1
|
Wang G, Zhou Y, Yu C, Yang Q, Chen L, Ling S, Chen P, Xing J, Wu H, Zhao Q. Intravital photoacoustic brain stimulation with high-precision. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11520. [PMID: 38333219 PMCID: PMC10851606 DOI: 10.1117/1.jbo.29.s1.s11520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
Significance Neural regulation at high precision vitally contributes to propelling fundamental understanding in the field of neuroscience and providing innovative clinical treatment options. Recently, photoacoustic brain stimulation has emerged as a cutting-edge method for precise neuromodulation and shows great potential for clinical application. Aim The goal of this perspective is to outline the advancements in photoacoustic brain stimulation in recent years. And, we also provide an outlook delineating several prospective paths through which this burgeoning approach may be substantively refined for augmented capability and wider implementations. Approach First, the mechanisms of photoacoustic generation as well as the potential mechanisms of photoacoustic brain stimulation are provided and discussed. Then, the state-of-the-art achievements corresponding to this technology are reviewed. Finally, future directions for photoacoustic technology in neuromodulation are provided. Results Intensive research endeavors have prompted substantial advancements in photoacoustic brain stimulation, illuminating the unique advantages of this modality for noninvasive and high-precision neuromodulation via a nongenetic way. It is envisaged that further technology optimization and randomized prospective clinical trials will enable a wide acceptance of photoacoustic brain stimulation in clinical practice. Conclusions The innovative practice of photoacoustic technology serves as a multifaceted neuromodulation approach, possessing noninvasive, high-accuracy, and nongenetic characteristics. It has a great potential that could considerably enhance not only the fundamental underpinnings of neuroscience research but also its practical implementations in a clinical setting.
Collapse
Affiliation(s)
- Guangxing Wang
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Yuying Zhou
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Chunhui Yu
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Qiong Yang
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Lin Chen
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Shuting Ling
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Pengyu Chen
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Jiwei Xing
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Huiling Wu
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Qingliang Zhao
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
2
|
Kumar S, Lazau E, Kim C, N Thadhani N, R Prausnitz M. Serum Protects Cells and Increases Intracellular Delivery of Molecules by Nanoparticle-Mediated Photoporation. Int J Nanomedicine 2021; 16:3707-3724. [PMID: 34103912 PMCID: PMC8180297 DOI: 10.2147/ijn.s307027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction Intracellular delivery of molecules is central to applications in biotechnology, medicine, and basic research. Nanoparticle-mediated photoporation using carbon black nanoparticles exposed to pulsed, near-infrared laser irradiation offers a physical route to create transient cell membrane pores, enabling intracellular delivery. However, nanoparticle-mediated photoporation, like other physical intracellular delivery technologies, necessitates a trade-off between achieving efficient uptake of exogenous molecules and maintaining high cell viability. Methods In this study, we sought to shift this balance by adding serum to cells during nanoparticle-mediated photoporation as a viability protectant. DU-145 prostate cancer cells and human dermal fibroblasts were exposed to laser irradiation in the presence of carbon black (CB) nanoparticles and other formulation additives, including fetal bovine serum (FBS) and polymers. Results Our studies showed that FBS can protect cells from viability loss, even at high-fluence laser irradiation conditions that lead to high levels of intracellular delivery in two different mammalian cell types. Further studies revealed that full FBS was not needed: viability protection was achieved with denatured FBS, with just the high molecular weight fraction of FBS (>30 kDa), or even with individual proteins like albumin or hemoglobin. Finally, we found that viability protection was also obtained using certain neutral water-soluble polymers, including Pluronic F127, polyvinylpyrrolidone, poly(2-ethyl-2-oxazoline), and polyethylene glycol, which were more effective at increased concentration, molecular weight, or hydrophobicity. Conclusion Altogether, these findings suggest an interaction between amphiphilic domains of polymers with the cell membrane to help cells maintain viability, possibly by facilitating transmembrane pore closure. In this way, serum components or synthetic polymers can be used to increase intracellular delivery by nanoparticle-mediated photoporation while maintaining high cell viability.
Collapse
Affiliation(s)
- Simple Kumar
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eunice Lazau
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Carter Kim
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Naresh N Thadhani
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
3
|
Hur J, Park I, Lim KM, Doh J, Cho SG, Chung AJ. Microfluidic Cell Stretching for Highly Effective Gene Delivery into Hard-to-Transfect Primary Cells. ACS NANO 2020; 14:15094-15106. [PMID: 33034446 DOI: 10.1021/acsnano.0c05169] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cell therapy and cellular engineering begin with internalizing synthetic biomolecules and functional nanomaterials into primary cells. Conventionally, electroporation, lipofection, or viral transduction has been used; however, these are limited by their cytotoxicity, low scalability, cost, and/or preparation complexity, especially in primary cells. Thus, a universal intracellular delivery method that outperforms the existing methods must be established. Here, we present a versatile intracellular delivery platform that leverages intrinsic inertial flow developed in a T-junction microchannel with a cavity. The elongational recirculating flows exerted in the channel substantially stretch the cells, creating discontinuities on cell membranes, thereby enabling highly effective internalization of nanomaterials, such as plasmid DNA (7.9 kbp), mRNA, siRNA, quantum dots, and large nanoparticles (300 nm), into different cell types, including hard-to-transfect primary stem and immune cells. We identified that the internalization mechanism of external cargos during the cell elongation-restoration process is achieved by both passive diffusion and convection-based rapid solution exchange across the cell membrane. Using fluidic cell mechanoporation, we demonstrated a transfection yield superior to that of other state-of-the-art microfluidic platforms as well as current benchtop techniques, including lipofectamine and electroporation. In summary, the intracellular delivery platform developed in the present study enables a high delivery efficiency (up to 98%), easy operation (single-step), low material cost (<$1), high scalability (1 × 106 cells/min), minimal cell perturbation (up to 90%), and cell type/cargo insensitive delivery, providing a practical and robust approach anticipated to critically impact cell-based research.
Collapse
Affiliation(s)
- Jeongsoo Hur
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Inae Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Republic of Korea
| | - Aram J Chung
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Dotivo NC, Rezende RP, Pessoa TBA, Salay LC, Huachaca NSM, Romano CC, Marques EDLS, Costa MS, de Moura SR, Pirovani CP, Dias JCT. Immobilization of PR4A3 enzyme in pluronic F127 polymeric micelles against colorectal adenocarcinoma cells and increase of in vitro bioavailability. Int J Biol Macromol 2020; 166:1238-1245. [PMID: 33202272 DOI: 10.1016/j.ijbiomac.2020.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
Traditional therapy for malignant neoplasms involving surgical procedures, radiotherapy and chemotherapy aims to kill neoplastic cells, but also affects normal cells. Therefore, exogenous proteases are the target of studies in cancer therapy, as they have been shown to be effective in suppressing tumors and reducing metastases. Pluronic F127 (F127) is a copolymer of amphiphilic blocks that has shown significant potential for drug administration, as it is capable of incorporating hydrophobic drugs and self-assembling in micrometers of nanometric size. This study investigated the effects of immobilization of the alkaline protease PR4A3 with pluronic F127 micelles on the enzyme-induced cytotoxicity. Protease immobilization was demonstrated through UV-visible and circular dichroism (CD) spectroscopies, as the enzyme interacts with the polymeric micelle of Pluronic F127 without changing its secondary structure. In addition, the immobilized form of the enzyme showed greater bioavailability after passing through the simulated gastrointestinal transit. Cell viability was assessed using the tetrazoic methylthiazole (MTT) assay. The results open perspectives for new research and development for PR4A3 in the treatment of colorectal carcinoma.
Collapse
Affiliation(s)
| | - Rachel Passos Rezende
- Departament of biological science, State University of Santa Cruz, Ilhéus, BA, Brazil
| | | | - Luiz Carlos Salay
- Departament of Exact and Technological Sciences, State University of Santa Cruz, Ilhéus, BA, Brazil
| | | | - Carla Cristina Romano
- Departament of biological science, State University of Santa Cruz, Ilhéus, BA, Brazil
| | | | - Moara Silva Costa
- Departament of biological science, State University of Santa Cruz, Ilhéus, BA, Brazil
| | | | | | | |
Collapse
|
5
|
Photoacoustic effect applied on model membranes and living cells: direct observation with multiphoton excitation microscopy and long-term viability analysis. Sci Rep 2020; 10:299. [PMID: 31941922 PMCID: PMC6962462 DOI: 10.1038/s41598-019-56799-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/01/2019] [Indexed: 01/09/2023] Open
Abstract
The photoacoustic effect is generated when a variable light interacts with a strongly light-absorbing material. In water, it may produce hot bubbles and shock waves that could affect the integrity of nearby cellular membranes, opening transient pores (photoporation). In this study, we have evaluated the effect of pulsed laser-irradiated carbon nanoparticles (cNP) on model membranes and on Chinese hamster ovary (CHO) cells. Fluorescence lifetime measurements of calcein-loaded liposomes support the notion that the photoacoustic effect causes transient openings in membranes, allowing diffusion fluxes driven by gradient concentrations. With CHO cells, we have shown that this effect can induce either intracellular delivery of calcein, or release of cellular compounds. The latter process has been recorded live with multiphoton excitation microscopy during pulsed infrared laser irradiation. Calcein loading and cell viability were assayed by flow cytometry, measuring necrotic cells as well as those in early apoptosis. To further assess long-term cell recovery after the rather harsh treatment, cells were reseeded and their behaviour recorded for 48 h. These extended studies on cell viability show that pulsed laser cNP photoporation may be considered an adequate intracellular delivery technique only if employed with soft irradiation conditions (below 50 mJ/cm2).
Collapse
|
6
|
Houang EM, Bartos J, Hackel BJ, Lodge TP, Yannopoulos D, Bates FS, Metzger JM. Cardiac Muscle Membrane Stabilization in Myocardial Reperfusion Injury. JACC Basic Transl Sci 2019; 4:275-287. [PMID: 31061929 PMCID: PMC6488758 DOI: 10.1016/j.jacbts.2019.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/11/2019] [Accepted: 01/26/2019] [Indexed: 12/11/2022]
Abstract
The phospholipid bilayer membrane that surrounds each cell in the body represents the first and last line of defense for preserving overall cell viability. In several forms of cardiac and skeletal muscle disease, deficits in the integrity of the muscle membrane play a central role in disease pathogenesis. In Duchenne muscular dystrophy, an inherited and uniformly fatal disease of progressive muscle deterioration, muscle membrane instability is the primary cause of disease, including significant heart disease, for which there is no cure or highly effective treatment. Further, in multiple clinical forms of myocardial ischemia-reperfusion injury, the cardiac sarcolemma is damaged and this plays a key role in disease etiology. In this review, cardiac muscle membrane stability is addressed, with a focus on synthetic block copolymers as a unique chemical-based approach to stabilize damaged muscle membranes. Recent advances using clinically relevant small and large animal models of heart disease are discussed. In addition, mechanistic insights into the copolymer-muscle membrane interface, featuring atomistic, molecular, and physiological structure-function approaches are highlighted. Collectively, muscle membrane instability contributes significantly to morbidity and mortality in prominent acquired and inherited heart diseases. In this context, chemical-based muscle membrane stabilizers provide a novel therapeutic approach for a myriad of heart diseases wherein the integrity of the cardiac muscle membrane is at risk.
Collapse
Affiliation(s)
- Evelyne M. Houang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jason Bartos
- Department of Medicine-Cardiovascular Division, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Demetris Yannopoulos
- Department of Medicine-Cardiovascular Division, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
7
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
8
|
Holguin SY, Gray MD, Joseph P, Thadhani NN, Prausnitz MR. Photoporation Using Carbon Nanotubes for Intracellular Delivery of Molecules and Its Relationship to Photoacoustic Pressure. Adv Healthc Mater 2018; 7. [PMID: 29205931 DOI: 10.1002/adhm.201701007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 01/08/2023]
Abstract
Exposure of carbon-black (CB) nanoparticles to near-infrared nanosecond-pulsed laser energy can cause efficient intracellular delivery of molecules by photoporation. Here, cellular bioeffects of multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) are compared to those of CB nanoparticles. In DU145 prostate-cancer cells, photoporation using CB nanoparticles transitions from (i) cells with molecular uptake to (ii) nonviable cells to (iii) fragmented cells with increasing laser fluence, as seen previously. In contrast, photoporation with MWCNTs causes uptake and, at higher fluence, fragmentation, but does not generate nonviable cells, and SWCNTs show little evidence of bioeffects, except at extreme laser conditions, which generate nonviable cells and fragmentation, but no significant uptake. These different behaviors cannot be explained by photoacoustic pressure output from the particles. All particle types emit a single, ≈100 ns, mostly positive-pressure pulse that increases in amplitude with laser fluence. Different particle types emit different peak pressures, which are highest for SWCNTs, followed by CB nanoparticles and then MWCNTs, which does not correlate with cellular bioeffects between different particle types. This study concludes that cellular bioeffects depend strongly on the type of carbon nanoparticle used during photoporation and that photoacoustic pressure is unlikely to play a direct mechanistic role in the observed bioeffects.
Collapse
Affiliation(s)
- Stefany Y. Holguin
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Michael D. Gray
- Institute of BME U. Oxford Chem & Biomolecular Eng, GaTech Oxford OX3 7DQ UK
| | - Princeton Joseph
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Naresh N. Thadhani
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Mark R. Prausnitz
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
9
|
Percival S, Mayer D, Malone M, Swanson T, Gibson D, Schultz G. Surfactants and their role in wound cleansing and biofilm management. J Wound Care 2017; 26:680-690. [DOI: 10.12968/jowc.2017.26.11.680] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- S.L. Percival
- CEO and Professor (honorary), Centre of Excellence in Biofilm Science and Technologies (CEBST), 5D Health Protection Group Ltd and Liverpool University, Liverpool, UK
| | - D. Mayer
- Head of Vascular Surgery Unit, Department of Surgery, HFR Fribourg—Cantonal Hospital, Fribourg, Switzerland
| | - M. Malone
- Head of Department, Podiatric Medicine/Senior Research Fellow, Infectious Disease and Microbiology, School of Medicine, Western Sydney University, Sydney, Australia
| | - T Swanson
- High Risk Foot Service, Liverpool Hospital, South Western Sydney Local Health District, Liverpool, Australia
| | - D. Gibson
- Assistant Professor, Institute for Wound Research, University of Florida, Gainesville, US
| | - G. Schultz
- Professor, Institute for Wound Research, Department Obstetrics and Gynaecology, University of Florida, Gainesville, US
| |
Collapse
|
10
|
Holguin SY, Anderson CF, Thadhani NN, Prausnitz MR. Role of cytoskeletal mechanics and cell membrane fluidity in the intracellular delivery of molecules mediated by laser‐activated carbon nanoparticles. Biotechnol Bioeng 2017. [DOI: 10.1002/bit.26355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stefany Y. Holguin
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGeorgia 30332
| | - Caleb F. Anderson
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgia 30332
| | - Naresh N. Thadhani
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGeorgia 30332
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgia 30332
| |
Collapse
|
11
|
Sengupta A, Gray MD, Kelly SC, Holguin SY, Thadhani NN, Prausnitz MR. Energy Transfer Mechanisms during Molecular Delivery to Cells by Laser-Activated Carbon Nanoparticles. Biophys J 2017; 112:1258-1269. [PMID: 28355552 DOI: 10.1016/j.bpj.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 11/26/2022] Open
Abstract
Previous studies have shown that exposure of carbon black nanoparticles to nanosecond pulsed near-infrared laser causes intracellular delivery of molecules through hypothesized transient breaks in the cell membrane. The goal of this study is to determine the underlying mechanisms of sequential energy transfer from laser light to nanoparticle to fluid medium to cell. We found that laser pulses on a timescale of 10 ns rapidly heat carbon nanoparticles to temperatures on the order of 1200 K. Heat is transferred from the nanoparticles to the surrounding aqueous medium on a similar timescale, causing vaporization of the surrounding water and generation of acoustic emissions. Nearby cells can be impacted thermally by the hot bubbles and mechanically by fluid mechanical forces to transiently increase cell membrane permeability. The experimental and theoretical results indicate that transfer of momentum and/or heat from the bubbles to the cells are the dominant mechanisms of energy transfer that results in intracellular uptake of molecules. We further conclude that neither thermal expansion of the nanoparticles nor a carbon-steam chemical reaction play a significant role in the observed effects on cells, and that acoustic pressure appears to be concurrent with, but not essential to, the observed bioeffects.
Collapse
Affiliation(s)
- Aritra Sengupta
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Michael D Gray
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Sean C Kelly
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Stefany Y Holguin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Naresh N Thadhani
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
12
|
Kim M, Haman KJ, Houang EM, Zhang W, Yannopoulos D, Metzger JM, Bates FS, Hackel BJ. PEO-PPO Diblock Copolymers Protect Myoblasts from Hypo-Osmotic Stress In Vitro Dependent on Copolymer Size, Composition, and Architecture. Biomacromolecules 2017; 18:2090-2101. [PMID: 28535058 DOI: 10.1021/acs.biomac.7b00419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Poloxamer 188, a triblock copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), protects cellular membranes from various stresses. Though numerous block copolymer variants exist, evaluation of alternative architecture, composition, and size has been minimal. Herein, cultured murine myoblasts are exposed to the stresses of hypotonic shock and isotonic recovery, and membrane integrity was evaluated by quantifying release of lactate dehydrogenase. Comparative evaluation of a systematic set of PEO-PPO diblock and PEO-PPO-PEO triblock copolymers demonstrates that the diblock architecture can be protective in vitro. Short PPO blocks hinder protection with >9 PPO units needed for protection at 150 μM and >16 units needed at 14 μM. Addition of a tert-butyl end group enhances protection at reduced concentration. When the end group and PPO length are fixed, increasing the PEO length improves protection. This systematic evaluation establishes a new in vitro screening tool for evaluating membrane-sealing amphiphiles and provides mechanistic insight to guide future copolymer design for membrane stabilization in vivo.
Collapse
Affiliation(s)
- Mihee Kim
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Karen J Haman
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Evelyne M Houang
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Wenjia Zhang
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Demetris Yannopoulos
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Joseph M Metzger
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, ‡Department of Integrative Biology and Physiology, and §Department of Medicine, Cardiovascular Division, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Poellmann MJ, Lee RC. Repair and Regeneration of the Wounded Cell Membrane. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0031-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Jumelle C, Mauclair C, Houzet J, Bernard A, He Z, Forest F, Perrache C, Gain P, Thuret G. Delivery of macromolecules into the endothelium of whole ex vivo human cornea by femtosecond laser-activated carbon nanoparticles. Br J Ophthalmol 2016; 100:1151-6. [PMID: 27226345 DOI: 10.1136/bjophthalmol-2015-307610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 05/03/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND The targeted delivery of drugs or genes into corneal endothelial cells (ECs) during eye banking could help improve graft quality and quantity. Physical methods raising less safety concerns than viral ones, we previously adapted, for in vitro ECs, a recent innovative technique of drug delivery based on the activation of carbon nanoparticles (CNPs) by a femtosecond laser (fsL). The aim of the present pilot study was to adapt this method to enable molecule delivery into the intact endothelium of ex vivo human corneas. METHODS ECs from 40 organ-cultured corneas were perforated by photoacoustic reaction induced by irradiation of CNPs by a fsL. This enabled intracellular delivery of Alexa Fluor 488 dextran, a 4000 Da fluorescent macromolecule. The influence of increasing laser fluences (15, 20, 30 and 40 mJ/cm(2)) and of protective additives (ROCK inhibitor and poloxamer 407) on delivery and mortality rates was quantified using ImageJ. RESULTS No dextran was delivered with a fluence lower than 20 mJ/cm(2). Dextran was delivered into 3% (range 0%-7%) of cells at 20 mJ/cm(2), 7% (range 2%-12%) at 30 mJ/cm(2) and reaching a median 13% (range 3%-24%) for 40 mJ/cm(2), showing that dextran uptake by ECs increased significantly with fluence. Induced mortality varied from 0% to 53% irrespective of fluence, but likely to be related with the endothelial status (EC density and morphometry, donor age, storage duration and presence of Descemet's folds). ROCK inhibitor slightly increased uptake efficiency, unlike poloxamer. However, none of them decreased the mortality induced by laser. CONCLUSIONS This study shows that a macromolecule can be delivered specifically into ECs of a whole organ-cultured human cornea, using fsL-activated CNPs. The delivery rate was relatively high for a non-viral method. Further optimisation is required to understand and reduce variability in cell mortality.
Collapse
Affiliation(s)
- Clotilde Jumelle
- Corneal Graft Biology, Engineering and Imaging Laboratory, EA2521, Federative Institute of Research in Sciences and Health Engineering, Faculty of Medicine, Jean Monnet University, Saint-Etienne, France
| | - Cyril Mauclair
- Hubert Curien Laboratory, UMR-CNRS 5516, Jean Monnet University, Saint-Etienne, France Manutech-USD, Saint-Etienne, France
| | - Julien Houzet
- Hubert Curien Laboratory, UMR-CNRS 5516, Jean Monnet University, Saint-Etienne, France Manutech-USD, Saint-Etienne, France
| | - Aurélien Bernard
- Corneal Graft Biology, Engineering and Imaging Laboratory, EA2521, Federative Institute of Research in Sciences and Health Engineering, Faculty of Medicine, Jean Monnet University, Saint-Etienne, France
| | - Zhiguo He
- Corneal Graft Biology, Engineering and Imaging Laboratory, EA2521, Federative Institute of Research in Sciences and Health Engineering, Faculty of Medicine, Jean Monnet University, Saint-Etienne, France
| | - Fabien Forest
- Corneal Graft Biology, Engineering and Imaging Laboratory, EA2521, Federative Institute of Research in Sciences and Health Engineering, Faculty of Medicine, Jean Monnet University, Saint-Etienne, France
| | - Chantal Perrache
- Corneal Graft Biology, Engineering and Imaging Laboratory, EA2521, Federative Institute of Research in Sciences and Health Engineering, Faculty of Medicine, Jean Monnet University, Saint-Etienne, France
| | - Philippe Gain
- Corneal Graft Biology, Engineering and Imaging Laboratory, EA2521, Federative Institute of Research in Sciences and Health Engineering, Faculty of Medicine, Jean Monnet University, Saint-Etienne, France Ophthalmology Department, University Hospital, Saint-Etienne, France
| | - Gilles Thuret
- Corneal Graft Biology, Engineering and Imaging Laboratory, EA2521, Federative Institute of Research in Sciences and Health Engineering, Faculty of Medicine, Jean Monnet University, Saint-Etienne, France Ophthalmology Department, University Hospital, Saint-Etienne, France Institut Universitaire de France, Paris, France
| |
Collapse
|
15
|
Parameters affecting intracellular delivery of molecules using laser-activated carbon nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1003-1011. [PMID: 26772422 DOI: 10.1016/j.nano.2015.12.380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/02/2015] [Accepted: 12/24/2015] [Indexed: 11/20/2022]
Abstract
UNLABELLED Previous studies showed that carbon nanoparticles exposed to nanosecond laser pulses cause intracellular uptake of molecules. In this study, prostate cancer cells incubated with carbon-black (CB) nanoparticles and fluorescent marker compounds were exposed to 10ns laser pulses at 1064nm wavelength, after which intracellular uptake was measured by flow cytometry. Calcein and dextran (150kDa) were delivered into >50% of cells, whereas larger dextrans (≤2000kDa) were taken up by ~10% of cells. Under all conditions studied, cell viability loss was minimal. Uptake also increased with increasing laser power, increasing CB nanoparticle concentration, increasing CB nanoparticle size and decreasing laser wavelength. CB nanoparticles enabled uptake better than gold nanoparticles or multi-walled carbon nanotubes under the conditions studied. Proof-of-principle experiments showed intracellular uptake by cells in vivo. We conclude that intracellular uptake of molecules using laser-activated CB nanoparticles provides a promising approach to deliver molecules into cells. FROM THE CLINICAL EDITOR Delivery of drugs using nanoparticles as carriers is promising. The authors in this study investigated the use of laser-activated carbon nanoparticles to increase the cellular uptake of payloads in various parameters. The positive data generated should provide further platform for a new approach for intracellular delivery of molecules.
Collapse
|
16
|
Polycation liposomes combined with calcium phosphate nanoparticles as a non-viral carrier for siRNA delivery. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
A novel thermosensitive in-situ gel of gabexate mesilate for treatment of traumatic pancreatitis: An experimental study. ACTA ACUST UNITED AC 2015; 35:707-711. [PMID: 26489626 DOI: 10.1007/s11596-015-1494-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/06/2015] [Indexed: 12/15/2022]
Abstract
Gabexate mesilate (GM) is a trypsin inhibitor, and mainly used for treatment of various acute pancreatitis, including traumatic pancreatitis (TP), edematous pancreatitis, and acute necrotizing pancreatitis. However, due to the characteristics of pharmacokinetics, the clinical application of GM still needs frequently intravenous administration to keep the blood drug concentration, which is difficult to manage. Specially, when the blood supply of pancreas is directly damaged, intravenous administration is difficult to exert the optimum therapy effect. To address it, a novel thermosensitive in-situ gel of gabexate mesilate (GMTI) was developed, and the optimum formulation of GMTI containing 20.6% (w/w) P-407 and 5.79% (w/w) P188 with different concentrations of GM was used as a gelling solvent. The effective drug concentration on trypsin inhibition was examined after treatment with different concentrations of GMTI in vitro, and GM served as a positive control. The security of GMTI was evaluated by hematoxylin-eosin (HE) staining, and its curative effect on grade II pancreas injury was also evaluated by testing amylase (AMS), C-reactive protein (CRP) and trypsinogen activation peptide (TAP), and pathological analysis of the pancreas. The trypsin activity was slightly inhibited at 1.0 and 5.0 mg/mL in GM group and GMTI group, respectively (P<0.05 vs. P-407), and completely inhibited at 10.0 and 20.0 mg/mL (P<0.01 vs. P-407). After local injection of 10 mg/mL GMTI to rat leg muscular tissue, muscle fiber texture was normal, and there were no obvious red blood cells and infiltration of inflammatory cells. Furthermore, the expression of AMS, CRP and TAP was significantly increased in TP group as compared with control group (P<0.01), and significantly decreased in GM group as compared with TP group (P<0.01), and also slightly inhibited after 1.0 and 5.0 mg/mL GMTI treatment as compared with TP group (P<0.05), and significantly inhibited after 10.0 and 20.0 mg/mL GMTI treatment as compared with TP group (P<0.01). HE staining results demonstrated that pancreas cells were uniformly distributed in control group, and they were loosely arranged, partially dissolved, with deeply stained nuclei in TP group. Expectedly, after gradient GMTI treatment, pancreas cells were gradually restored to tight distribution, with slightly stained nuclei. This preliminary study indicated that GMTI could effectively inhibit pancreatic enzymes, and alleviate the severity of trauma-induced pancreatitis, and had a potential drug developing and clinic application value.
Collapse
|