1016/j.ymben.2018.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 01/05/2023]
Abstract
Oligosaccharides present in human breast milk have been linked to beneficial effects on infant health. Inclusion of these human milk oligosaccharides (HMOs) in infant formula can recapitulate these health benefits. As a result, there is substantial commercial interest in a cost-effective source of HMOs as infant formula ingredients. Here we demonstrate that the yeast species Saccharomyces cerevisiae and Yarrowia lipolytica both can be engineered to produce 2'-fucosyllactose (2'FL), which is the most abundant oligosaccharide in human breast milk, at high titer and productivity. Both yeast species were modified to enable uptake of lactose and synthesis of GDP-fucose - the two precursors of 2'FL - by installing a lactose transporter and enzymes that convert GDP-mannose to GDP-fucose. Production of 2'FL was then enabled by expression of α-1,2-fucosyltransferases from various organisms. By screening candidate transporters from a variety of sources, we identified transporters capable of exporting 2'FL from yeast, which is a key consideration for any biocatalyst for 2'FL production. In particular, we identified CDT2 from Neurospora crassa as a promising target for further engineering to improve 2'FL efflux. Finally, we demonstrated production of 2'FL in fermenters at rates and titers that indicate the potential of engineered S. cerevisiae and Y. lipolytica strains for commercial 2'FL production.
Collapse
Affiliation(s)
- Kerry Hollands
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Christopher M Baron
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Katharine J Gibson
- E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Kristen J Kelly
- E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Elizabeth A Krasley
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Lisa A Laffend
- E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Ryan M Lauchli
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Lori A Maggio-Hall
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA.
| | - Mark J Nelson
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA
| | - Jahnavi C Prasad
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Yixin Ren
- E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Barbara A Rice
- E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Gregory H Rice
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Steven C Rothman
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| |
Collapse
|
15
|
Cellobiose fermentation by Saccharomyces cerevisiae: Comparative analysis of intra versus extracellular sugar hydrolysis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Lian J, Mishra S, Zhao H. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab Eng 2018; 50:85-108. [DOI: 10.1016/j.ymben.2018.04.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
|
17
|
Jimenez-Rosales A, Flores-Merino MV. Tailoring Proteins to Re-Evolve Nature: A Short Review. Mol Biotechnol 2018; 60:946-974. [DOI: 10.1007/s12033-018-0122-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Sadler JC, Currin A, Kell DB. Ultra-high throughput functional enrichment of large monoamine oxidase (MAO-N) libraries by fluorescence activated cell sorting. Analyst 2018; 143:4747-4755. [PMID: 30199078 PMCID: PMC6156879 DOI: 10.1039/c8an00851e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
Abstract
Directed evolution enables the improvement and optimisation of enzymes for particular applications and is a valuable tool for biotechnology and synthetic biology. However, studies are often limited in their scope by the inability to screen very large numbers of variants to identify improved enzymes. One class of enzyme for which a universal, operationally simple ultra-high throughput (>106 variants per day) assay is not available is flavin adenine dinucleotide (FAD) dependent oxidases. The current high throughput assay involves a visual, colourimetric, colony-based screen, however this is not suitable for very large libraries and does not enable quantification of the relative fitness of variants. To address this, we describe an optimised method for the sensitive detection of oxidase activity within single Escherichia coli (E. coli) cells, using the monoamine oxidase from Aspergillus niger, MAO-N, as a model system. In contrast to other methods for the screening of oxidase activity in vivo, this method does not require cell surface expression, emulsion formation or the addition of an extracellular peroxidase. Furthermore, we show that fluorescence activated cell sorting (FACS) of large libraries derived from MAO-N under the assay conditions can enrich the library in functional variants at much higher rates than via the colony-based method. We demonstrate its use for directed evolution by identifying a new mutant of MAO-N with improved activity towards a novel secondary amine substrate. This work demonstrates, for the first time, an ultra-high throughput screening methodology widely applicable for the directed evolution of FAD dependent oxidases in E. coli.
Collapse
Affiliation(s)
- Joanna C. Sadler
- School of Chemistry
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
- The Manchester Institute of Biotechnology
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
- Centre for the Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM)
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
.
;
;
; http://dbkgroup.org/@dbkell
| | - Andrew Currin
- School of Chemistry
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
- The Manchester Institute of Biotechnology
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
- Centre for the Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM)
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
.
;
;
; http://dbkgroup.org/@dbkell
| | - Douglas B. Kell
- School of Chemistry
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
- The Manchester Institute of Biotechnology
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
- Centre for the Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM)
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
.
;
;
; http://dbkgroup.org/@dbkell
| |
Collapse
|
19
|
Kim H, Oh EJ, Lane ST, Lee WH, Cate JH, Jin YS. Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase. J Biotechnol 2018; 275:53-59. [DOI: 10.1016/j.jbiotec.2018.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/28/2017] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
20
|
Hara KY, Kobayashi J, Yamada R, Sasaki D, Kuriya Y, Hirono-Hara Y, Ishii J, Araki M, Kondo A. Transporter engineering in biomass utilization by yeast. FEMS Yeast Res 2018; 17:4097189. [PMID: 28934416 DOI: 10.1093/femsyr/fox061] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/04/2017] [Indexed: 12/17/2022] Open
Abstract
Biomass resources are attractive carbon sources for bioproduction because of their sustainability. Many studies have been performed using biomass resources to produce sugars as carbon sources for cell factories. Expression of biomass hydrolyzing enzymes in cell factories is an important approach for constructing biomass-utilizing bioprocesses because external addition of these enzymes is expensive. In particular, yeasts have been extensively engineered to be cell factories that directly utilize biomass because of their manageable responses to many genetic engineering tools, such as gene expression, deletion and editing. Biomass utilizing bioprocesses have also been developed using these genetic engineering tools to construct metabolic pathways. However, sugar input and product output from these cells are critical factors for improving bioproduction along with biomass utilization and metabolic pathways. Transporters are key components for efficient input and output activities. In this review, we focus on transporter engineering in yeast to enhance bioproduction from biomass resources.
Collapse
Affiliation(s)
- Kiyotaka Y Hara
- Division of Environmental and Life Sciences, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.,School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Jyumpei Kobayashi
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yuki Kuriya
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yoko Hirono-Hara
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Jun Ishii
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Michihiro Araki
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.,Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Syogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
21
|
Garcia-Ruiz E, HamediRad M, Zhao H. Pathway Design, Engineering, and Optimization. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 162:77-116. [PMID: 27629378 DOI: 10.1007/10_2016_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.
Collapse
Affiliation(s)
- Eva Garcia-Ruiz
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mohammad HamediRad
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
22
|
HamediRad M, Lian J, Li H, Zhao H. RNAi assisted genome evolution unveils yeast mutants with improved xylose utilization. Biotechnol Bioeng 2018; 115:1552-1560. [DOI: 10.1002/bit.26570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/28/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Mohammad HamediRad
- Department of Chemical and Biomolecular EngineeringCarl R. Woese Institute for Genomic BiologyUrbanaIllinois
| | - Jiazhang Lian
- Department of Chemical and Biomolecular EngineeringCarl R. Woese Institute for Genomic BiologyUrbanaIllinois
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
| | - Hejun Li
- Department of Agricultural and Biological EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Huimin Zhao
- Department of Chemical and Biomolecular EngineeringCarl R. Woese Institute for Genomic BiologyUrbanaIllinois
- Departments of Chemistry Biochemistry and BioengineeringUniversity of Illinois at UrbanaUrbanaIllinois
| |
Collapse
|
23
|
Combined engineering of disaccharide transport and phosphorolysis for enhanced ATP yield from sucrose fermentation in Saccharomyces cerevisiae. Metab Eng 2017; 45:121-133. [PMID: 29196124 DOI: 10.1016/j.ymben.2017.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/27/2017] [Accepted: 11/24/2017] [Indexed: 11/24/2022]
Abstract
Anaerobic industrial fermentation processes do not require aeration and intensive mixing and the accompanying cost savings are beneficial for production of chemicals and fuels. However, the free-energy conservation of fermentative pathways is often insufficient for the production and export of the desired compounds and/or for cellular growth and maintenance. To increase free-energy conservation during fermentation of the industrially relevant disaccharide sucrose by Saccharomyces cerevisiae, we first replaced the native yeast α-glucosidases by an intracellular sucrose phosphorylase from Leuconostoc mesenteroides (LmSPase). Subsequently, we replaced the native proton-coupled sucrose uptake system by a putative sucrose facilitator from Phaseolus vulgaris (PvSUF1). The resulting strains grew anaerobically on sucrose at specific growth rates of 0.09 ± 0.02h-1 (LmSPase) and 0.06 ± 0.01h-1 (PvSUF1, LmSPase). Overexpression of the yeast PGM2 gene, which encodes phosphoglucomutase, increased anaerobic growth rates on sucrose of these strains to 0.23 ± 0.01h-1 and 0.08 ± 0.00h-1, respectively. Determination of the biomass yield in anaerobic sucrose-limited chemostat cultures was used to assess the free-energy conservation of the engineered strains. Replacement of intracellular hydrolase with a phosphorylase increased the biomass yield on sucrose by 31%. Additional replacement of the native proton-coupled sucrose uptake system by PvSUF1 increased the anaerobic biomass yield by a further 8%, resulting in an overall increase of 41%. By experimentally demonstrating an energetic benefit of the combined engineering of disaccharide uptake and cleavage, this study represents a first step towards anaerobic production of compounds whose metabolic pathways currently do not conserve sufficient free-energy.
Collapse
|
24
|
Oh EJ, Kwak S, Kim H, Jin YS. Transporter engineering for cellobiose fermentation under lower pH conditions by engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2017; 245:1469-1475. [PMID: 28583406 DOI: 10.1016/j.biortech.2017.05.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to engineer cellodextrin transporter 2 (CDT-2) from Neurospora crassa for improved cellobiose fermentation under lower pH conditions by Saccharomyces cerevisiae. Through directed evolution, a mutant CDT-2 capable of facilitating cellobiose fermentation under lower pH conditions was obtained. Specifically, a library of CDT-2 mutants with GFP fusion was screened by flow cytometry and then serial subcultured to isolate a CDT-2 mutant capable of transporting cellobiose under acidic conditions. The engineered S. cerevisiae expressing the isolated mutant CDT-2 (I96N/T487A) produced ethanol with a specific cellobiose consumption rate of 0.069g/gcell/h, which was 51% and 55% higher than those of the strains harboring wild-type CDT-1 and CDT-2 in a minimal medium with 2g/L of acetic acid.
Collapse
Affiliation(s)
- Eun Joong Oh
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Suryang Kwak
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Heejin Kim
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
25
|
Gandini C, Tarraran L, Kalemasi D, Pessione E, Mazzoli R. RecombinantLactococcus lactisfor efficient conversion of cellodextrins into L-lactic acid. Biotechnol Bioeng 2017; 114:2807-2817. [DOI: 10.1002/bit.26400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Chiara Gandini
- Department of Life Sciences and Systems Biology, Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes; University of Turin; Torino Italy
| | - Loredana Tarraran
- Department of Life Sciences and Systems Biology, Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes; University of Turin; Torino Italy
| | - Denis Kalemasi
- Department of Life Sciences and Systems Biology, Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes; University of Turin; Torino Italy
| | - Enrica Pessione
- Department of Life Sciences and Systems Biology, Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes; University of Turin; Torino Italy
| | - Roberto Mazzoli
- Department of Life Sciences and Systems Biology, Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes; University of Turin; Torino Italy
| |
Collapse
|
26
|
Parisutham V, Chandran SP, Mukhopadhyay A, Lee SK, Keasling JD. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries. BIORESOURCE TECHNOLOGY 2017; 239:496-506. [PMID: 28535986 DOI: 10.1016/j.biortech.2017.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 05/28/2023]
Abstract
Complete hydrolysis of cellulose has been a key characteristic of biomass technology because of the limitation of industrial production hosts to use cellodextrin, the partial hydrolysis product of cellulose. Cellobiose, a β-1,4-linked glucose dimer, is a major cellodextrin of the enzymatic hydrolysis (via endoglucanase and exoglucanase) of cellulose. Conversion of cellobiose to glucose is executed by β-glucosidase. The complete extracellular hydrolysis of celluloses has several critical barriers in biomass technology. An alternative bioengineering strategy to make the bioprocessing less challenging is to engineer microbes with the abilities to hydrolyze and assimilate the cellulosic-hydrolysate cellodextrin. Microorganisms engineered to metabolize cellobiose rather than the monomeric glucose can provide several advantages for lignocellulose-based biorefineries. This review describes the recent advances and challenges in engineering efficient intracellular cellobiose metabolism in industrial hosts. This review also describes the limitations of and future prospectives in engineering intracellular cellobiose metabolism.
Collapse
Affiliation(s)
- Vinuselvi Parisutham
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sathesh-Prabu Chandran
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sung Kuk Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering, UC Berkeley, Berkeley, CA 94720, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, KogleAllé, DK2970 Hørsholm, Denmark; Synthetic Biology Engineering Research Center (Synberc), Berkeley, CA 94720, USA
| |
Collapse
|
27
|
Internalization of Heterologous Sugar Transporters by Endogenous α-Arrestins in the Yeast Saccharomyces cerevisiae. Appl Environ Microbiol 2016; 82:7074-7085. [PMID: 27694235 PMCID: PMC5118918 DOI: 10.1128/aem.02148-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/23/2016] [Indexed: 01/03/2023] Open
Abstract
When expressed in Saccharomyces cerevisiae using either of two constitutive yeast promoters (PGK1prom and CCW12prom), the transporters CDT-1 and CDT-2 from the filamentous fungus Neurospora crassa are able to catalyze, respectively, active transport and facilitated diffusion of cellobiose (and, for CDT-2, also xylan and its derivatives). In S. cerevisiae, endogenous permeases are removed from the plasma membrane by clathrin-mediated endocytosis and are marked for internalization through ubiquitinylation catalyzed by Rsp5, a HECT class ubiquitin:protein ligase (E3). Recruitment of Rsp5 to specific targets is mediated by a 14-member family of endocytic adaptor proteins, termed α-arrestins. Here we demonstrate that CDT-1 and CDT-2 are subject to α-arrestin-mediated endocytosis, that four α-arrestins (Rod1, Rog3, Aly1, and Aly2) are primarily responsible for this internalization, that the presence of the transport substrate promotes transporter endocytosis, and that, at least for CDT-2, residues located in its C-terminal cytosolic domain are necessary for its efficient endocytosis. Both α-arrestin-deficient cells expressing CDT-2 and otherwise wild-type cells expressing CDT-2 mutants unresponsive to α-arrestin-driven internalization exhibit an increased level of plasma membrane-localized transporter compared to that of wild-type cells, and they grow, utilize the transport substrate, and generate ethanol anaerobically better than control cells. IMPORTANCE Ethanolic fermentation of the breakdown products of plant biomass by budding yeast Saccharomyces cerevisiae remains an attractive biofuel source. To achieve this end, genes for heterologous sugar transporters and the requisite enzyme(s) for subsequent metabolism have been successfully expressed in this yeast. For one of the heterologous transporters examined in this study, we found that the amount of this protein residing in the plasma membrane was the rate-limiting factor for utilization of the cognate carbon source (cellobiose) and its conversion to ethanol.
Collapse
|
28
|
Lian J, Jin R, Zhao H. Construction of plasmids with tunable copy numbers inSaccharomyces cerevisiaeand their applications in pathway optimization and multiplex genome integration. Biotechnol Bioeng 2016; 113:2462-73. [DOI: 10.1002/bit.26004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Jiazhang Lian
- Department of Chemical and Biomolecular Engineering; Institute for Genomic Biology, University of Illinois at Urbana-Champaign; Urbana 61801 Illinois
| | - Run Jin
- School of Molecular and Cellular Biology; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering; Institute for Genomic Biology, University of Illinois at Urbana-Champaign; Urbana 61801 Illinois
- Departments of Chemistry, Biochemistry, and Bioengineering; University of Illinois at Urbana-Champaign; Urbana Illinois
| |
Collapse
|
29
|
Hu ML, Zha J, He LW, Lv YJ, Shen MH, Zhong C, Li BZ, Yuan YJ. Enhanced Bioconversion of Cellobiose by Industrial Saccharomyces cerevisiae Used for Cellulose Utilization. Front Microbiol 2016; 7:241. [PMID: 26973619 PMCID: PMC4776165 DOI: 10.3389/fmicb.2016.00241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/15/2016] [Indexed: 01/26/2023] Open
Abstract
Cellobiose accumulation and the compromised temperature for yeast fermentation are the main limiting factors of enzymatic hydrolysis process during simultaneous saccharification and fermentation (SSF). In this study, genes encoding cellobiose transporter and β-glucosidase were introduced into an industrial Saccharomyces cerevisiae strain, and evolution engineering was carried out to improve the cellobiose utilization of the engineered yeast strain. The evolved strain exhibited significantly higher cellobiose consumption rate (2.8-fold) and ethanol productivity (4.9-fold) compared with its parent strain. Besides, the evolved strain showed a high cellobiose consumption rate of 3.67 g/L/h at 34°C and 3.04 g/L/h at 38°C. Moreover, little cellobiose was accumulated during SSF of Avicel using the evolved strain at 38°C, and the ethanol yield from Avicel increased by 23% from 0.34 to 0.42 g ethanol/g cellulose. Overexpression of the genes encoding cellobiose transporter and β-glucosidase accelerated cellobiose utilization, and the improvement depended on the strain background. The results proved that fast cellobiose utilization enhanced ethanol production by reducing cellobiose accumulation during SSF at high temperature.
Collapse
Affiliation(s)
- Meng-Long Hu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Jian Zha
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Lin-Wei He
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Ya-Jin Lv
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Ming-Hua Shen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology Tianjin, China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| |
Collapse
|
30
|
The Renaissance of Neurospora crassa: How a Classical Model System is Used for Applied Research. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Shen Y, Jarboe L, Brown R, Wen Z. A thermochemical–biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol Adv 2015; 33:1799-813. [DOI: 10.1016/j.biotechadv.2015.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022]
|
32
|
Zhang W, Cao Y, Gong J, Bao X, Chen G, Liu W. Identification of residues important for substrate uptake in a glucose transporter from the filamentous fungus Trichoderma reesei. Sci Rep 2015; 5:13829. [PMID: 26345619 PMCID: PMC4642563 DOI: 10.1038/srep13829] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/07/2015] [Indexed: 01/19/2023] Open
Abstract
The glucose transporter is an important player in cell metabolism that mediates the intracellular uptake of glucose. Here, we characterized the glucose transporter Stp1 from the filamentous fungus Trichoderma reesei. The individual substitution of several conserved residues for Ala in Stp1 corresponding to those interacting with D-glucose in the xylose/H(+) symporter XylE inflicted contrasting effects on its ability to support the growth of an hxt-null yeast on glucose. The targeted change of Phe 50, proximal to the substrate-binding site, was also found to exert a profound effect on the activity of Stp1. In contrast with the charged residues, the substitution of Phe 50 with either the hydrophilic residues Asn and Gln or the small residues Gly and Ala significantly enhanced the transport of glucose and its fluorescent analogue, 2-NBDG. On the other hand, a variant with the three substitutions I115F, F199I and P214L displayed remarkably improved activity on glucose and 2-NBDG transport. Further analysis indicated that the combined mutations of Ile 115 and Pro 214, positioned on the lateral surface of the Stp1 N-domain, fully accounted for the enhanced transport activity. These results provide insight into the structural basis for glucose uptake in fungal sugar transporters.
Collapse
Affiliation(s)
- Weixin Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan 250100, Shandong, P. R. China
| | - Yanli Cao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan 250100, Shandong, P. R. China
| | - Jing Gong
- Cancer Research Center, School of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan 250012, Shandong, P. R. China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan 250100, Shandong, P. R. China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan 250100, Shandong, P. R. China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan 250100, Shandong, P. R. China
| |
Collapse
|
33
|
Lian J, Zhao H. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth Biol 2015; 4:332-41. [PMID: 24959659 DOI: 10.1021/sb500243c] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Functionally reversing the β-oxidation cycle represents an efficient and versatile strategy for synthesis of a wide variety of fuels and chemicals. However, due to the compartmentalization of cellular metabolisms, reversing the β-oxidation cycle in eukaryotic systems remains elusive. Here, we report the first successful reversal of the β-oxidation cycle in Saccharomyces cerevisiae, an important cell factory for large-scale production of fuels and chemicals. After extensive gene cloning and enzyme activity assays, a reversed β-oxidation pathway was functionally constructed in the yeast cytosol, which led to the synthesis of n-butanol, medium-chain fatty acids (MCFAs), and medium-chain fatty acid ethyl esters (MCFAEEs). The resultant recombinant strain provides a new broadly applicable platform for synthesis of fuels and chemicals in S. cerevisiae.
Collapse
Affiliation(s)
- Jiazhang Lian
- Department of Chemical and Biomolecular Engineering, ‡Energy Biosciences Institute, Institute
for Genomic Biology, §Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, ‡Energy Biosciences Institute, Institute
for Genomic Biology, §Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
34
|
Chen R. A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature. Bioengineered 2015; 6:69-72. [PMID: 25587851 DOI: 10.1080/21655979.2014.1004019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A key characteristic of current biomass technology is the requirement for complete hydrolysis of cellulose and hemicellulose, which stems from the inability of microbial strains to use partially hydrolyzed cellulose, or cellodextrin. The complete hydrolysis paradigm has been practiced over the past 4 decades with major enzyme companies perfecting their cellulase mix for maximal yield of monosaccharides, with corresponding efforts in strain development focus almost solely on the conversion of monosaccharides, not cellodextrin, to products. While still in its nascent infancy, a new paradigm requiring only partial hydrolysis has begun to take hold, promising a shift in the biomass technology at its fundamental core. The new paradigm has the potential to reduce the requirement for cellulase enzymes in the hydrolysis step and provides new strategies for metabolic engineers, synthetic biologists and alike in engineering fermenting organisms. Several recent publications reveal that microorganisms engineered to metabolize cellodextrins, rather than monomer glucose, can reap significant energy gains in both uptake and subsequent phosphorylation. These energetic benefits can in turn be directed for enhanced robustness and increased productivity of a bioprocess. Furthermore, the new cellodextrin metabolism endows the biocatalyst the ability to evade catabolite repression, a cellular regulatory mechanism that is hampering rapid conversion of biomass sugars to products. Together, the new paradigm offers significant advantages over the old and promises to overcome several critical barriers in biomass technology. More research, however, is needed to realize these promises, especially in discovery and engineering of cellodextrin transporters, in developing a cost-effective method for cellodextrin generation, and in better integration of cellodextrin metabolism to endogenous glycolysis.
Collapse
Affiliation(s)
- Rachel Chen
- a School of Chemical and Biomolecular Engineering; Georgia Institute of Technology ; Atlanta , GA USA
| |
Collapse
|
35
|
Guo Z, Duquesne S, Bozonnet S, Cioci G, Nicaud JM, Marty A, O’Donohue MJ. Development of cellobiose-degrading ability in Yarrowia lipolytica strain by overexpression of endogenous genes. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:109. [PMID: 26244054 PMCID: PMC4524412 DOI: 10.1186/s13068-015-0289-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/22/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Yarrowia lipolytica, one of the most widely studied "nonconventional" oleaginous yeast species, is unable to grow on cellobiose. Engineering cellobiose-degrading ability into this yeast is a vital step towards the development of cellulolytic biocatalysts suitable for consolidated bioprocessing. RESULTS In the present work, we identified six genes encoding putative β-glucosidases in the Y. lipolytica genome. To study these, homologous expression was attempted in Y. lipolytica JMY1212 Zeta. Two strains overexpressing BGL1 (YALI0F16027g) and BGL2 (YALI0B14289g) produced β-glucosidase activity and were able to degrade cellobiose, while the other four did not display any detectable activity. The two active β-glucosidases, one of which was mainly cell-associated while the other was present in the extracellular medium, were purified and characterized. The two Bgls were most active at 40-45°C and pH 4.0-4.5, and exhibited hydrolytic activity on various β-glycoside substrates. Specifically, Bgl1 displayed 12.5-fold higher catalytic efficiency on cellobiose than Bgl2. Significantly, in experiments where cellobiose or cellulose (performed in the presence of a β-glucosidase-deficient commercial cellulase cocktail produced by Trichoderma reseei) was used as carbon source for aerobic cultivation, Y. lipolytica ∆pox co-expressing BGL1 and BGL2 grew better than the Y. lipolytica strains expressing single BGLs. The specific growth rate and biomass yield of Y. lipolytica JMY1212 co-expressing BGL1 and BGL2 were 0.15 h(-1) and 0.50 g-DCW/g-cellobiose, respectively, similar to that of the control grown on glucose. CONCLUSIONS We conclude that the bi-functional Y. lipolytica developed in the current study represents a vital step towards the creation of a cellulolytic yeast strain that can be used for lipid production from lignocellulosic biomass. When used in combination with commercial cellulolytic cocktails, this strain will no doubt reduce enzyme requirements and thus costs.
Collapse
Affiliation(s)
- Zhongpeng Guo
- />LISBP-Biocatalysis Group, INSA/INRA UMR 792, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- />INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France
- />CNRS, UMR5504, 31400 Toulouse, France
| | - Sophie Duquesne
- />LISBP-Biocatalysis Group, INSA/INRA UMR 792, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- />INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France
- />CNRS, UMR5504, 31400 Toulouse, France
| | - Sophie Bozonnet
- />LISBP-Biocatalysis Group, INSA/INRA UMR 792, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- />INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France
- />CNRS, UMR5504, 31400 Toulouse, France
| | - Gianluca Cioci
- />LISBP-Biocatalysis Group, INSA/INRA UMR 792, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- />INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France
- />CNRS, UMR5504, 31400 Toulouse, France
| | - Jean-Marc Nicaud
- />INRA, UMR1319 Micalis, 78352 Jouy-en-Josas, France
- />AgroParisTech, UMR Micalis, 78352 Jouy-en-Josas, France
| | - Alain Marty
- />LISBP-Biocatalysis Group, INSA/INRA UMR 792, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- />INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France
- />CNRS, UMR5504, 31400 Toulouse, France
| | - Michael Joseph O’Donohue
- />LISBP-Biocatalysis Group, INSA/INRA UMR 792, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- />INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France
- />CNRS, UMR5504, 31400 Toulouse, France
| |
Collapse
|
36
|
Lin Y, Chomvong K, Acosta-Sampson L, Estrela R, Galazka JM, Kim SR, Jin YS, Cate JHD. Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:126. [PMID: 25435910 PMCID: PMC4243952 DOI: 10.1186/s13068-014-0126-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/06/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae, a key organism used for the manufacture of renewable fuels and chemicals, has been engineered to utilize non-native sugars derived from plant cell walls, such as cellobiose and xylose. However, the rates and efficiencies of these non-native sugar fermentations pale in comparison with those of glucose. Systems biology methods, used to understand biological networks, hold promise for rational microbial strain development in metabolic engineering. Here, we present a systematic strategy for optimizing non-native sugar fermentation by recombinant S. cerevisiae, using cellobiose as a model. RESULTS Differences in gene expression between cellobiose and glucose metabolism revealed by RNA deep sequencing indicated that cellobiose metabolism induces mitochondrial activation and reduces amino acid biosynthesis under fermentation conditions. Furthermore, glucose-sensing and signaling pathways and their target genes, including the cAMP-dependent protein kinase A pathway controlling the majority of glucose-induced changes, the Snf3-Rgt2-Rgt1 pathway regulating hexose transport, and the Snf1-Mig1 glucose repression pathway, were at most only partially activated under cellobiose conditions. To separate correlations from causative effects, the expression levels of 19 transcription factors perturbed under cellobiose conditions were modulated, and the three strongest promoters under cellobiose conditions were applied to fine-tune expression of the heterologous cellobiose-utilizing pathway. Of the changes in these 19 transcription factors, only overexpression of SUT1 or deletion of HAP4 consistently improved cellobiose fermentation. SUT1 overexpression and HAP4 deletion were not synergistic, suggesting that SUT1 and HAP4 may regulate overlapping genes important for improved cellobiose fermentation. Transcription factor modulation coupled with rational tuning of the cellobiose consumption pathway significantly improved cellobiose fermentation. CONCLUSIONS We used systems-level input to reveal the regulatory mechanisms underlying suboptimal metabolism of the non-glucose sugar cellobiose. By identifying key transcription factors that cause suboptimal cellobiose fermentation in engineered S. cerevisiae, and by fine-tuning the expression of a heterologous cellobiose consumption pathway, we were able to greatly improve cellobiose fermentation by engineered S. cerevisiae. Our results demonstrate a powerful strategy for applying systems biology methods to rapidly identify metabolic engineering targets and overcome bottlenecks in performance of engineered strains.
Collapse
Affiliation(s)
- Yuping Lin
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Kulika Chomvong
- />Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Ligia Acosta-Sampson
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Raíssa Estrela
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Jonathan M Galazka
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Soo Rin Kim
- />Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- />Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Yong-Su Jin
- />Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- />Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Jamie HD Cate
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
- />Chemistry, University of California, Berkeley, CA 94720 USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|