1
|
Yu C, Wang Z, Fu X, Liu C, Li A, Lin Q, Lan T, Zhuang X. Aminated lignin improved enzymatic hydrolysis of cellulosic substrate treated by p-toluenesulfonic acid. J Biotechnol 2024; 395:44-52. [PMID: 39260703 DOI: 10.1016/j.jbiotec.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Lignin can affect the enzymatic hydrolysis efficiency of lignocellulose. In this study, the lignin isolated from sugarcane bagasse (SCB) pretreated with p-toluenesulfonic acid (PL) was firstly aminated, and then the effects of PL and aminated PL (APL) on the bagasse enzymatic hydrolysis efficiency (EHE) were investigated. The results showed that the addition of PL and APL promoted the EHE, and EHE with APL (73.82 %) was higher than PL (51.39 %). To explore the reason, the data were further analyzed including cellulase adsorption capacity, enzyme activity, cellulase-lignin interaction, and molecular docking. It was found that APL adsorbed more cellulase (27.83 mg protein/g lignin) than PL (4.96 mg protein/g lignin), resulting from the greater interaction force and lower binding free energy between APL and cellulase. The addition of APL more remarkably enhanced the cellobiohydrolase and endoglucanase activities than PL due to more effectively inducing cellulase conformation optimization.
Collapse
Affiliation(s)
- Chunyang Yu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China; Faculty of Food Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Rd., Chenggong District, Kunming 650500, China
| | - Zekang Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Rd., Chenggong District, Kunming 650500, China
| | - Xiangjin Fu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China
| | - Chun Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China
| | - Anping Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China
| | - Tianqing Lan
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China; Faculty of Food Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Rd., Chenggong District, Kunming 650500, China.
| | - Xinshu Zhuang
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Tianhe District, 2 Energy Rd., Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Tianhe District, 2 Energy Rd., Guangzhou 510640, China
| |
Collapse
|
2
|
Leroy A, Fanuel M, Alvarado C, Rogniaux H, Grisel S, Haon M, Berrin JG, Paës G, Guillon F. In situ imaging of LPMO action on plant tissues. Carbohydr Polym 2024; 343:122465. [PMID: 39174080 DOI: 10.1016/j.carbpol.2024.122465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 08/24/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that oxidatively cleave recalcitrant polysaccharides such as cellulose. Several studies have reported LPMO action in synergy with other carbohydrate-active enzymes (CAZymes) for the degradation of lignocellulosic biomass but direct LPMO action at the plant tissue level remains challenging to investigate. Here, we have developed a MALDI-MS imaging workflow to detect oxidised oligosaccharides released by a cellulose-active LPMO at cellular level on maize tissues. Using this workflow, we imaged LPMO action and gained insight into the spatial variation and relative abundance of oxidised and non-oxidised oligosaccharides. We reveal a targeted action of the LPMO related to the composition and organisation of plant cell walls.
Collapse
Affiliation(s)
- Amandine Leroy
- INRAE, UR 1268 BIA, 44316 Nantes, France; INRAE, Université de Reims Champagne Ardenne, FARE, UMR A 614, 51100 Reims, France.
| | - Mathieu Fanuel
- INRAE, UR 1268 BIA, 44316 Nantes, France; INRAE, BIBS Facility, 44316 Nantes, France.
| | | | - Hélène Rogniaux
- INRAE, UR 1268 BIA, 44316 Nantes, France; INRAE, BIBS Facility, 44316 Nantes, France.
| | - Sacha Grisel
- INRAE, Aix Marseille Université, Biodiversité et Biotechnologie Fongiques (BBF), 13009 Marseille, France; INRAE, Aix Marseille Université, 3PE platform, 13009 Marseille, France.
| | - Mireille Haon
- INRAE, Aix Marseille Université, Biodiversité et Biotechnologie Fongiques (BBF), 13009 Marseille, France; INRAE, Aix Marseille Université, 3PE platform, 13009 Marseille, France.
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Université, Biodiversité et Biotechnologie Fongiques (BBF), 13009 Marseille, France.
| | - Gabriel Paës
- INRAE, Université de Reims Champagne Ardenne, FARE, UMR A 614, 51100 Reims, France.
| | | |
Collapse
|
3
|
Guo F, Wang C, Wang S, Wu S, Zhao X, Li G. Fenton-ultrasound treatment of corn stalks enhances humification during composting by stimulating the inheritance and synthesis of polyphenolic compounds-preliminary evidence from a laboratory trial. CHEMOSPHERE 2024; 358:142133. [PMID: 38670511 DOI: 10.1016/j.chemosphere.2024.142133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The impact of Fenton-ultrasound treatment on the production of polyphenols and humic acid (HA) during corn stalk composting was investigated by analyzing the potential for microbial assimilation of polysaccharides in corn stalks to generate polyphenols using a13C-glucose tracer. The results showed that Fenton-ultrasound treatment promoted the decomposition of lignocellulose and increased the HA content, degree of polymerization (DP), and humification index (HI). The primary factor could be attributed to Fenton-ultrasound treatment-induced enhanced the abundance of lignocellulose-degrading microorganisms, as Firmicutes, Actinobacteria phylum and Aspergillis genus, which serve as the primary driving forces behind polyphenol and HA formation. Additionally, the utilization of a13C isotope tracer revealed that corn stalk polysaccharide decomposition products can be assimilated by microbes and subsequently secrete polyphenolic compounds. This study highlights the potential of microbial activity to generate phenolic compounds, offering a theoretical basis for increasing polyphenol production and promoting HA formation during composting.
Collapse
Affiliation(s)
- Fenglei Guo
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chen Wang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuaipeng Wu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaorong Zhao
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guitong Li
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Fülöp L. Carbohydrate polymer degradation derivatives as possible natural mannanase inhibitors. Int J Biol Macromol 2024; 269:132033. [PMID: 38702000 DOI: 10.1016/j.ijbiomac.2024.132033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/10/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The role of mannanases is diverse and they are used in many industrial applications, in animal feed, in the food industry and in healthcare. They are also applied in biomass processing, because they play an important role in the breakdown of hemicellulose. Among the mannanase inhibitors, heavy metal ions and general enzyme inhibitors are mainly mentioned. Unfortunately, almost no data are available on carbohydrate-based natural inhibitors of mannanases. According to the literature, carbohydrates do not play an important role in the inhibition of mannanases, so neither do oligosaccharides. This is in contrast to the action and inhibition of other O-glycosyl hydrolases. My hypothesis is that mannanases, like other polysaccharide-degrading enzymes, work in the same way and can be inhibited by oligosaccharides. Evidence from docking and modeling results supports and makes probable the hypothesis that oligosaccharides can inhibit the activity of mannanases, similar to the inhibition of other O-glycosyl hydrolases. Among natural carbohydrate oligomers, several potential mannanase inhibitors have been identified and characterized. In addition to expensive research, it is very important to use research based on cheaper modeling to explore the processes. The results obtained are novel and forward-looking, enabling in-depth and targeted research to be carried out.
Collapse
|
5
|
Izaguirre N, Erdocia X, Labidi J. Exploring chemical reactions to enhance thermal and dispersion stability of kraft and organosolv lignin. Int J Biol Macromol 2024; 264:130518. [PMID: 38428757 DOI: 10.1016/j.ijbiomac.2024.130518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Lignin has been overlooked and used as a waste for long due to its complex and partially hydrophobic structure. Many efforts have been carried out to overcome these deficiencies and apply it as a high-value product, which are insufficient to reach the full potential of lignin in various advanced applications, since they require with procedures for the obtaining of more specific and fine-tuned chemical structures. This work focuses on the obtaining of differently structured hydrophilic lignins derived both from Kraft and organosolv isolation processes. The chemical structures of the different lignin types were studied, and the effect of the structural differences in the modification processes and their subsequent properties analyzed, valorizing their potential application for diverse purposes. The carboxymethylation and sulfomethylation reactions were carried out with the aim of enhancing the polarity of the lignin samples, while the methylation reaction aimed to obtain lignins with higher stability. The physicochemical analyses of the samples, carried out by FTIR, GPC, 31P NMR, 13C NMR, and HSQC NMR, verified the effectiveness of the chemical reactions and conditions selected, obtaining lignins with lower hydroxyl content, due to their substitution and insertion of carboxymetyl, sulfomethyl and methyl groups, therefore obtaining more condensed, aromatic and oxygenated aromatic carbon structures. While the methylation reaction was the most efficient in substituting the OH groups, due to its non-selectivity, OL showed higher modification yields than KL. In terms of the thermal and morphological properties, analyzed by DLS and TGA respectively, it was observed that the modified samples showed lower Z potential values, along with higher conductivity, being the sulfomethylated organosolv lignin the one showing the best results, which was also the one with the smallest particle size and polydispersity index. Finally, all the modified samples showed higher T50% values, suggesting a better stability towards degradation.
Collapse
Affiliation(s)
- Nagore Izaguirre
- Biorefinery Processes Research Group, Chemical and Environmental Engineering Department, Engineering Faculty of Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia, Spain
| | - Xabier Erdocia
- Biorefinery Processes Research Group, Department of Applied Mathematics, University of the Basque Country UPV/EHU, Rafael Moreno "Pichichi" 3, 48013 Bilbao, Spain
| | - Jalel Labidi
- Biorefinery Processes Research Group, Chemical and Environmental Engineering Department, Engineering Faculty of Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia, Spain.
| |
Collapse
|
6
|
Xu L, Cao M, Zhou J, Pang Y, Li Z, Yang D, Leu SY, Lou H, Pan X, Qiu X. Aqueous amine enables sustainable monosaccharide, monophenol, and pyridine base coproduction in lignocellulosic biorefineries. Nat Commun 2024; 15:734. [PMID: 38272912 PMCID: PMC10810809 DOI: 10.1038/s41467-024-45073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Thought-out utilization of entire lignocellulose is of great importance to achieving sustainable and cost-effective biorefineries. However, there is a trade-off between efficient carbohydrate utilization and lignin-to-chemical conversion yield. Here, we fractionate corn stover into a carbohydrate fraction with high enzymatic digestibility and reactive lignin with satisfactory catalytic depolymerization activity using a mild high-solid process with aqueous diethylamine (DEA). During the fractionation, in situ amination of lignin achieves extensive delignification, effective lignin stabilization, and dramatically reduced nonproductive adsorption of cellulase on the substrate. Furthermore, by designing a tandem fractionation-hydrogenolysis strategy, the dissolved lignin is depolymerized and aminated simultaneously to co-produce monophenolics and pyridine bases. The process represents the viable scheme of transforming real lignin into pyridine bases in high yield, resulting from the reactions between cleaved lignin side chains and amines. This work opens a promising approach to the efficient valorization of lignocellulose.
Collapse
Affiliation(s)
- Li Xu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Meifang Cao
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jiefeng Zhou
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yuxia Pang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhixian Li
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Dongjie Yang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hongming Lou
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Deng R, Lu F, Li YT, Yang HC, Huang J. Wood-based capillary enhancers for accelerated moisture capture and solar-powered release. J Colloid Interface Sci 2024; 653:454-462. [PMID: 37725875 DOI: 10.1016/j.jcis.2023.09.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
The pressing need to address the global water crisis has spurred research efforts toward exploring alternative sources and technologies, and harvesting atmospheric water from the humid air emerges as a promising solution. Liquid desiccants, known for their high absorption capacity, have been widely utilized for moisture capture, but their water yield is mainly restricted by sluggish adsorption and desorption dynamics. To address this limitation, we present a facile strategy to promote the absorption/desorption dynamics of moisture by virtue of capillary transport and enlarged interfaces in a photothermal wood enhancer. These enhancers are fabricated via partial delignification of natural balsa woods followed by low-temperature carbonization to endow them with photothermal properties. The moisture absorption rate shows a notable increase of 103% and 84% under the relative humidity (RH) of 60% and 90%, respectively, within the initial two hours by applying the three enhancers. On the other hand, the desorption efficiency is doubled, reaching 80% in two hours under 60 °C with the enhancers. Moreover, the desorption can be driven by solar energy with an evaporation rate of 1.217 kg·m-2·h-1. This work provides a design strategy combining capillary and interfacial effects to enhance moisture harvesting without altering hygroscopic materials.
Collapse
Affiliation(s)
- Ran Deng
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Feng Lu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yu-Tang Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Hao-Cheng Yang
- MOE Engineering Center of Membranes for Water Treatment, Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
8
|
Saratale RG, Ponnusamy VK, Piechota G, Igliński B, Shobana S, Park JH, Saratale GD, Shin HS, Banu JR, Kumar V, Kumar G. Green chemical and hybrid enzymatic pretreatments for lignocellulosic biorefineries: Mechanism and challenges. BIORESOURCE TECHNOLOGY 2023; 387:129560. [PMID: 37517710 DOI: 10.1016/j.biortech.2023.129560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
The greener chemical and enzymatic pretreatments for lignocellulosic biomasses are portraying a crucial role owing to their recalcitrant nature. Traditional pretreatments lead to partial degradation of lignin and hemicellulose moieties from the pretreated biomass. But it still restricts the enzyme accessibility for the digestibility towards the celluloses and the interaction of lignin-enzymes, nonproductively. Moreover, incursion of certain special chemical treatments and other lignin sulfonation techniques to the enzymatic pretreatment (hybrid enzymatic pretreatment) enhances the lignin structural modification, solubilization of the hemicelluloses and both saccharification and fermentation processes (SAF). This article concentrates on recent developments in various chemical and hybrid enzymatic pretreatments on biomass materials with their mode of activities. Furthermore, the issues on strategies of the existing pretreatments towards their industrial applications are highlighted, which could lead to innovative ideas to overcome the challenges and give guideline for the researchers towards the lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung-807, Taiwan
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100 Toruń, Poland
| | - Bartłomiej Igliński
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
| | - S Shobana
- Green Technology and Sustainable Development in Construction Research Group, Van Lang School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju, South Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur - 610005, Tamil Nadu, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
9
|
Cheng X, Palma B, Zhao H, Zhang H, Wang J, Chen Z, Hu J. Photoreforming for Lignin Upgrading: A Critical Review. CHEMSUSCHEM 2023:e202300675. [PMID: 37455297 DOI: 10.1002/cssc.202300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Photoreforming of lignocellulosic biomass to simultaneously produce gas fuels and value-added chemicals has gradually emerged as a promising strategy to alleviate the fossil fuels crisis. Compared to cellulose and hemicellulose, the exploitation and utilization of lignin via photoreforming are still at the early and more exciting stages. This Review systematically summarizes the latest progress on the photoreforming of lignin-derived model components and "real" lignin, aiming to provide insights for lignin photocatalytic valorization from fundamental to industrial applications. Considering the complexity of lignin physicochemical properties, related analytic methods are also introduced to characterize lignin photocatalytic conversion and product distribution. We finally put forward the challenges and perspective of lignin photoreforming, hoping to provide some guidance to valorize biomass into value-added chemicals and fuels via a mild photoreforming process in the future.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Bruna Palma
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Hongguang Zhang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Vasco-Correa J, Zuleta-Correa A, Gómez-León J, Pérez-Taborda JA. Advances in microbial pretreatment for biorefining of perennial grasses. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12639-5. [PMID: 37410135 DOI: 10.1007/s00253-023-12639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Perennial grasses are potentially abundant sources of biomass for biorefineries, which can produce high yields with low input requirements, and many added environmental benefits. However, perennial grasses are highly recalcitrant to biodegradation and may require pretreatment before undergoing many biorefining pathways. Microbial pretreatment uses the ability of microorganisms or their enzymes to deconstruct plant biomass and enhance its biodegradability. This process can enhance the enzymatic digestibility of perennial grasses, enabling saccharification with cellulolytic enzymes to produce fermentable sugars and derived fermentation products. Similarly, microbial pretreatment can increase the methanation rate when the grasses are used to produce biogas through anaerobic digestion. Microorganisms can also increase the digestibility of the grasses to improve their quality as animal feed, enhance the properties of grass pellets, and improve biomass thermochemical conversion. Metabolites produced by fungi or bacteria during microbial pretreatment, such as ligninolytic and cellulolytic enzymes, can be further recovered as added-value products. Additionally, the action of the microorganisms can release chemicals with commercialization potential, such as hydroxycinnamic acids and oligosaccharides, from the grasses. This review explores the recent advances and remaining challenges in using microbial pretreatment for perennial grasses with the goal of obtaining added-value products through biorefining. It emphasizes recent trends in microbial pretreatment such as the use of microorganisms as part of microbial consortia or in unsterilized systems, the use and development of microorganisms and consortia capable of performing more than one biorefining step, and the use of cell-free systems based on microbial enzymes. KEY POINTS: • Microorganisms or enzymes can reduce the recalcitrance of grasses for biorefining • Microbial pretreatment effectiveness depends on the grass-microbe interaction • Microbial pretreatment can generate value added co-products to enhance feasibility.
Collapse
Affiliation(s)
- Juliana Vasco-Correa
- Department of Agricultural and Biological Engineering, Penn State University, University Park, PA, USA.
- Sociedad Colombiana de Ingeniería Física (SCIF), Pereira, Risaralda, Colombia.
| | - Ana Zuleta-Correa
- Marine Bioprospecting Line-BIM, Marine and Coastal Research Institute "José Benito Vives de Andréis" (INVEMAR), Santa Marta D.T.C.H, Magdalena, Colombia
| | - Javier Gómez-León
- Marine Bioprospecting Line-BIM, Marine and Coastal Research Institute "José Benito Vives de Andréis" (INVEMAR), Santa Marta D.T.C.H, Magdalena, Colombia
| | - Jaime Andrés Pérez-Taborda
- Sociedad Colombiana de Ingeniería Física (SCIF), Pereira, Risaralda, Colombia
- Grupo de Nanoestructuras y Física Aplicada (NANOUPAR), Universidad Nacional de Colombia Sede De La Paz, La Paz, Cesar, Colombia
| |
Collapse
|
11
|
Xu L, Wang J, Zhang A, Pang Y, Yang D, Lou H, Qiu X. Unveiling the role of long-range and short-range forces in the non-productive adsorption between lignin and cellulases at different temperatures. J Colloid Interface Sci 2023; 647:318-330. [PMID: 37262994 DOI: 10.1016/j.jcis.2023.05.152] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Quantitatively understanding of interaction mechanism between lignin and cellulases is essential for the efficient improvement of lignocellulose enzymatic hydrolysis. However, the individual contribution of multiple forces between lignin and cellulases to the non-productive adsorption of enzymes still remains deeply ambiguous, especially in situations of near enzymatic hydrolysis temperatures. Herein, atomic force microscopy (AFM) and computational simulations were utilized to quantitatively analyze the intermolecular forces between lignin and enzyme at 25 °C and 40 °C. Our results unveiled that an increase in temperature obviously improved adsorption capacity and total intermolecular forces between lignin and cellulases. This positive relationship mainly comes from the increase in the decay length of hydrophobic forces for lignin-cellulases when temperature increases. Different from the hydrophobic interaction which provides long-range part of attractions, van der Waals forces dominate the intermolecular force only at approaches < 2 nm. On the other hand, electrostatic forces exhibited repulsive effects, and its intensity and distance were limited due to the low surface potential of cellulases. Short-range forces including hydrogen bonding (main) and π-π stacking (minor) stabilize the non-specific binding of enzymes to lignin, but increasing temperature reduces hydrogen bond number. Therefore, the relative contribution of long-range forces increased markedly at higher temperatures, which benefits protein capture and brings lignin and cellulase close together. Finally, the structure-activity relationships between lignin physicochemical properties and its inhibitory effect to enzymes indicated that hydrophobic interactions, hydrogen bonding, and steric effects drive the final adsorption capacity and glucose yields. This work provides quantitative and basic insights into the mechanism of lignin-cellulase interfacial interactions and guides design of saccharification enhancement approaches.
Collapse
Affiliation(s)
- Li Xu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jingyu Wang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Aiting Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuxia Pang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Dongjie Yang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hongming Lou
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Rahman NNA, Sharif FM, Kamarudin NHA, Ali MSM, Aris SNAM, Jonet MA, Rahman RNZRA, Sabri S, Leow TC. X-ray crystallography of mutant GDSL esterase S12A of Photobacterium marinum J15. 3 Biotech 2023; 13:128. [PMID: 37064003 PMCID: PMC10097846 DOI: 10.1007/s13205-023-03534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/24/2023] [Indexed: 04/18/2023] Open
Abstract
GDSL esterase is designated as a member of Family II of lipolytic enzymes known to catalyse the synthesis and hydrolysis of ester bonds. The enzyme possesses a highly conserved motif Ser-Gly-Asn-His in the four conserved blocks I, II, III and V respectively. The enzyme characteristics, such as region-, chemo-, and enantioselectivity, help in resolving the racemic mixture of single-isomer chiral drugs. Recently, crystal structure of GDSL esterase from Photobacterium J15 has been reported (PDB ID: 5XTU) but not in complex with substrate. Therefore, GDSL in complex with substrate could provide insights into the binding mode of substrate towards inactive form of GDSL esterase (S12A) and identify the hot spot residues for the designing of a better binding pocket. Insight into molecular mechanisms is limited due to the lack of crystal structure of GDSL esterase-substrate complex. In this paper, the crystallization of mutant GDSL esterase (S12A) (PDB ID: 8HWO) and its complex with butyric acid (PDB ID: 8HWP) are reported. The optimized structure would be vital in determining hot spot residue for GDSL esterase. This preliminary study provides an understanding of the interactions between enzymes and hydrolysed p-nitro-phenyl butyrate. The information could guide in the rational design of GDSL esterase in overcoming the medical limitations associated with racemic mixture.
Collapse
Affiliation(s)
- Nor Najihah Abdul Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Fairolniza Mohd Sharif
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Sayangku Nor Ariati Mohamad Aris
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
13
|
Protective effects of lignin fractions obtained from grape seeds against bisphenol AF neurotoxicity via antioxidative effects mediated by the Nrf2 pathway. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
14
|
Sun C, Meng X, Sun F, Zhang J, Tu M, Chang JS, Reungsang A, Xia A, Ragauskas AJ. Advances and perspectives on mass transfer and enzymatic hydrolysis in the enzyme-mediated lignocellulosic biorefinery: A review. Biotechnol Adv 2023; 62:108059. [PMID: 36402253 DOI: 10.1016/j.biotechadv.2022.108059] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Enzymatic hydrolysis is a critical process for the cellulase-mediated lignocellulosic biorefinery to produce sugar syrups that can be converted into a whole range of biofuels and biochemicals. Such a process operating at high-solid loadings (i.e., scarcely any free water or roughly ≥ 15% solids, w/w) is considered more economically feasible, as it can generate a high sugar concentration at low operation and capital costs. However, this approach remains restricted and incurs "high-solid effects", ultimately causing the lower hydrolysis yields with increasing solid loadings. The lack of available water leads to a highly viscous system with impaired mixing that exhibits strong transfer resistance and reaction limitation imposed on enzyme action. Evidently, high-solid enzymatic hydrolysis involves multi-scale mass transfer and multi-phase enzyme reaction, and thus requires a synergistic perspective of transfer and biotransformation to assess the interactions among water, biomass components, and cellulase enzymes. Porous particle characteristics of biomass and its interface properties determine the water form and distribution state surrounding the particles, which are summarized in this review aiming to identify the water-driven multi-scale/multi-phase bioprocesses. Further aided by the cognition of rheological behavior of biomass slurry, solute transfer theories, and enzyme kinetics, the coupling effects of flow-transfer-reaction are revealed under high-solid conditions. Based on the above basic features, this review lucidly explains the causes of high-solid hydrolysis hindrances, highlights the mismatched issues between transfer and reaction, and more importantly, presents the advanced strategies for transfer and reaction enhancements from the viewpoint of process optimization, reactor design, as well as enzyme/auxiliary additive customization.
Collapse
Affiliation(s)
- Chihe Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Maobing Tu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, The University of Tennessee, Knoxville, TN 37996, USA; Joint Institute of Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
15
|
Madadi M, Song G, Sun F, Sun C, Xia C, Zhang E, Karimi K, Tu M. Positive role of non-catalytic proteins on mitigating inhibitory effects of lignin and enhancing cellulase activity in enzymatic hydrolysis: Application, mechanism, and prospective. ENVIRONMENTAL RESEARCH 2022; 215:114291. [PMID: 36103929 DOI: 10.1016/j.envres.2022.114291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Fermentable sugar production from lignocellulosic biomass has received considerable attention and has been dramatic progress recently. However, due to low enzymatic hydrolysis (EH) yields and rates, a high dosage of the costly enzyme is required, which is a bottleneck for commercial applications. Over the last decades, various strategies have been developed to reduce cellulase enzyme costs. The progress of the non-catalytic additive proteins in mitigating inhibition in EH is discussed in detail in this review. The low efficiency of EH is mostly due to soluble lignin compounds, insoluble lignin, and harsh thermal and mechanical conditions of the EH process. Adding non-catalytic proteins into the EH is considered a simple and efficient approach to boost hydrolysis yield. This review discussed the multiple mechanical steps involved in the EH process. The effect of physicochemical properties of modified lignin on EH and its interaction with cellulase and cellulose are identified and discussed, which include hydrogen bonding, hydrophobic, electrostatic, and cation-π interactions, as well as physical barriers. Moreover, the effects of different conditions of EH that lead to cellulase deactivation by thermal and mechanical mechanisms are also explained. Finally, recent advances in the development, potential mechanisms, and economic feasibility of non-catalytic proteins on EH are evaluated and perspectives are presented.
Collapse
Affiliation(s)
- Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ezhen Zhang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Maobing Tu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, United States
| |
Collapse
|
16
|
Improve Enzymatic Hydrolysis of Lignocellulosic Biomass by Modifying Lignin Structure via Sulfite Pretreatment and Using Lignin Blockers. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Even traditional pretreatments can partially remove or degrade lignin and hemicellulose from lignocellulosic biomass for enhancing its enzymatic digestibility, the remaining lignin in pretreated biomass still restricts its enzymatic hydrolysis by limiting cellulose accessibility and lignin-enzyme nonproductive interaction. Therefore, many pretreatments that can modify lignin structure in a unique way and approaches to block the lignin’s adverse impact have been proposed to directly improve the enzymatic digestibility of pretreated biomass. In this review, recent development in sulfite pretreatment that can transform the native lignin into lignosulfonate and subsequently enhance saccharification of pretreated biomass under certain conditions was summarized. In addition, we also reviewed the approaches of the addition of reactive agents to block the lignin’s reactive sites and limit the cellulase-enzyme adsorption during hydrolysis. It is our hope that this summary can provide a guideline for workers engaged in biorefining for the goal of reaching high enzymatic digestibility of lignocellulose.
Collapse
|
17
|
Lai C, Yang C, Jia Y, Xu X, Wang K, Yong Q. Lignin fractionation to realize the comprehensive elucidation of structure-inhibition relationship of lignins in enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2022; 355:127255. [PMID: 35526719 DOI: 10.1016/j.biortech.2022.127255] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
A better understanding of the relationship between lignin structures and their inhibitory effects in enzymatic saccharification would facilitate the development of lignocellulose biorefinery process. However, the heterogeneity of lignins challenges the elucidation of lignin structure-inhibition correlation. In this study, two types of lignin fractions including ethanol soluble lignins and ethanol insoluble lignins were respectively isolated from the poplars pretreated with various severities. The impacts of pretreatment severities on the structural changes of lignin fractions were studied from the perspective of inter-units linkages, condensed aromatic substructure, and hydroxyl groups. Furthermore, it was observed that lignin addition strongly inhibited the enzymatic saccharification of pure cellulose by 13.3 ∼ 56.3%. Lignin inhibition extents were increased with the elevated pretreatment severity. The relationships between the lignin structural features and lignin inhibition were analyzed, which revealed that the contents of condensed aromatic units and phenolic hydroxyl were crucial factors determining the lignin inhibition.
Collapse
Affiliation(s)
- Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chundong Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuan Jia
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, PR China
| | - Xin Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Kai Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, PR China.
| |
Collapse
|
18
|
Yang P, Yan M, Tian C, Huang X, Lu H, Zhou X. Solvent-free preparation of thermoplastic bio-materials from microcrystalline cellulose (MCC) through reactive extrusion. Int J Biol Macromol 2022; 217:193-202. [DOI: 10.1016/j.ijbiomac.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 12/01/2022]
|
19
|
Leroy A, Devaux MF, Fanuel M, Chauvet H, Durand S, Alvarado C, Habrant A, Sandt C, Rogniaux H, Paës G, Guillon F. Real-time imaging of enzymatic degradation of pretreated maize internodes reveals different cell types have different profiles. BIORESOURCE TECHNOLOGY 2022; 353:127140. [PMID: 35405211 DOI: 10.1016/j.biortech.2022.127140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
This work presents a dynamic view of the enzymatic degradation of maize cell walls, and sheds new light on the recalcitrance of hot water pretreated maize stem internodes. Infra-red microspectrometry, mass spectrometry, fluorescence recovery after photobleaching and fluorescence imaging were combined to investigate enzymatic hydrolysis at the cell scale. Depending on their polymer composition and organisation, cell types exhibits different extent and rate of enzymatic degradation. Enzymes act sequentially from the cell walls rich in accessible cellulose to the most recalcitrant cells. This phenomenon can be linked to the heterogeneous distribution of enzymes in the liquid medium and the adsorption/desorption mechanisms that differ with the type of cell.
Collapse
Affiliation(s)
- Amandine Leroy
- INRAE, UR 1268 BIA, 44316 Nantes, France; Université de Reims Champagne Ardenne, INRAE, FARE, UMR A614, 51100 Reims, France
| | | | - Mathieu Fanuel
- INRAE, UR 1268 BIA, 44316 Nantes, France; INRAE, BIBS Facility, 44316 Nantes, France
| | - Hugo Chauvet
- DISCO Beamline, SOLEIL Synchrotron, BP48, l'Orme des Merisiers, 91192 Gif-sur-Yvette CEDEX, France
| | | | | | - Anouck Habrant
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A614, 51100 Reims, France
| | - Christophe Sandt
- SMIS Beamline, SOLEIL Synchrotron, BP48, l'Orme des Merisiers, 91192 Gif-sur-Yvette CEDEX, France
| | - Hélène Rogniaux
- INRAE, UR 1268 BIA, 44316 Nantes, France; INRAE, BIBS Facility, 44316 Nantes, France
| | - Gabriel Paës
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A614, 51100 Reims, France
| | | |
Collapse
|
20
|
Han L, Jiang B, Wang W, Wang G, Tan Y, Niu K, Fang X. Alleviating Nonproductive Adsorption of Lignin on CBM through the Addition of Cationic Additives for Lignocellulosic Hydrolysis. ACS APPLIED BIO MATERIALS 2022; 5:2253-2261. [PMID: 35404566 DOI: 10.1021/acsabm.2c00112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nonproductive adsorption of cellulase onto lignin significantly inhibited the enzymatic hydrolysis of lignocellulosic biomass. In this study, we constructed a rapid fluorescence detection (RFD) system, and using this system, we demonstrated that the addition of cationic additives DTAB or polyDADMAC greatly increased the partition coefficients of cellulose/lignin, reduced nonproductive adsorption, and enhanced the hydrolysis efficiency of lignocellulose compared to those of Tweens or PEGs. Moreover, the addition of polyDADMAC and DTAB increased the glucose yield released from the mixture of Avicel and AICS-lignin (MCL) by 16.9 and 20.6%, respectively, and reduced the inhibition rate of lignin by 16.9 and 20.7%, respectively. Interestingly, polyDADMAC or DTAB treatment performed more effectively for the enzymatic hydrolysis of pretreated lignocellulosic biomass, compared with MCL. We confirmed that the reduced hydrophobicity and increased zeta potential of lignin cocontribute to the dampening nonproductive adsorption of lignin. In particular, the zeta potential values of lignin and the partition coefficients of Avicel/lignin with the addition of additives showed a good correlation, suggesting that electrostatic force also plays a crucial role in the adsorbing of cellulase on lignin. This work will be conducive to decreasing the nonproductive binding of cellulase onto lignin and enhancing cellulose conversion.
Collapse
Affiliation(s)
- Lijuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.,Rongcheng Huihai Chuangda Biotechnology CO., LTD, Weihai, Shandong 264309, China
| | - Baojie Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.,College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Gaosheng Wang
- TianJin Key Laboratory of Pulp and Paper, TianJin University of Science and Technology, TianJin 300457, China
| | - Yinshuang Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.,National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China.,Rongcheng Huihai Chuangda Biotechnology CO., LTD, Weihai, Shandong 264309, China
| |
Collapse
|
21
|
Shi G, Han Z, Hu L, Wang B, Huang F. N/O Co‐doped Hard Carbon derived from Cocklebur Fruit for Sodium‐Ion Storage. ChemElectroChem 2022. [DOI: 10.1002/celc.202200138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gejun Shi
- Shanghai University of Electric Power Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power CHINA
| | - Zhen Han
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructure CHINA
| | - Lulu Hu
- Shanghai University of Electric Power Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power CHINA
| | - Baofeng Wang
- Shanghai University of Electric Power Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power No. 1851 Pudong district Shanghai CHINA
| | - Fuqiang Huang
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructure CHINA
| |
Collapse
|
22
|
Li M, Jiang B, Wu W, Wu S, Yang Y, Song J, Ahmad M, Jin Y. Current understanding and optimization strategies for efficient lignin-enzyme interaction: A review. Int J Biol Macromol 2022; 195:274-286. [PMID: 34883164 DOI: 10.1016/j.ijbiomac.2021.11.188] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
From energy perspective, with abundant polysaccharides (45-85%), the renewable lignocellulosic is recognized as the 2nd generation feedstock for bioethanol and bio-based products production. Enzymatic hydrolysis is a critical pathway to yield fermentable monosaccharides from pretreated substrates of lignocellulose. Nevertheless, the lignin presence in lignocellulosic substrates leads to the low substrate enzymatic digestibility ascribed to the nonproductive adsorption. It has been reported that the water-soluble lignin (low molecular weight, sulfonated/sulfomethylated and graft polymer) enhance the rate of enzymatic digestibility, however, the catalytic mechanism of lignin-enzyme interaction remains elusive. In this review, optimization strategies for enzymatic hydrolysis based on the lignin structural modification, enzyme engineering, and different additives are critically reviewed. Lignin-enzyme interaction mechanism is also discussed (lignin and various cellulases). In addition, the mathematical models and simulation of lignin, cellulose and enzyme aims for promoting an integrated biomass-conversion process for sustainable production of value-added biofuels.
Collapse
Affiliation(s)
- Mohan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Shufang Wu
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yiqin Yang
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
23
|
Li M, Yuan Y, Zhu Y, Jiang B, Wu W, Wu S, Jin Y. Comparison of sulfomethylated lignin from poplar and masson pine on cellulase adsorption and the enzymatic hydrolysis of wheat straw. BIORESOURCE TECHNOLOGY 2022; 343:126142. [PMID: 34655779 DOI: 10.1016/j.biortech.2021.126142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
In this work, effects of sulfomethylated lignins (SLs) prepared from masson pine (SLM) and poplar (SLP) on enzymatic hydrolysis and cellulase-lignin interaction were comparatively investigated. The results showed that both SLM and SLP significantly promoted the substrate enzymatic digestibility. The total sugar yield increased from 38.6% to 74.4% and ∼ 100%, respectively at 10 FPU/g-cellulose of cellulase dosage. The protein content in hydrolysate linearly increased with the addition of SL (0 - 1.6 g/g-substrate lignin), which suggested the competitive adsorption of cellulase may occur to substrate lignin and SLs. Further structural analysis of lignin revealed the high S/(V + H) ratio was directly related to the high enzymatic saccharification efficiency. The strong interaction between SL and cellulase decreased the nonproductive adsorption of cellulase onto substrate lignin and increased the accessibility of cellulase to carbohydrate, which was considered to be the key factor for the improvement of substrate enzymatic digestibility.
Collapse
Affiliation(s)
- Mohan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yufeng Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yangsu Zhu
- Centre Testing International Group Co., Ltd., Suzhou 215134, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
24
|
Lee DS, Song Y, Lee YG, Bae HJ. Comparative Evaluation of Adsorption of Major Enzymes in a Cellulase Cocktail Obtained from Trichoderma reesei onto Different Types of Lignin. Polymers (Basel) 2022; 14:polym14010167. [PMID: 35012188 PMCID: PMC8747337 DOI: 10.3390/polym14010167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Cellulase adsorption onto lignin decreases the productivity of enzymatic hydrolysis of lignocellulosic biomass. Here, adsorption of enzymes onto different types of lignin was investigated, and the five major enzymes—cellobiohydrolases (CBHs), endoglucanase (Cel7B), β-glucosidase (Cel3A), xylanase (XYNIV), and mannanase (Man5A)—in a cellulase cocktail obtained from Trichoderma reesei were individually analyzed through SDS-PAGE and zymogram assay. Lignin was isolated from woody (oak and pine lignin) and herbaceous (rice straw and kenaf lignin) plants. The relative adsorption of CBHs compared to the control was in the range of 14.15–18.61%. The carbohydrate binding motif (CBM) of the CBHs contributed to higher adsorption levels in oak and kenaf lignin, compared to those in pine and rice lignin. The adsorption of endoglucanase (Cel7B) by herbaceous plant lignin was two times higher than that of woody lignin, whereas XYNIV showed the opposite pattern. β-glucosidase (Cel3A) displayed the highest and lowest adsorption ratios on rice straw and kenaf lignin, respectively. Mannanase (Man5A) was found to have the lowest adsorption ratio on pine lignin. Our results showed that the hydrophobic properties of CBM and the enzyme structures are key factors in adsorption onto lignin, whereas the properties of specific lignin types indirectly affect adsorption.
Collapse
Affiliation(s)
- Dae-Seok Lee
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-575, Korea; (D.-S.L.); (Y.S.)
| | - Younho Song
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-575, Korea; (D.-S.L.); (Y.S.)
| | - Yoon-Gyo Lee
- Department of Wood Science and Landscape Architecture, Chonnam National University, Gwangju 500-757, Korea;
| | - Hyeun-Jong Bae
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-575, Korea; (D.-S.L.); (Y.S.)
- Department of Bioenergy Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
- Correspondence: ; Tel.: +81-62-530-2097
| |
Collapse
|
25
|
Madadi M, Bakr MM, Abdulkhani A, Zahoor, Asadollahi MA, Sun C, Sun F, Abomohra AEF. Alleviating lignin repolymerization by carbocation scavenger for effective production of fermentable sugars from combined liquid hot water and green-liquor pretreated softwood biomass. ENERGY CONVERSION AND MANAGEMENT 2022; 251:114956. [DOI: 10.1016/j.enconman.2021.114956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
26
|
Sheng Y, Xu Y. Nuclear magnetic resonance analysis of ascorbic acid assisted lignocellulose decomposition in dilute acid pretreatment and its stimulation on enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2022; 343:126147. [PMID: 34673187 DOI: 10.1016/j.biortech.2021.126147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The effect of ascorbic acid addition on lignin decomposition in the dilute acid pretreatment and the corresponding cellulose conversion of pretreated biomass have been studied. This enhancement by ascorbic acid addition was dose dependent. Decomposed and residual bulk lignins from pretreated poplar were analyzed by 2D HSQC and 31P NMR spectra. The promotional effect on lignocellulose decomposition with the assistance of ascorbic acid addition was supported by the NMR analysis. The analysis showed that the addition of ascorbic acid has a more significant stimulation on decomposed lignins compared to residual bulk lignins. The stimulatory effect of ascorbic acid in lignocellulose decomposition benefits the cellulose conversion of the corresponding pretreated materials. Poplar pretreatment assisted with ascorbic acid (2-8% w/w) increased the final hydrolysis yield by 7.5%-32.2%. This promotional effect of ascorbic acid on enzyme digestibility was more obvious with higher enzyme loading.
Collapse
Affiliation(s)
- Yequan Sheng
- Key Laboratory of Forestry Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
27
|
Tang W, Wu X, Huang C, Ling Z, Lai C, Yong Q. Revealing the influence of metallic chlorides pretreatment on chemical structures of lignin and enzymatic hydrolysis of waste wheat straw. BIORESOURCE TECHNOLOGY 2021; 342:125983. [PMID: 34592616 DOI: 10.1016/j.biortech.2021.125983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The addition of various metallic chlorides in pretreatment of lignocellulose have been widely reported to improve cellulose conversion via cellulolytic processing. However, the interaction mechanism between lignin and metallic cations is not well known. In this work, pretreatment with different concentrations of FeCl3 and AlCl3 were performed upon waste wheat straw to enhance enzymatic hydrolysis efficiency. Results showed that pretreatment with FeCl3 and AlCl3 could facilitate the enzymatic hydrolysis efficiency increasing from 50.4% to 82.9% and 76.6%, which was attributed to the enhancement of xylan removal by 33.8% (FeCl3) and 36.5% (AlCl3), respectively. Meanwhile, the surface charge, hydrophobicity, and protein adsorption capacity of lignin from waste wheat straw can be decreased by 3.3 mV, 0.6 L/g, 7.6 mg/g (FeCl3). This was due to the depolymerization of lignin in metallic chlorides pretreatment. These findings will be used to further evaluate the effect of metallic chlorides in biorefinery pretreatment.
Collapse
Affiliation(s)
- Wei Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, Nanjing 210037, People's Republic of China
| | - Xinxing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, Nanjing 210037, People's Republic of China; State Key Laboratory of Pulp Paper Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, Nanjing 210037, People's Republic of China.
| |
Collapse
|
28
|
Martins JP, Figueiredo P, Wang S, Espo E, Celi E, Martins B, Kemell M, Moslova K, Mäkilä E, Salonen J, Kostiainen MA, Celia C, Cerullo V, Viitala T, Sarmento B, Hirvonen J, Santos HA. Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioact Mater 2021; 9:299-315. [PMID: 34820572 PMCID: PMC8586719 DOI: 10.1016/j.bioactmat.2021.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022] Open
Abstract
Oral insulin delivery could change the life of millions of diabetic patients as an effective, safe, easy-to-use, and affordable alternative to insulin injections, known by an inherently thwarted patient compliance. Here, we designed a multistage nanoparticle (NP) system capable of circumventing the biological barriers that lead to poor drug absorption and bioavailability after oral administration. The nanosystem consists of an insulin-loaded porous silicon NP encapsulated into a pH-responsive lignin matrix, and surface-functionalized with the Fc fragment of immunoglobulin G, which acts as a targeting ligand for the neonatal Fc receptor (FcRn). The developed NPs presented small size (211 ± 1 nm) and narrow size distribution. The NPs remained intact in stomach and intestinal pH conditions, releasing the drug exclusively at pH 7.4, which mimics blood circulation. This formulation showed to be highly cytocompatible, and surface plasmon resonance studies demonstrated that FcRn-targeted NPs present higher capacity to interact and being internalized by the Caco-2 cells, which express FcRn, as demonstrated by Western blot. Ultimately, in vitro permeability studies showed that Fc-functionalized NPs induced an increase in the amount of insulin that permeated across a Caco-2/HT29-MTX co-culture model, showing apparent permeability coefficients (Papp) of 2.37 × 10−6 cm/s, over the 1.66 × 10−6 cm/s observed for their non-functionalized counterparts. Overall, these results demonstrate the potential of these NPs for oral delivery of anti-diabetic drugs. Multistage nanoparticle (NP) system targeted for the neonatal Fc receptor (FcRn) aimed at oral insulin delivery. NPs released insulin under precisely controlled pH conditions. FcRn expression in the cell culture model used was demonstrated by Western blot. FcRn-targeted NPs presented higher capacity to interact with the intestinal cells. Increased insulin permeation was obtained when using Fc-functionalized NPs.
Collapse
Affiliation(s)
- João P Martins
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Erika Espo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Elena Celi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.,Department of Pharmacy, University of Chieti - Pescara "G d'Annunzio", I-66100, Chieti, Italy
| | - Beatriz Martins
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, FI-00014, Helsinki, Finland
| | - Karina Moslova
- Department of Chemistry, University of Helsinki, FI-00014, Helsinki, Finland
| | - Ermei Mäkilä
- Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Jarno Salonen
- Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G d'Annunzio", I-66100, Chieti, Italy
| | - Vincenzo Cerullo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, University of Porto, 4200-135, Porto, Portugal.,CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116, Gandra, Portugal
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
29
|
Zheng L, Lu G, Pei W, Yan W, Li Y, Zhang L, Huang C, Jiang Q. Understanding the relationship between the structural properties of lignin and their biological activities. Int J Biol Macromol 2021; 190:291-300. [PMID: 34461157 DOI: 10.1016/j.ijbiomac.2021.08.168] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
Due to the antioxidant properties of lignin, it has been demonstrated as an active substance for treating oxidation-related and inflammatory diseases. However, how the structural properties of lignin affect its biological activities is still ambiguous. In this study, Kraft lignin from wheat straw (KL-A) was used as the raw material to fractionate into three fractions (e.g., KL-B, KL-C, and KL-D) with different molecular weight by ultrafiltration, which possessed different physicochemical properties. The biocompatibility, in vivo and in vitro scavenging abilities for reactive oxygen species (ROS), and anti-apoptotic abilities of the lignin fractions were evaluated using SW1353 chondrocyte cell lines and were quantitatively fitted to their physicochemical properties. The results showed that lignin fractions with lower molecular weights, lower G/S ratios, and higher non-condensed phenolic OH contents endowed lignin with stronger ROS scavenging ability in vivo and in vitro, but was accompanied by increased cytotoxicity to cells. The half maximal inhibitory concentration (IC50) of KL-A, KL-B, KL-C, and KL-D were separately determined as 44.02, 33.43, 32.41, and 18.40 μg/mL. Furthermore, KL-D, with the lowest molecular weight and highest number of functional groups, showed the best antioxidant ability, while it performed poorly in inhibiting cellular apoptosis of chondrocytes. Compared to KL-D, KL-C with inverse structural properties, performed better in anti-apoptosis of SW1353 cells, which is the optimum lignin as promising active substances to be applied in the treatment of osteoarthritis in biomedical engineering.
Collapse
Affiliation(s)
- Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Geng Lu
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenhui Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, PR China
| | - Wenjin Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Yixuan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, PR China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China.
| |
Collapse
|
30
|
Yuan Y, Jiang B, Chen H, Wu W, Wu S, Jin Y, Xiao H. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:205. [PMID: 34670604 PMCID: PMC8527784 DOI: 10.1186/s13068-021-02054-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/10/2021] [Indexed: 05/19/2023]
Abstract
Enzymatic hydrolysis of lignocellulose for bioethanol production shows a great potential to remit the rapid consumption of fossil fuels, given the fact that lignocellulose feedstocks are abundant, cost-efficient, and renewable. Lignin results in low enzymatic saccharification by forming the steric hindrance, non-productive adsorption of cellulase onto lignin, and deactivating the cellulase. In general, the non-productive binding of cellulase on lignin is widely known as the major cause for inhibiting the enzymatic hydrolysis. Pretreatment is an effective way to remove lignin and improve the enzymatic digestibility of lignocellulose. Along with removing lignin, the pretreatment can modify the lignin structure, which significantly affects the non-productive adsorption of cellulase onto lignin. To relieve the inhibitory effect of lignin on enzymatic hydrolysis, enormous efforts have been made to elucidate the correlation of lignin structure with lignin-enzyme interactions but with different views. In addition, contrary to the traditional belief that lignin inhibits enzymatic hydrolysis, in recent years, the addition of water-soluble lignin such as lignosulfonate or low molecular-weight lignin exerts a positive effect on enzymatic hydrolysis, which gives a new insight into the lignin-enzyme interactions. For throwing light on their structure-interaction relationship during enzymatic hydrolysis, the effect of residual lignin in substrate and introduced lignin in hydrolysate on enzymatic hydrolysis are critically reviewed, aiming at realizing the targeted regulation of lignin structure for improving the saccharification of lignocellulose. The review is also focused on exploring the lignin-enzyme interactions to mitigate the negative impact of lignin and reducing the cost of enzymatic hydrolysis of lignocellulose.
Collapse
Affiliation(s)
- Yufeng Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Hui Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
- Laboratory of Wood Chemistry, Nanjing Forestry University, 159 Longpan Rd, Nanjing, 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 11 5A3, Canada
| |
Collapse
|
31
|
Xiong Q, Qiao J, Wang M, Li S, Li X. Carboxylated and quaternized lignin enhanced enzymatic hydrolysis of lignocellulose treated by p-toluenesulfonic acid due to improving enzyme activity. BIORESOURCE TECHNOLOGY 2021; 337:125465. [PMID: 34320745 DOI: 10.1016/j.biortech.2021.125465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Modificated lignins can affect enzymatic hydrolysis efficiency (EHE) because of changing physicochemical properties of lignin. In this study, carboxylated and quaternized lignin (CQL) and hydroxymethylated lignin (HML) were prepared to explore the effect of lignin modification on cellulase adsorption and EHE of p-toluenesulfonic acid treated corn stover (PCS). The results showed that CQL enhanced EHE of PCS due to the higher β-glucosidase (β-GL) activity, resulting from the formation of CQL-β-GL complexes with a lower binding free energy and the improvement of β-GL conformation made by the binding of CQL and β-GL. However, the drop in EHE due to the addition of HML was consequent on β-GL deactivation that was because the binding site of HML and β-GL overlapped with the carbohydrate binding domain of β-GL, causing the decrease in β-GL activity compared with CQL. This study would help deeply elucidate the effect of modified lignins on EHE and cellulase adsorption.
Collapse
Affiliation(s)
- Qiang Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; SDIC Biotech Investment Co., Ltd., Beijing 100034, China
| | - Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Minghui Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China.
| |
Collapse
|
32
|
Zhang L, Feng Y, Li L, Guo X, Du W, Wang S, Xiang J, Cheng P, Tang N. Construction of Magnetic Nanoparticle–Enzyme Complexes with High Loading Efficiency by In Situ Embedding Iron Oxide into Enzymes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Lei Zhang
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Yuanyuan Feng
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Linlin Li
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Xiaofang Guo
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Wei Du
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Songbo Wang
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Jun Xiang
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Penggao Cheng
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Na Tang
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| |
Collapse
|
33
|
Chu Q, Tong W, Chen J, Wu S, Jin Y, Hu J, Song K. Organosolv pretreatment assisted by carbocation scavenger to mitigate surface barrier effect of lignin for improving biomass saccharification and utilization. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:136. [PMID: 34118969 PMCID: PMC8199801 DOI: 10.1186/s13068-021-01988-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/05/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Ethanol organosolv (EOS) pretreatment is one of the most efficient methods for boosting biomass saccharification as it can achieve an efficient fractionation of three major constituents in lignocellulose. However, lignin repolymerization often occurs in acid EOS pretreatment, which impairs subsequent enzymatic hydrolysis. This study investigated acid EOS pretreatment assisted by carbocation scavenger (2-naphthol, 2-naphthol-7-sulfonate, mannitol and syringic acid) to improve biomass fractionation, coproduction of fermentable sugars and lignin adsorbents. In addition, surface barrier effect of lignin on cellulose hydrolysis was isolated from unproductive binding effect of lignin, and the analyses of surface chemistry, surface morphology and surface area were carried out to reveal the lignin inhibition mitigating effect of various additives. RESULTS Four different additives all helped mitigate lignin inhibition on cellulose hydrolysis in particular diminishing surface barrier effect, among which 2-naphthol-7-sulfonate showed the best performance in improving pretreatment efficacy, while mannitol and syringic acid could serve as novel green additives. Through the addition of 2-naphthol-7-sulfonate, selective lignin removal was increased up to 76%, while cellulose hydrolysis yield was improved by 85%. As a result, 35.78 kg cellulose and 16.63 kg hemicellulose from 100 kg poplar could be released and recovered as fermentable sugars, corresponding to a sugar yield of 78%. Moreover, 22.56 kg ethanol organosolv lignin and 17.53 kg enzymatic hydrolysis residue could be recovered as lignin adsorbents for textile dye removal, with the adsorption capacities of 45.87 and 103.09 mg g-1, respectively. CONCLUSIONS Results in this work indicated proper additives could give rise to the form of less repolymerized surface lignin, which would decrease the unproductive binding of cellulase enzymes to surface lignin. Besides, the supplementation of additives (NS, MT and SA) resulted in a simultaneously increased surface area and decreased lignin coverage. All these factors contributed to the diminished surface barrier effect of lignin, thereby improving the ease of enzymatic hydrolysis of cellulose. The biorefinery process based on acidic EOS pretreatment assisted by carbocation scavenger was proved to enable the coproduction of fermentable sugars and lignin adsorbents, allowing the holistic utilization of lignocellulosic biomass for a sustainable biorefinery.
Collapse
Affiliation(s)
- Qiulu Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenyao Tong
- College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Jianqiang Chen
- College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1Z4, Canada
| | - Kai Song
- College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
34
|
Wang J, Xu Y, Meng X, Pu Y, Ragauskas A, Zhang J. Production of xylo-oligosaccharides from poplar by acetic acid pretreatment and its impact on inhibitory effect of poplar lignin. BIORESOURCE TECHNOLOGY 2021; 323:124593. [PMID: 33387707 DOI: 10.1016/j.biortech.2020.124593] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Recently, efficient production of xylo-oligosaccharides (XOS) from poplar by acetic acid (AA) pretreatment was developed; but the effect of residual lignin on subsequent cellulase hydrolysis was unclear. Herein, XOS was produced from poplar by AA pretreatment and the effect of AA pretreatment on lignin inhibition to cellulase hydrolysis was investigated. The results indicated that a high XOS yield of 55.8% was obtained, and the inhibition degree of lignin in poplar increased from 1.0% to 6.8% after AA pretreatment. Lignin was acetylated and its molecular weight decreased from 12,211 to 2871 g/mol after AA pretreatment. The increase of S/G ratio, phenolic hydroxyl, and condensed units of lignin after AA pretreatment might be reasons for this intensified inhibition. The results advanced our understanding of the structural and inhibitory properties of lignin after production of XOS from poplar with AA pretreatment, and provided references for efficient cellulase hydrolysis of poplar after AA pretreatment.
Collapse
Affiliation(s)
- Jinye Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Yunqiao Pu
- Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA; Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China.
| |
Collapse
|
35
|
Zhou Z, Ju X, Chen J, Wang R, Zhong Y, Li L. Charge-oriented strategies of tunable substrate affinity based on cellulase and biomass for improving in situ saccharification: A review. BIORESOURCE TECHNOLOGY 2021; 319:124159. [PMID: 33010717 DOI: 10.1016/j.biortech.2020.124159] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The intrinsic recalcitrance of lignocellulosic biomass makes it resistant to enzymatic hydrolysis. The electron-rich surface of the lignin and cellulose-alike structure of hemicellulose competitively absorb the cellulase. Thus, modifying the surface charge on biomass components to alter cellulase affinity is an urgent requisite. Developing charge tunable cellulase will alter substrate affinity. Also, charge-based immobilization generates controllable substrate affinity. Within immobilized cellulase involved in situ biomass saccharification, charge effects made a crucial contribution. In addition to affecting the interaction between immobilized cellulase and biomass, charge exerts an impact on cellulase to immobilize the materials, further investigation is essential. This study aims to review the charge effects on the cellulase affinity in biomass saccharification, strategies of charge tunable cellulase, and immobilized cellulase, thereby explaining the role of electrostatic interaction. In terms of electrostatic behavior, the pathways and plans to improve in situ biomass saccharification seem to be promising.
Collapse
Affiliation(s)
- Zheng Zhou
- College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xin Ju
- College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jiajia Chen
- College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Rong Wang
- College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yuqing Zhong
- College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Liangzhi Li
- College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
36
|
Wu J, Chandra RP, Takada M, Liu LY, Renneckar S, Kim KH, Kim CS, Saddler JN. Enhancing Enzyme-Mediated Cellulose Hydrolysis by Incorporating Acid Groups Onto the Lignin During Biomass Pretreatment. Front Bioeng Biotechnol 2020; 8:608835. [PMID: 33282856 PMCID: PMC7691530 DOI: 10.3389/fbioe.2020.608835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Lignin is known to limit the enzyme-mediated hydrolysis of biomass by both restricting substrate swelling and binding to the enzymes. Pretreated mechanical pulp (MP) made from Aspen wood chips was incubated with either 16% sodium sulfite or 32% sodium percarbonate to incorporate similar amounts of sulfonic and carboxylic acid groups onto the lignin (60 mmol/kg substrate) present in the pulp without resulting in significant delignification. When Simon's stain was used to assess potential enzyme accessibility to the cellulose, it was apparent that both post-treatments enhanced accessibility and cellulose hydrolysis. To further elucidate how acid group addition might influence potential enzyme binding to lignin, Protease Treated Lignin (PTL) was isolated from the original and modified mechanical pulps and added to a cellulose rich, delignified Kraft pulp. As anticipated, the PTLs from both the oxidized and sulfonated substrates proved less inhibitory and adsorbed less enzymes than did the PTL derived from the original pulp. Subsequent analyses indicated that both the sulfonated and oxidized lignin samples contained less phenolic hydroxyl groups, resulting in enhanced hydrophilicity and a more negative charge which decreased the non-productive binding of the cellulase enzymes to the lignin.
Collapse
Affiliation(s)
- Jie Wu
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Richard P Chandra
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Masatsugu Takada
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada.,International Advanced Energy Science Research and Education Center, Graduate School of Energy Science, Kyoto University, Kyoto, Japan
| | - Li-Yang Liu
- Advanced Renewable Materials Lab, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Scott Renneckar
- Advanced Renewable Materials Lab, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Kwang Ho Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Chang Soo Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jack N Saddler
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Zhang Y, Jiang X, Wan S, Wu W, Wu S, Jin Y. Adsorption behavior of two glucanases on three lignins and the effect by adding sulfonated lignin. J Biotechnol 2020; 323:1-8. [DOI: 10.1016/j.jbiotec.2020.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/03/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
|
38
|
A Study of the Ionic Liquid-Based Ultrasonic-Assisted Extraction of Isoliquiritigenin from Glycyrrhiza uralensis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7102046. [PMID: 33062693 PMCID: PMC7547328 DOI: 10.1155/2020/7102046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/18/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022]
Abstract
We successfully extracted isoliquiritigenin from Glycyrrhiza uralensis through the utilization of an ionic liquid-based ultrasonic-assisted extraction (ILUAE) approach. Briefly, we utilized the solution of 1-butyl-3-methylimidazolium bromide ([BMIM]Br) as solvent and optimized key ILUAE parameters such as solid-liquid ratios, concentrations of ionic liquids, and the times of ultrasonication. Based on a single-factor experiment, we utilized the response surface method (RSM) approach to optimize the extraction procedure. The approach revealed that the optimal energy consumption time was 120 min, with the ultrasonic extraction temperature of 60°C. Using these optimized parameters together with the solid-liquid ratio (dried G. uralensis powder: [BMIM]Br of 0.3 mol/L) of 1 : 16.163 and the [BMIM]Br of 0.3 mol/L, we achieved a 0.665 mg/g extraction yield. Overall, these findings thus indicate that we were able to effectively use ILUAE as an efficient approach to reliably extract isoliquiritigenin in a reproducible and environmentally friendly manner.
Collapse
|
39
|
Tokunaga Y, Nagata T, Kondo K, Katahira M, Watanabe T. NMR elucidation of nonproductive binding sites of lignin models with carbohydrate-binding module of cellobiohydrolase I. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:164. [PMID: 33042221 PMCID: PMC7541279 DOI: 10.1186/s13068-020-01805-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/27/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Highly efficient enzymatic saccharification of pretreated lignocellulose is a key step in achieving lignocellulosic biorefinery. Cellobiohydrolase I (Cel7A) secreted by Trichoderma reesei is an industrially used cellulase that possesses carbohydrate-binding module 1 (TrCBM1) at the C-terminal domain. The nonproductive binding of TrCBM1 to lignin significantly decreases the enzymatic saccharification efficiency and increases the cost of biomass conversion because of the additionally required enzymes. Understanding the interaction mechanism between lignin and TrCBM1 is essential for realizing a cost-effective biofuel production; however, the binding sites in lignin have not been clearly elucidated. RESULTS Three types of 13C-labeled β-O-4 lignin oligomer models were synthesized and characterized. The 2D 1H-13C heteronuclear single-quantum correlation (HSQC) spectra of the 13C-labeled lignin models confirmed that the three types of the 13C labels were correctly incorporated in the (1) aromatic rings and β positions, (2) α positions, and (3) methoxy groups, respectively. The TrCBM1-binding sites in lignin were analyzed by observing NMR chemical shift perturbations (CSPs) using the synthetic 13C-labeled β-O-4 lignin oligomer models. Obvious CSPs were observed in signals from the aromatic regions in oligomers bound to TrCBM1, whereas perturbations in the signals from aliphatic regions and methoxy groups were insignificant. These findings indicated that hydrophobic interactions and π-π stacking were dominating factors in nonproductive binding. The synthetic lignin models have two configurations whose terminal units were differently aligned and donated C(I) and C(II). The C(I) ring showed remarkable perturbation compared with the C(II), which indicated that the binding of TrCBM1 was markedly affected by the configuration of the lignin models. The long-chain lignin models (degree of polymerization (DP) 4.16-4.70) clearly bound to TrCBM1. The interactions of TrCBM1 with the short-chain lignin models (DP 2.64-3.12) were insignificant, indicating that a DP greater than 4 was necessary for TrCBM1 binding. CONCLUSION The CSP analysis using 13C-labeled β-O-4 lignin oligomer models enabled the identification of the TrCBM1 binding sites in lignins at the atomic level. This specific interaction analysis will provide insights for new molecular designs of cellulase having a controlled affinity to cellulose and lignin for a cost-effective biorefinery process.
Collapse
Affiliation(s)
- Yuki Tokunaga
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Takashi Nagata
- Institute of Advanced Energy (IAE), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Keiko Kondo
- Institute of Advanced Energy (IAE), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Masato Katahira
- Institute of Advanced Energy (IAE), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Uji, Kyoto 611-0011 Japan
| |
Collapse
|
40
|
Grossman AB, Rice KC, Vermerris W. Lignin solvated in zwitterionic Good's buffers displays antibacterial synergy against
Staphylococcus aureus
. J Appl Polym Sci 2020. [DOI: 10.1002/app.49107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Adam B. Grossman
- Department of Microbiology & Cell Science IFAS, University of Florida Gainesville Florida, USA
| | - Kelly C. Rice
- Department of Microbiology & Cell Science IFAS, University of Florida Gainesville Florida, USA
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science IFAS, University of Florida Gainesville Florida, USA
- UF Genetics Institute, University of Florida Gainesville Florida
- Florida Center for Renewable Chemicals and Fuels University of Florida Gainesville Florida
| |
Collapse
|
41
|
Zhang H, Zhang J, Xie J, Qin Y. Effects of NaOH-catalyzed organosolv pretreatment and surfactant on the sugar production from sugarcane bagasse. BIORESOURCE TECHNOLOGY 2020; 312:123601. [PMID: 32502887 DOI: 10.1016/j.biortech.2020.123601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
In this study, NaOH-catalyzed organosolv pretreatment with different loading of NaOH (0-10%) was proposed to disrupt the recalcitrant structure by degrading lignin, reserve the majority of cellulose and hemicellulose, and improve the enzymatic efficiency of sugarcane bagasse. It was found that the higher loading of NaOH during organosolv pretreatment yielded more glucose, and the synergistic performance of NaOH and ethanol on enzymolysis was superior to that pretreated with only NaOH and only ethanol during two-step pretreatment. Furthermore, Tween 80 was added to determine its influence on enzymolysis after NaOH-catalyzed organosolv pretreatment, leading to the highest glucose yield of 95.1% at 24 h, which saved 2/3 hydrolysis time while generating the similar glucose yield comparing with that without Tween 80. However, the increased yields of glucose by adding Tween 80 were decreased as hydrolysis time was prolonged from 6 h to 24 h.
Collapse
Affiliation(s)
- Hongdan Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangzhou 510640, PR China.
| | - Jiajie Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, PR China
| | - Jun Xie
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, PR China
| | - Yanlin Qin
- Guangdong University of Technology, School of Chemical Engineering and Light Industry, Guangzhou 510006, PR China.
| |
Collapse
|
42
|
Jain L, Kurmi AK, Kumar A, Narani A, Bhaskar T, Agrawal D. Exploring the flexibility of cellulase cocktail obtained from mutant UV-8 of Talaromyces verruculosus IIPC 324 in depolymerising multiple agro-industrial lignocellulosic feedstocks. Int J Biol Macromol 2020; 154:538-544. [PMID: 32194122 DOI: 10.1016/j.ijbiomac.2020.03.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 03/14/2020] [Indexed: 11/17/2022]
Abstract
Effective management and the valorization of agro-industrial lignocellulosic feedstocks can only be realized if a versatile cellulase cocktail is developed that can release glucose at affordable cost irrespective of biomass type. In the present study the flexibility of using cellulase cocktail obtained from mutant UV-8 of Talaromyces verruculosus IIPC 324 in depolymerizing multiple agro-industrial lignocellulosic feedstocks was explored. Five different dilute acid pretreated biomasses were evaluated and cellulase loading was done at 25 mg protein/g cellulose content. After 72 h of hydrolysis at 55 °C and pH 4.5, corn cob and rice straw emerged as the easiest and toughest substrates with saccharification yield of 83.9 ± 1.17 and 35.5 ± 1.16% respectively from their cellulose fraction. Addition of PEG 6000 could retain >65% of all mono-component enzymes present in cellulase cocktail. Structural elucidation of biomasses gave an insight about key features responsible for variable recalcitrance in the different agro-industrial feedstock. Cellulose hydrolysis showed a significant negative correlation in the order of Cr I > S/G ratio > ash content. The chemical composition of lignin had a major impact on enzyme-lignin interactions. Higher H lignin content and lower S/G ratio promoted enzyme desorption, thereby increasing the likelihood of their recycling and reuse.
Collapse
Affiliation(s)
- Lavika Jain
- Materials Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Akhilesh Kumar Kurmi
- Materials Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India
| | - Avnish Kumar
- Materials Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Anand Narani
- Materials Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Thallada Bhaskar
- Materials Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Deepti Agrawal
- Materials Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India.
| |
Collapse
|
43
|
Walker TW, Kuch N, Vander Meulen KA, Clewett CFM, Huber GW, Fox BG, Dumesic JA. Solid-state NMR studies of solvent-mediated, acid-catalyzed woody biomass pre-treatment for enzymatic conversion of residual cellulose. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:6551-6563. [PMID: 34484989 PMCID: PMC8415743 DOI: 10.1021/acssuschemeng.0c01538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enzymes selectively hydrolyze the carbohydrate fractions of lignocellulosic biomass into corresponding sugars, but these processes are limited by low yields and slow catalytic turnovers. Under certain conditions, the rates and yields of enzymatic sugar production can be increased by pretreating biomass using solvents, heat and dilute acid catalysts. However, the mechanistic details underlying this behavior are not fully elucidated, and designing effective pretreatment strategies remains an empirical challenge. Herein, using a combination of solid-state and high-resolution magic-angle-spinning NMR, infrared spectroscopy and X-ray diffractometry, we show that the extent to which cellulase enzymes are able to hydrolyze solvent-pretreated biomass can be understood in terms of the ability of the solvent to break the chemical linkages between cellulose and non-cellulosic materials in the cell wall. This finding is of general significance to enzymatic biomass conversion research, and implications for designing improved biomass conversion strategies are discussed. These findings demonstrate the utility of solid-state NMR as a tool to elucidate the key chemical and physical changes that occur during the liquid-phase conversion of real biomass.
Collapse
Affiliation(s)
- Theodore W. Walker
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave., Madison, WI, 53726, USA
| | - Nathaniel Kuch
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave., Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison WI, 53706, USA
| | - Kirk A. Vander Meulen
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave., Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison WI, 53706, USA
| | - Catherine F. M. Clewett
- Paul Bender Chemical Instrumentation Center, Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison WI, 53706, USA
| | - George W. Huber
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Brian G. Fox
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave., Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison WI, 53706, USA
| | - James A. Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave., Madison, WI, 53726, USA
| |
Collapse
|
44
|
Wu S, Chen H, Jameel H, Chang HM, Phillips R, Jin Y. Effects of Lignin Contents and Delignification Methods on Enzymatic Saccharification of Loblolly Pine. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hui Chen
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hasan Jameel
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hou-min Chang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Richard Phillips
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
45
|
Takada M, Chandra R, Wu J, Saddler JN. The influence of lignin on the effectiveness of using a chemithermomechanical pulping based process to pretreat softwood chips and pellets prior to enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2020; 302:122895. [PMID: 32019706 DOI: 10.1016/j.biortech.2020.122895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Over the last century the pulp and paper sector has assessed various technologies to fractionate woody biomass to produce strong, bright fibers. Several of these processes have also been assessed for their potential to pretreat and fractionate biomass to enhance the subsequent enzymatic hydrolysis of the cellulosic component. Although many of these pretreatments are effective on agricultural residues, softwoods have proven more recalcitrant, primarily due to their high lignin content and structure. As delignification is too expensive to be used routinely a more economically attractive approach might be to alter the lignin. Recent work has shown that, using a modified chemithermomechanical pulping (CTMP) "front end", lignin can be modified and relocated. This significantly enhanced hemicellulose recovery and enzyme-mediated cellulose hydrolysis of woody biomass. As well as being effective on wood chips, the modified CTMP pretreatment process also enhanced the bioconversion of densified feedstocks such as pellets.
Collapse
Affiliation(s)
- Masatsugu Takada
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver BC V6T 1Z4, Canada
| | - Richard Chandra
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver BC V6T 1Z4, Canada
| | - Jie Wu
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver BC V6T 1Z4, Canada
| | - John N Saddler
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver BC V6T 1Z4, Canada.
| |
Collapse
|
46
|
Yoo CG, Meng X, Pu Y, Ragauskas AJ. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. BIORESOURCE TECHNOLOGY 2020; 301:122784. [PMID: 31980318 DOI: 10.1016/j.biortech.2020.122784] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 05/19/2023]
Abstract
Heterogeneity and rigidity of lignocellulose causing resistance to its deconstruction have provided technical and economic challenges in the current biomass conversion processes. Lignin has been considered as a crucial recalcitrance component in biomass utilization. An in-depth understanding of lignin properties and their influences on biomass conversion can provide clues to improve biomass utilization. Also, utilization of lignin can significantly increase the economic viability of biorefinery. Recent lignin-targeting pretreatments have aimed not only to overcome recalcitrance for biomass conversion but also to selectively fractionate lignin for lignin valorization. Numerous studies have been conducted in biomass characteristics and conversion technologies, and the role of lignin is critical for lignin valorization and biomass pretreatment development. This review provides a comprehensive review of lignin-related biomass characteristics, the impact of lignin on the biological conversion of biomass, and recent lignin-targeting pretreatment strategies. The desired lignin properties in biorefinery and future pretreatment directions are also discussed.
Collapse
Affiliation(s)
- Chang Geun Yoo
- Department of Paper and Bioprocess Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Yunqiao Pu
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Center for Bioenergy Innovation (CBI), Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA; Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Center for Bioenergy Innovation (CBI), Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Department of Forestry, Wildlife and Fisheries, Center of Renewable Carbon, The University of Tennessee, Institute of Agriculture, Knoxville, TN 37996-2200, USA.
| |
Collapse
|
47
|
Xu C, Liu F, Alam MA, Chen H, Zhang Y, Liang C, Xu H, Huang S, Xu J, Wang Z. Comparative study on the properties of lignin isolated from different pretreated sugarcane bagasse and its inhibitory effects on enzymatic hydrolysis. Int J Biol Macromol 2020; 146:132-140. [DOI: 10.1016/j.ijbiomac.2019.12.270] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023]
|
48
|
Optimization of Xylose Recovery in Oil Palm Empty Fruit Bunches for Xylitol Production. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hardest obstacle to make use of lignocellulosic biomass by using green technology is the existence of lignin. It can hinder enzyme reactions with cellulose or hemicellulose as a substrate. Oil palm empty fruit bunches (OPEFBs) consist of hemicellulose with xylan as the main component. Xylitol production via fermentation could use this xylan since it can be converted into xylose. Several pretreatment processes were explored to increase sugar recovery from lignocellulosic biomass. Considering that hemicellulose is more susceptible to heat than cellulose, the hydrothermal process was applied to OPEFB before it was hydrolyzed enzymatically. The purpose of this study was to investigate the effect of temperature, solid loading, and pretreatment time on the OPEFB hydrothermal process. The xylose concentration in OPEFB hydrolysate was analyzed using high-performance liquid chromatography (HPLC). The results indicated that temperature was more important than pretreatment time and solid loading for OPEFB sugar recovery. The optimum temperature, solid loading, and pretreatment time for maximum xylose recovery from pretreated OPEFB were 165 °C, 7%, and 60 min, respectively, giving a xylose recovery of 0.061 g/g of pretreated OPEFB (35% of OPEFB xylan was recovered).
Collapse
|
49
|
Shimizu FL, Zamora HDZ, Schmatz AA, Melati RB, Bueno D, Brienzo M. Biofuels Generation Based on Technical Process and Biomass Quality. CLEAN ENERGY PRODUCTION TECHNOLOGIES 2020. [DOI: 10.1007/978-981-13-8637-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Zheng W, Lan T, Li H, Yue G, Zhou H. Exploring why sodium lignosulfonate influenced enzymatic hydrolysis efficiency of cellulose from the perspective of substrate-enzyme adsorption. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:19. [PMID: 32015757 PMCID: PMC6990501 DOI: 10.1186/s13068-020-1659-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/17/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Cellulase adsorbed on cellulose is productive and helpful to produce reducing sugars in enzymatic hydrolysis of lignocellulose; however, cellulase adsorbed on lignin is non-productive. Increasing productive adsorption of cellulase on cellulose would be beneficial in improving enzymatic hydrolysis. Adding lignin that was more hydrophilic in hydrolysis system could increase productive adsorption and promote hydrolysis. However, the effect mechanism is still worth exploring further. In this study, lignosulfonate (LS), a type of hydrophilic lignin, was used to study its effect on cellulosic hydrolysis. RESULTS The effect of LS on the enzymatic hydrolysis of pure cellulose (Avicel) and lignocellulose [dilute acid (DA) treated sugarcane bagasse (SCB)] was investigated by analyzing enzymatic hydrolysis efficiency, productive and non-productive cellulase adsorptions, zeta potential and particle size distribution of substrates. The result showed that after adding LS, the productive cellulase adsorption on Avicel reduced. Adding LS to Avicel suspension could form the Avicel-LS complexes. The particles were charged more negatively and the average particle size was smaller than Avicel before adding LS. In addition, adding LS to cellulase solution formed the LS-cellulase complexes. For DA-SCB, adding LS decreased the non-productive cellulase adsorption on DA-SCB from 3.92 to 2.99 mg/g lignin and increased the productive adsorption of cellulase on DA-SCB from 2.00 to 3.44 mg/g cellulose. Besides, the addition of LS promoted the formation of LS-lignin complexes and LS-cellulase complexes, and the complexes had more negative charges and smaller average sizes than DA-SCB lignin and cellulase particles before adding LS. CONCLUSIONS In this study, LS inhibited Avicel's hydrolysis, but enhanced DA-SCB's hydrolysis. This stemmed from the fact that LS could bind cellulase and Avicel, and occupied the binding sites of cellulase and Avicel. Thus, a decreased productive adsorption of cellulase on Avicel arose. Regarding DA-SCB, adding LS, which enhanced hydrolysis efficiency of DA-SCB, increased the electrostatic repulsion between DA-SCB lignin and cellulase, and therefore, decreased non-productive adsorption of cellulase on DA-SCB lignin and enhanced productive adsorption of cellulase on DA-SCB cellulose.
Collapse
Affiliation(s)
- Wenqiu Zheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, 727 South Jingming Rd, Chenggong District, Kunming, 650500 China
| | - Tianqing Lan
- Faculty of Agriculture and Food, Kunming University of Science and Technology, 727 South Jingming Rd, Chenggong District, Kunming, 650500 China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, No. 381 Wushan Rd, Guangzhou, 510640 China
| | - Hui Li
- Faculty of Agriculture and Food, Kunming University of Science and Technology, 727 South Jingming Rd, Chenggong District, Kunming, 650500 China
| | - Guojun Yue
- SDIC Biotech Investment CO., LTD, No. 147 Xizhimen Nanxiao Street, Xicheng District, Beijing, 100034 China
| | - Haifeng Zhou
- College of Chemical and Environmental Engineering, Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao, 277590 China
| |
Collapse
|