1
|
Jung YJ, Park KH, Jang TY, Yoo SM. Gene expression regulation by modulating Hfq expression in coordination with tailor-made sRNA-based knockdown in Escherichia coli. J Biotechnol 2024; 388:1-10. [PMID: 38616040 DOI: 10.1016/j.jbiotec.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The tailor-made synthetic sRNA-based gene expression knockdown system has demonstrated its efficacy in achieving pathway balancing in microbes, facilitating precise target gene repression and fine-tuned control of gene expression. This system operates under a competitive mode of gene regulation, wherein the tailor-made synthetic sRNA shares the intrinsic intracellular Hfq protein with other RNAs. The limited intracellular Hfq amount has the potential to become a constraining factor in the post-transcription regulation of sRNAs. To enhance the efficiency of the tailor-made sRNA gene expression regulation platform, we introduced an Hfq expression level modulation-coordinated sRNA-based gene knockdown system. This system comprises tailor-made sRNA expression cassettes that produce varying Hfq expression levels using different strength promoters. Modulating the expression levels of Hfq significantly improved the repressing capacity of sRNA, as evidenced by evaluations with four fluorescence proteins. In order to validate the practical application of this system, we applied the Hfq-modulated sRNA-based gene knockdown cassette to Escherichia coli strains producing 5-aminolevulinic acid and L-tyrosine. Diversifying the expression levels of metabolic enzymes through this cassette resulted in substantial increases of 74.6% in 5-aminolevulinic acid and 144% in L-tyrosine production. Tailor-made synthetic sRNA-based gene expression knockdown system, coupled with Hfq copy modulation, exhibits potential for optimizing metabolic fluxes through biosynthetic pathways, thereby enhancing the production yields of bioproducts.
Collapse
Affiliation(s)
- Yu Jung Jung
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Keun Ha Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae Yeong Jang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Wang L, Wang P, Liu Y, Qi Z, Wang P, Xu S. The HpSGNi system: A compact approach for genetic suppression without sequence limitation in Escherichia coli. J Biotechnol 2024; 379:18-24. [PMID: 38000712 DOI: 10.1016/j.jbiotec.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Targeted gene regulation is indispensable for exploring gene functions in microbes and the development of microbial cell factories. While most loci can be regulated by CRISPRi, it cannot be used for targets lacking protospacer adjacent motifs (PAM) or protospacer flanking sequences (PFS). Here, we characterized a genetic suppression approach named the hpDNA-assisted structure-guided nuclease mediating interference system (HpSGNi). It was composed of a flap endonuclease 1 (FEN1) and mis-hairpin DNA probes (mis-hpDNA) to suppress the expression of target genes simply and efficiently in microbe without sequence restrictions. By inhibiting the initiation and elongation of the transcription, HpSGNi successfully silenced the transcription of exogenous fluorescent protein genes, ampicillin resistance gene and endogenous folP/sulA genes in Escherichia coli BL21(DE3) and K-12 MG1655. Meanwhile, aiming at optimizing the mis-hpDNA, we displayed the characteristics by detecting the tolerance to the single base mismatch and length of the guide sequence. This DNA-guided recognition platform provides a simple approach for selectively inhibiting gene expression.
Collapse
Affiliation(s)
- Liang Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Peiliang Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Liu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Qi
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210000, China
| | - Pei Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Pharmaceutical Animal Experimental Center, China Pharmaceutical University, Nanjing 211198, China.
| | - Shu Xu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Hocq R, Bottone S, Gautier A, Pflügl S. A fluorescent reporter system for anaerobic thermophiles. Front Bioeng Biotechnol 2023; 11:1226889. [PMID: 37476481 PMCID: PMC10355840 DOI: 10.3389/fbioe.2023.1226889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Owing to their inherent capacity to make invisible biological processes visible and quantifiable, fluorescent reporter systems have numerous applications in biotechnology. For classical fluorescent protein systems (i.e., GFP and derivatives), chromophore maturation is O2-dependent, restricting their applications to aerobic organisms. In this work, we pioneered the use of the oxygen-independent system FAST (Fluorescence Activating and absorption Shifting tag) in the thermophilic anaerobe Thermoanaerobacter kivui. We developed a modular cloning system that was used to easily clone a library of FAST expression cassettes in an E. coli-Thermoanaerobacter shuttle plasmid. FAST-mediated fluorescence was then assessed in vivo in T. kivui, and we observed bright green and red fluorescence for cells grown at 55°C. Next, we took advantage of this functional reporter system to characterize a set of homologous and heterologous promoters by quantifying gene expression, expanding the T. kivui genetic toolbox. Low fluorescence at 66°C (Topt for T. kivui) was subsequently investigated at the single-cell level using flow cytometry and attributed to plasmid instability at higher temperatures. Adaptive laboratory evolution circumvented this issue and drastically enhanced fluorescence at 66°C. Whole plasmid sequencing revealed the evolved strain carried functional plasmids truncated at the Gram-positive origin of replication, that could however not be linked to the increased fluorescence displayed by the evolved strain. Collectively, our work demonstrates the applicability of the FAST fluorescent reporter systems to T. kivui, paving the way for further applications in thermophilic anaerobes.
Collapse
Affiliation(s)
- Rémi Hocq
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Sara Bottone
- Laboratoire des Biomolécules (LBM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, École Normale Supérieure, Université PSL, Paris, France
- Institut Universitaire de France, Paris, France
| | - Arnaud Gautier
- Laboratoire des Biomolécules (LBM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, École Normale Supérieure, Université PSL, Paris, France
- Institut Universitaire de France, Paris, France
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
4
|
Tanniche I, Nazem-Bokaee H, Scherr DM, Schlemmer S, Senger RS. A novel synthetic sRNA promoting protein overexpression in cell-free systems. Biotechnol Prog 2023; 39:e3324. [PMID: 36651906 DOI: 10.1002/btpr.3324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/31/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Bacterial small RNAs (sRNAs) that regulate gene expression have been engineered for uses in synthetic biology and metabolic engineering. Here, we designed a novel non-Hfq-dependent sRNA scaffold that uses a modifiable 20 nucleotide antisense binding region to target mRNAs selectively and influence protein expression. The system was developed for regulation of a fluorescent reporter in vivo using Escherichia coli, but the system was found to be more responsive and produced statistically significant results when applied to protein synthesis using in vitro cell-free systems (CFS). Antisense binding sequences were designed to target not only translation initiation regions but various secondary structures in the reporter mRNA. Targeting a high-energy stem loop structure and the 3' end of mRNA yielded protein expression knock-downs that approached 70%. Notably, targeting a low-energy stem structure near a potential RNase E binding site led to a statistically significant 65% increase in protein expression (p < 0.05). These results were not obtainable in vivo, and the underlying mechanism was translated from the reporter system to achieve better than 75% increase in recombinant diaphorase expression in a CFS. It is possible the designs developed here can be applied to improve/regulate expression of other proteins in a CFS.
Collapse
Affiliation(s)
- Imen Tanniche
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
- School of Plant & Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Hadi Nazem-Bokaee
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
- CSIRO, Black Mountain Science & Innovation Park, Canberra, Australia
| | - David M Scherr
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Sara Schlemmer
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Ryan S Senger
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Cho JS, Yang D, Prabowo CPS, Ghiffary MR, Han T, Choi KR, Moon CW, Zhou H, Ryu JY, Kim HU, Lee SY. Targeted and high-throughput gene knockdown in diverse bacteria using synthetic sRNAs. Nat Commun 2023; 14:2359. [PMID: 37095132 PMCID: PMC10126203 DOI: 10.1038/s41467-023-38119-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
Synthetic sRNAs allow knockdown of target genes at translational level, but have been restricted to a limited number of bacteria. Here, we report the development of a broad-host-range synthetic sRNA (BHR-sRNA) platform employing the RoxS scaffold and the Hfq chaperone from Bacillus subtilis. BHR-sRNA is tested in 16 bacterial species including commensal, probiotic, pathogenic, and industrial bacteria, with >50% of target gene knockdown achieved in 12 bacterial species. For medical applications, virulence factors in Staphylococcus epidermidis and Klebsiella pneumoniae are knocked down to mitigate their virulence-associated phenotypes. For metabolic engineering applications, high performance Corynebacterium glutamicum strains capable of producing valerolactam (bulk chemical) and methyl anthranilate (fine chemical) are developed by combinatorial knockdown of target genes. A genome-scale sRNA library covering 2959 C. glutamicum genes is constructed for high-throughput colorimetric screening of indigoidine (natural colorant) overproducers. The BHR-sRNA platform will expedite engineering of diverse bacteria of both industrial and medical interest.
Collapse
Affiliation(s)
- Jae Sung Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02481, Republic of Korea
| | - Cindy Pricilia Surya Prabowo
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Mohammad Rifqi Ghiffary
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST, Daejeon, 34141, Republic of Korea
| | - Taehee Han
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Cheon Woo Moon
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Hengrui Zhou
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Jae Yong Ryu
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- Department of Biotechnology, College of Science and Technology, Duksung Women's University, Seoul, Republic of Korea
| | - Hyun Uk Kim
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Artificial Intelligence, BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Institute for Artificial Intelligence, BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Guo X, Zhang H, Feng J, Yang L, Luo K, Fu H, Wang J. De novo biosynthesis of butyl butyrate in engineered Clostridium tyrobutyricum. Metab Eng 2023; 77:64-75. [PMID: 36948242 DOI: 10.1016/j.ymben.2023.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/24/2023]
Abstract
Butyl butyrate has broad applications in foods, cosmetics, solvents, and biofuels. Microbial synthesis of bio-based butyl butyrate has been regarded as a promising approach recently. Herein, we engineered Clostridium tyrobutyricum ATCC 25755 to achieve de novo biosynthesis of butyl butyrate from fermentable sugars. Through introducing the butanol synthetic pathway (enzyme AdhE2), screening alcohol acyltransferases (AATs), adjusting transcription of VAAT and adhE2 (i.e., optimizing promoter), and efficient supplying butyryl-CoA, an excellent engineered strain, named MUV3, was obtained with ability to produce 4.58 g/L butyl butyrate at 25 °C with glucose in serum bottles. More NADH is needed for butyl butyrate synthesis, thus mannitol (the more reduced substrate) was employed to produce butyl butyrate. Ultimately, 62.59 g/L butyl butyrate with a selectivity of 95.97%, and a yield of 0.21 mol/mol was obtained under mannitol with fed-batch fermentation in a 5 L bioreactor, which is the highest butyl butyrate titer reported so far. Altogether, this study presents an anaerobic fermentative platform for de novo biosynthesis of butyl butyrate in one step, which lays the foundation for butyl butyrate biosynthesis from renewable biomass feedstocks.
Collapse
Affiliation(s)
- Xiaolong Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Huihui Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jun Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Lu Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Kui Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Yeom J, Park JS, Jung SW, Lee S, Kwon H, Yoo SM. High-throughput genetic engineering tools for regulating gene expression in a microbial cell factory. Crit Rev Biotechnol 2023; 43:82-99. [PMID: 34957867 DOI: 10.1080/07388551.2021.2007351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
With the rapid advances in biotechnological tools and strategies, microbial cell factory-constructing strategies have been established for the production of value-added compounds. However, optimizing the tradeoff between the biomass, yield, and titer remains a challenge in microbial production. Gene regulation is necessary to optimize and control metabolic fluxes in microorganisms for high-production performance. Various high-throughput genetic engineering tools have been developed for achieving rational gene regulation and genetic perturbation, diversifying the cellular phenotype and enhancing bioproduction performance. In this paper, we review the current high-throughput genetic engineering tools for gene regulation. In particular, technological approaches used in a diverse range of genetic tools for constructing microbial cell factories are introduced, and representative applications of these tools are presented. Finally, the prospects for high-throughput genetic engineering tools for gene regulation are discussed.
Collapse
Affiliation(s)
- Jinho Yeom
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jong Seong Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Seung-Woon Jung
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Sumin Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Hyukjin Kwon
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Yin G, Peng A, Zhang L, Wang Y, Du G, Chen J, Kang Z. Design of artificial small regulatory trans-RNA for gene knockdown in Bacillus subtilis. Synth Syst Biotechnol 2022; 8:61-68. [DOI: 10.1016/j.synbio.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
|
9
|
Wang LJ, Jiang XR, Hou J, Wang CH, Chen GQ. Engineering Halomonas bluephagenesis via small regulatory RNAs. Metab Eng 2022; 73:58-69. [PMID: 35738548 DOI: 10.1016/j.ymben.2022.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 12/25/2022]
Abstract
Halomonas bluephagenesis, a robust and contamination-resistant microorganism has been developed as a chassis for "Next Generation Industrial Biotechnology". The non-model H. bluephagenesis requires efficient tools to fine-tune its metabolic fluxes for enhanced production phenotypes. Here we report a highly efficient gene expression regulation system (PrrF1-2-HfqPa) in H. bluephagenesis, small regulatory RNA (sRNA) PrrF1 scaffold from Pseudomonas aeruginosa and a target-binding sequence that downregulate gene expression, and its cognate P. aeruginosa Hfq (HfqPa), recruited by the scaffold to facilitate the hybridization of sRNA and the target mRNA. The PrrF1-2-HfqPa system targeting prpC in H. bluephagenesis helps increase 3-hydroxyvalerate fraction in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) to 21 mol% compared to 3.1 mol% of the control. This sRNA system repressed phaP1 and minD simultaneously, resulting in large polyhydroxybutyrate granules. Further, an sRNA library targeting 30 genes was employed for large-scale target identification to increase mevalonate production. This work expands the study on using an sRNA system not based on Escherichia coli MicC/SgrS-Hfq to repress gene expression, providing a framework to exploit new powerful genome engineering tools based on other sRNAs.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Shandong Provincial Research Center for Bioinformatic Engineering and Technology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Xiao-Ran Jiang
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Jie Hou
- Shandong Provincial Research Center for Bioinformatic Engineering and Technology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Cong-Han Wang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Han Y, Li C, Yan Y, Lin M, Ke X, Zhang Y, Zhan Y. Post-transcriptional control of bacterial nitrogen metabolism by regulatory noncoding RNAs. World J Microbiol Biotechnol 2022; 38:126. [PMID: 35666348 PMCID: PMC9170634 DOI: 10.1007/s11274-022-03287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022]
Abstract
Nitrogen metabolism is the most basic process of material and energy metabolism in living organisms, and processes involving the uptake and use of different nitrogen sources are usually tightly regulated at the transcriptional and post-transcriptional levels. Bacterial regulatory noncoding RNAs are novel post-transcriptional regulators that repress or activate the expression of target genes through complementarily pairing with target mRNAs; therefore, these noncoding RNAs play an important regulatory role in many physiological processes, such as bacterial substance metabolism and stress response. In recent years, a study found that noncoding RNAs play a vital role in the post-transcriptional regulation of nitrogen metabolism, which is currently a hot topic in the study of bacterial nitrogen metabolism regulation. In this review, we present an overview of recent advances that increase our understanding on the regulatory roles of bacterial noncoding RNAs and describe in detail how noncoding RNAs regulate biological nitrogen fixation and nitrogen metabolic engineering. Furthermore, our goal is to lay a theoretical foundation for better understanding the molecular mechanisms in bacteria that are involved in environmental adaptations and metabolically-engineered genetic modifications.
Collapse
Affiliation(s)
- Yueyue Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongliang Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiubin Ke
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhua Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China. .,School of Resources and Environment, Anhui Agricultural University, Hefei, China.
| | - Yuhua Zhan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
11
|
Li Y, Mensah EO, Fordjour E, Bai J, Yang Y, Bai Z. Recent advances in high-throughput metabolic engineering: Generation of oligonucleotide-mediated genetic libraries. Biotechnol Adv 2022; 59:107970. [PMID: 35550915 DOI: 10.1016/j.biotechadv.2022.107970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/05/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
The preparation of genetic libraries is an essential step to evolve microorganisms and study genotype-phenotype relationships by high-throughput screening/selection. As the large-scale synthesis of oligonucleotides becomes easy, cheap, and high-throughput, numerous novel strategies have been developed in recent years to construct high-quality oligo-mediated libraries, leveraging state-of-art molecular biology tools for genome editing and gene regulation. This review presents an overview of recent advances in creating and characterizing in vitro and in vivo genetic libraries, based on CRISPR/Cas, regulatory RNAs, and recombineering, primarily for Escherichia coli and Saccharomyces cerevisiae. These libraries' applications in high-throughput metabolic engineering, strain evolution and protein engineering are also discussed.
Collapse
Affiliation(s)
- Ye Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Emmanuel Osei Mensah
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Eric Fordjour
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Bai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yankun Yang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Yeom J, Park JS, Jeon YM, Song BS, Yoo SM. Synthetic fused sRNA for the simultaneous repression of multiple genes. Appl Microbiol Biotechnol 2022; 106:2517-2527. [PMID: 35291022 DOI: 10.1007/s00253-022-11867-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/02/2022]
Abstract
Efficient control over multiple gene expression still presents a major challenge. Synthetic sRNA enables targeted gene expression control in trans without directly modifying the chromosome, but its use to simultaneously target multiple genes can often cause cell growth defects because of the need for additional energy for transcription and lowering of their repression efficiency by limiting the amount of Hfq protein. To address these limitations, we present fusion sRNA (fsRNA) that simultaneously regulates the translation of multiple genes efficiently. It is constructed by linking the mRNA-binding modules for multiple targeted genes in one sRNA scaffold via one-pot generation using overlap extension PCR. The repression capacity of fsRNA was demonstrated by the construction of sRNAs to target four endogenous genes: caiF, hybG, ytfR and minD in Escherichia coli. Their cross-reactivity and the effect on cell growth were also investigated. As practical applications, we applied fsRNA to violacein- and protocatechuic acid-producing strains, resulting in increases of 13% violacein and 81% protocatechuic acid, respectively. The developed fsRNA-mediated multiple gene expression regulation system thus enables rapid and efficient development of optimised cell factories for valuable chemicals without cell growth defects and limiting cellular resources.Key points• Synthetic fusion sRNA (fsRNA)-based system was constructed for the repression of multiple target genes.• fsRNA repressed multiple genes by only expressing a single sRNA while minimising the cellular burden.• The application of fsRNA showed the increased production titers of violacein (13%) and protocatechuic acid (81%).
Collapse
Affiliation(s)
- Jinho Yeom
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jong Seong Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Yong Min Jeon
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Beom Seop Song
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
13
|
Lauro C, Colarusso A, Calvanese M, Parrilli E, Tutino ML. Conditional gene silencing in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Res Microbiol 2022; 173:103939. [DOI: 10.1016/j.resmic.2022.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
14
|
Lee J. Lessons from Clostridial Genetics: Toward Engineering Acetogenic Bacteria. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Joseph RC, Kelley SQ, Kim NM, Sandoval NR. Metabolic Engineering and the Synthetic Biology Toolbox for
Clostridium. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Hu W, Liu S, Wang Z, Chen T. Improving riboflavin production by knocking down ribF, purA and guaC genes using synthetic regulatory small RNA. J Biotechnol 2021; 336:25-29. [PMID: 34087245 DOI: 10.1016/j.jbiotec.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022]
Abstract
Riboflavin is a commercially important compound in the food, pharmaceutical, chemical, and cosmetic industries. The down-regulation of expression levels of ribF, purA and guaC genes involved in the downstream or branch reactions of riboflavin biosynthesis pathway could direct more carbon flux to riboflavin accumulation. In this study, we made an attempt to fine-tune the expression levels of the 3 genes by using synthetic regulatory small RNA to enhance riboflavin production in Escherichia coli. Firstly, each of the 3 genes was knocking down by using 5 different sRNAs, respectively, and a highest increase of 50.2 % in riboflavin titer was achieved by using anti-ribF5 sRNA. Then this sRNA was further co-expressed with 5 anti-purA and 5 anti-guaC sRNAs to simultaneously knocking down 2 or 3 genes. Co-expression of anti-ribF5 and anti-guaC3 led to the highest riboflavin production of 1091.3 mg/L, which was further increased by 97.6 % compared to the base strain. Finally, the expression levels of anti-ribF5 and anti-guaC3 were further fine-tuned by using 4 different promoters. The best strain WY40, in which the two sRNAs were respectively expressed by PJ23100 and PJ23107 promoter, produced 1454.5 mg/L riboflavin with an increase of 163.4 % compared to the base strain. To our knowledge, it's the first study to enhance riboflavin synthesis by simultaneously regulating the expression levels of ribF, purA and guaC genes, which led to a highest yield of 0.147 g/g glucose among all reported riboflavin-producing strains.
Collapse
Affiliation(s)
- Wenya Hu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Shuang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Zhiwen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.
| |
Collapse
|
17
|
Zhu LP, Song SZ, Yang S. Gene repression using synthetic small regulatory RNA in Methylorubrum extorquens. J Appl Microbiol 2021; 131:2861-2875. [PMID: 34021964 DOI: 10.1111/jam.15159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
AIM Genetic tools are a prerequisite for engineering cell factories for synthetic biology and biotechnology. Methylorubrum extorquens is an important platform for a future one-carbon (C1) bioeconomy, but its application is currently limited by the availability of genetic tools. Small regulatory RNA (sRNA) is an important regulatory factor in bacteria and has been applied for gene repression in several strains. This study aimed to construct a synthetic sRNA system based on the MicC scaffold and the chaperone Hfq to control gene expression in M. extorquens. METHODS AND RESULTS Initially, the exogenous lacZ gene was transposed into the M. extorquens chromosome as a reporter, and corresponding β-galactosidase was measured to assess the knockdown efficiency of lacZ. A synthetic sRNA containing a 24-nt antisense RNA targeting lacZ and an Escherichia coli MicC scaffold were constructed, and different Hfqs from E. coli, M. extorquens AM1 and PA1 were further identified. The results showed that the expression of endogenous hfqs from the chromosome in M. extorquens strains was inadequate, and only when it was overexpressed via the plasmid did the colonies show a colour change and a corresponding decrease in β-galactosidase expression. More specifically, M. extorquens strains with overexpressing their own Hfq showed the best gene repression efficiency. Furthermore, this E. coli MicC scaffold and AM1 Hfq system were combined to knock down crtI gene expression in AM1, leading to an 86% decrease in carotenoid production (0·09 mg g-1 ) compared to that (0·65 mg g-1 ) in the wild-type strain. CONCLUSION A functional synthetic sRNA system combined with E. coli MicC and endogenous Hfq was constructed in M. extorquens strains, which was able to interfere with the target crtI gene and reduce carotenoid production. SIGNIFICANCE AND IMPACT OF THE STUDY The synthetic sRNA system reported in this study provides a genetic tool for the manipulation of M. extorquens. The present findings might be helpful for achieving high-throughput gene knockdown expression.
Collapse
Affiliation(s)
- L-P Zhu
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, and School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - S-Z Song
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, and School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - S Yang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, and School of Life Sciences, Qingdao Agricultural University, Qingdao, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
18
|
Designing and Constructing Artificial Small RNAs for Gene Regulation and Carbon Flux Redirection in Photosynthetic Cyanobacteria. Methods Mol Biol 2021. [PMID: 34009594 DOI: 10.1007/978-1-0716-1323-8_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Photosynthetic cyanobacteria are not only model organisms for studying photosynthesis and biological cycling of carbon in biosphere but also potential "green microbial factories" to produce renewable fuels and chemicals, due to their capability to utilizing solar energy and CO2. Therefore, strategies for gene regulation and carbon flux redirection are important for both fundamental research and metabolic engineering of cyanobacteria. To address the challenges, regulatory tools based on artificial small RNAs have been developed with satisfactory effects for single or multiple gene(s) regulation in various cyanobacterial species. When combined with the promoters of varying gradient strength and the inducible switches developed in recent years, it is now feasible to realize precise gene regulation in photosynthetic cyanobacteria for producing fuels and chemicals. Here in this chapter, we provide a detailed introduction of the design principles and constructing methods of the artificial sRNA tools to achieve accurate inducible regulation of cyanobacterial gene(s).
Collapse
|
19
|
Recent advances in tuning the expression and regulation of genes for constructing microbial cell factories. Biotechnol Adv 2021; 50:107767. [PMID: 33974979 DOI: 10.1016/j.biotechadv.2021.107767] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
To overcome environmental problems caused by the use of fossil resources, microbial cell factories have become a promising technique for the sustainable and eco-friendly development of valuable products from renewable resources. Constructing microbial cell factories with high titers, yields, and productivity requires a balance between growth and production; to this end, tuning gene expression and regulation is necessary to optimise and precisely control complicated metabolic fluxes. In this article, we review the current trends and advances in tuning gene expression and regulation and consider their engineering at each of the three stages of gene regulation: genomic, mRNA, and protein. In particular, the technological approaches utilised in a diverse range of genetic-engineering-based tools for the construction of microbial cell factories are reviewed and representative applications of these strategies are presented. Finally, the prospects for strategies and systems for tuning gene expression and regulation are discussed.
Collapse
|
20
|
Fujita S, Tsumori Y, Makino Y, Saito M, Kawano M. Development of multiplexing gene silencing system using conditionally induced polycistronic synthetic antisense RNAs in Escherichia coli. Biochem Biophys Res Commun 2021; 556:163-170. [PMID: 33845307 DOI: 10.1016/j.bbrc.2021.03.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022]
Abstract
Although efficient methods of gene silencing have been established in eukaryotes, many different techniques are still used in bacteria due to the lack of a standardized tool. Here, we developed a convenient and efficient method to downregulate the expression of a specific gene using ∼140 nucleotide RNA with a 24-nucleotide antisense region from an arabinose-inducible expression plasmid by taking Escherichia coli lacZ and phoA genes encoding β-galactosidase and alkaline phosphatase, respectively, as target genes to evaluate the model. We examined the antisense RNA (asRNA) design, including targeting position, uORF stability elements at the 5'-end, and Hfq-binding module at the 3'-end, and inducer amount required to obtain effective experimental conditions for gene silencing. Furthermore, we constructed multiplexed dual-acting asRNA genes in the plasmid, which were transcribed as polycistronic RNA and were able to knockdown multiple target genes simultaneously. We observed the highest inhibition level of 98.6% when lacZ was targeted using the pMKN104 asRNA expression plasmid, containing a five times stronger PBAD -10 promoter sequence with no requirement of the Hfq protein for repression. These features allow the system to be utilized as an asRNA expression platform in many bacteria, besides E. coli, for gene regulation.
Collapse
Affiliation(s)
- Shouta Fujita
- Laboratory of Gene Regulation Study, Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Yutaka Tsumori
- Laboratory of Gene Regulation Study, Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Yuko Makino
- Laboratory of Gene Regulation Study, Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Mineki Saito
- Department of Microbiology, Kawasaki Medical School, Kurashiki, Japan
| | - Mitsuoki Kawano
- Department of Human Nutrition, Faculty of Contemporary Life Science, Chugokugakuen University, Okayama, Japan.
| |
Collapse
|
21
|
Martin-Pascual M, Batianis C, Bruinsma L, Asin-Garcia E, Garcia-Morales L, Weusthuis RA, van Kranenburg R, Martins Dos Santos VAP. A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnol Adv 2021; 49:107732. [PMID: 33785373 DOI: 10.1016/j.biotechadv.2021.107732] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
Pseudomonas putida is a microbial chassis of huge potential for industrial and environmental biotechnology, owing to its remarkable metabolic versatility and ability to sustain difficult redox reactions and operational stresses, among other attractive characteristics. A wealth of genetic and in silico tools have been developed to enable the unravelling of its physiology and improvement of its performance. However, the rise of this microbe as a promising platform for biotechnological applications has resulted in diversification of tools and methods rather than standardization and convergence. As a consequence, multiple tools for the same purpose have been generated, whilst most of them have not been embraced by the scientific community, which has led to compartmentalization and inefficient use of resources. Inspired by this and by the substantial increase in popularity of P. putida, we aim herein to bring together and assess all currently available (wet and dry) synthetic biology tools specific for this microbe, focusing on the last 5 years. We provide information on the principles, functionality, advantages and limitations, with special focus on their use in metabolic engineering. Additionally, we compare the tool portfolio for P. putida with those for other bacterial chassis and discuss potential future directions for tool development. Therefore, this review is intended as a reference guide for experts and new 'users' of this promising chassis.
Collapse
Affiliation(s)
- Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Luis Garcia-Morales
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard van Kranenburg
- Corbion, Gorinchem 4206 AC, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands; LifeGlimmer GmbH, Berlin 12163, Germany.
| |
Collapse
|
22
|
Bourgade B, Minton NP, Islam MA. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms. FEMS Microbiol Rev 2021; 45:fuab008. [PMID: 33595667 PMCID: PMC8351756 DOI: 10.1093/femsre/fuab008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Unabated mining and utilisation of petroleum and petroleum resources and their conversion to essential fuels and chemicals have drastic environmental consequences, contributing to global warming and climate change. In addition, fossil fuels are finite resources, with a fast-approaching shortage. Accordingly, research efforts are increasingly focusing on developing sustainable alternatives for chemicals and fuels production. In this context, bioprocesses, relying on microorganisms, have gained particular interest. For example, acetogens use the Wood-Ljungdahl pathway to grow on single carbon C1-gases (CO2 and CO) as their sole carbon source and produce valuable products such as acetate or ethanol. These autotrophs can, therefore, be exploited for large-scale fermentation processes to produce industrially relevant chemicals from abundant greenhouse gases. In addition, genetic tools have recently been developed to improve these chassis organisms through synthetic biology approaches. This review will focus on the challenges of genetically and metabolically modifying acetogens. It will first discuss the physical and biochemical obstacles complicating successful DNA transfer in these organisms. Current genetic tools developed for several acetogens, crucial for strain engineering to consolidate and expand their catalogue of products, will then be described. Recent tool applications for metabolic engineering purposes to allow redirection of metabolic fluxes or production of non-native compounds will lastly be covered.
Collapse
Affiliation(s)
- Barbara Bourgade
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, University of Nottingham, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
23
|
Synthetic small regulatory RNAs in microbial metabolic engineering. Appl Microbiol Biotechnol 2020; 105:1-12. [PMID: 33201273 DOI: 10.1007/s00253-020-10971-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Small regulatory RNAs (sRNAs) finely control gene expression in prokaryotes and synthetic sRNA has become a useful high-throughput approach to tackle current challenges in metabolic engineering because of its many advantages compared to conventional gene knockouts. In this review, we first focus on the modular structures of sRNAs and rational design strategies of synthetic sRNAs on the basis of their modular structures. The wide applications of synthetic sRNAs in bacterial metabolic engineering, with or without the aid of heterogeneously expressed Hfq protein, were also covered. In addition, we give attention to the improvements in implementing synthetic sRNAs, which make the synthetic sRNA strategy universally applicable in metabolic engineering and synthetic biology. KEY POINTS: • Synthetic sRNAs can be rationally designed based on modular structures of natural sRNAs. • Synthetic sRNAs were widely used for metabolic engineering in various microorganisms. • Several technological improvements made the synthetic sRNA strategy more applicable.
Collapse
|
24
|
Charubin K, Streett H, Papoutsakis ET. Development of Strong Anaerobic Fluorescent Reporters for Clostridium acetobutylicum and Clostridium ljungdahlii Using HaloTag and SNAP-tag Proteins. Appl Environ Microbiol 2020; 86:e01271-20. [PMID: 32769192 PMCID: PMC7531948 DOI: 10.1128/aem.01271-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
One of the biggest limitations in the study and engineering of anaerobic Clostridium organisms is the lack of strong fluorescent reporters capable of strong and real-time fluorescence. Recently, we developed a strong fluorescent reporter system for Clostridium organisms based on the FAST protein. Here, we report the development of two new strong fluorescent reporter systems for Clostridium organisms based on the HaloTag and SNAP-tag proteins, which produce strong fluorescent signals when covalently bound to fluorogenic ligands. These new fluorescent reporters are orthogonal to the FAST ligands and to each other, allowing for simultaneous labeling and visualization. We used HaloTag and SNAP-tag to label the strictly anaerobic organisms Clostridium acetobutylicum and Clostridium ljungdahlii We have also identified a new strong promoter for protein expression in C. acetobutylicum, based on the phosphotransacetylase gene (pta) from C. ljungdahlii Furthermore, the HaloTag and the SNAP-tag, in combination with the previously described FAST system, were successfully used to measure cell populations in bacterial mixed cultures and showed the simultaneous orthogonal labeling of HaloTag and SNAP-tag together with the FAST protein reporter. Finally, we show the expression of recombinant fusion protein of FAST and the ZapA division protein (from C. acetobutylicum) in C. ljungdahlii. The availability of multiple strong fluorescent reporters is a major addition to the genetic toolkit of Clostridium and other anaerobes that will lead to better understanding of these unique organisms.IMPORTANCE Up to this point, assays and methods involving fluorescent reporter proteins were unavailable or limited in Clostridium organisms and other strict anaerobes. Green fluorescent protein (GFP), mCherry, and flavin-binding proteins (and their derivatives) have been used only in a few clostridia with limited success and yielded low fluorescence compared to aerobic microbial systems. Recently, we reported a new strong fluorescent reporter system based on the FAST protein as a first step in expanding the fluorescence-based reporters for Clostridium and other anaerobic microbial platforms. Additional strong orthogonal fluorescent proteins, with distinct emission spectra are needed to allow for (i) multispecies tracking within the growing field of microbial cocultures and microbiomes, (ii) protein localization and tracking in anaerobes, and (iii) identification and development of natural and synthetic promoters, ribosome-binding sites (RBS), and terminators for optimal protein expression in anaerobes. Here, we present two new strong fluorescent reporter systems based on the HaloTag and SNAP-tag proteins.
Collapse
Affiliation(s)
- Kamil Charubin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Hannah Streett
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
25
|
Xu G, Xiao L, Wu A, Han R, Ni Y. Enhancing n-Butanol Tolerance of Escherichia coli by Overexpressing of Stress-Responsive Molecular Chaperones. Appl Biochem Biotechnol 2020; 193:257-270. [PMID: 32929579 DOI: 10.1007/s12010-020-03417-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Microbial tolerance to organic solvents is critical for efficient production of biofuels. In this study, n-butanol tolerance of Escherichia coli JM109 was improved by overexpressing of genes encoding stress-responsive small RNA-regulator, RNA chaperone, and molecular chaperone. Gene rpoS, coding for sigma S subunit of RNA polymerase, was the most efficient in improving n-butanol tolerance of E. coli. The highest OD600 and the specific growth rate of JM109/pQE80L-rpoS reached 1.692 and 0.144 h-1 respectively at 1.0% (v/v) n-butanol. Double and triple expression of molecular chaperones rpoS, secB, and groS were conducted and optimized. Recombinant strains JM109/pQE80L-secB-rpoS and JM109/pQE80L-groS-secB-rpoS exhibited the highest n-butanol tolerance, with specific growth rates of 0.164 and 0.165 h-1, respectively. Membrane integrity, potentials, and cell morphology analyses demonstrated the high viability of JM109/pQE80L-groS-secB-rpoS. This study provides guidance on employing various molecular chaperones for enhancing the tolerance of E. coli against n-butanol.
Collapse
Affiliation(s)
- Guochao Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lin Xiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Anning Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ruizhi Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
26
|
Morphology engineering: a new strategy to construct microbial cell factories. World J Microbiol Biotechnol 2020; 36:127. [PMID: 32712725 DOI: 10.1007/s11274-020-02903-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Currently, synthetic biology approaches have been developed for constructing microbial cell factories capable of efficient synthesis of high value-added products. Most studies have focused on the construction of novel biosynthetic pathways and their regulatory processes. Morphology engineering has recently been proposed as a novel strategy for constructing efficient microbial cell factories, which aims at controlling cell shape and cell division pattern by manipulating the cell morphology-related genes. Morphology engineering strategies have been exploited for improving bacterial growth rate, enlarging cell volume and simplifying downstream separation. This mini-review summarizes cell morphology-related proteins and their function, current advances in manipulation tools and strategies of morphology engineering, and practical applications of morphology engineering for enhanced production of intracellular product polyhydroxyalkanoate and extracellular products. Furthermore, current limitations and the future development direction using morphology engineering are proposed.
Collapse
|
27
|
The Small RNA sr8384 Is a Crucial Regulator of Cell Growth in Solventogenic Clostridia. Appl Environ Microbiol 2020; 86:AEM.00665-20. [PMID: 32358006 DOI: 10.1128/aem.00665-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
Small RNAs (sRNAs) are crucial regulatory molecules in organisms and are well-known not only for their roles in the control of diverse crucial biological processes but also for their value in regulation rewiring. However, to date, in Gram-positive anaerobic solventogenic clostridia (a group of important industrial bacteria with exceptional substrate and product diversity), sRNAs remain minimally explored, and thus there is a lack of detailed understanding regarding these important molecules and their use as targets for genetic improvement. Here, we performed large-scale phenotypic screens of a transposon-mediated mutant library of Clostridium acetobutylicum, a typical solventogenic clostridial species, and discovered a novel sRNA (sr8384) that functions as a crucial regulator of cell growth. Comparative transcriptomic data combined with genetic and biochemical analyses revealed that sr8384 acts as a pleiotropic regulator and controls multiple targets that are associated with crucial biological processes through direct or indirect interactions. Notably, the in vivo expression level of sr8384 determined the cell growth rate, thereby affecting the solvent titer and productivity. These findings indicate the importance of the sr8384-mediated regulatory network in C. acetobutylicum Furthermore, a homolog of sr8384 was discovered and proven to be functional in another important Clostridium species, C. beijerinckii, suggesting the potential broad role of this sRNA in clostridia. Our work showcases a previously unknown potent and complex role of sRNAs in clostridia, providing new opportunities for understanding and engineering these anaerobes.IMPORTANCE The uses of sRNAs as new resources for functional studies and strain modifications are promising strategies in microorganisms. However, these crucial regulatory molecules have hardly been explored in industrially important solventogenic clostridia. Here, we identified sr8384 as a novel determinant sRNA controlling the cell growth of solventogenic Clostridium acetobutylicum Based on a detailed functional analysis, we further reveal the pleiotropic function of sr8384 and its multiple direct and indirect crucial targets, which represents a valuable source for understanding and optimizing this anaerobe. Of note, manipulation of this sRNA achieves improved cell growth and solvent synthesis. Our findings provide a new perspective for future studies on regulatory sRNAs in clostridia.
Collapse
|
28
|
Li N, Zeng W, Xu S, Zhou J. Toward fine-tuned metabolic networks in industrial microorganisms. Synth Syst Biotechnol 2020; 5:81-91. [PMID: 32542205 PMCID: PMC7283098 DOI: 10.1016/j.synbio.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
There are numerous microorganisms in nature capable of synthesizing diverse useful compounds; however, these natural microorganisms are generally inefficient in the production of target products on an industrial scale, relative to either chemical synthesis or extraction methods. To achieve industrial production of useful compounds, these natural microorganisms must undergo a certain degree of mutation or effective fine-tuning strategies. This review describes how to achieve an ideal metabolic fine-tuned process, including static control strategies and dynamic control strategies. The static control strategies mainly focus on various matabolic engineering strategies, including protein engineering, upregulation/downregulation, and combinatrorial control of these metabolic engineering strategies, to enhance the flexibility of their application in fine-tuned metabolic metworks. Then, we focus on the dynamic control strategies for fine-tuned metabolic metworks. The design principles derived would guide us to construct microbial cell factories for various useful compounds.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
29
|
Wu Y, Wang Z, Xin X, Bai F, Xue C. Synergetic Engineering of Central Carbon, Energy, and Redox Metabolisms for High Butanol Production and Productivity by Clostridium acetobutylicum. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Youduo Wu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian 116024, China
| | - Zhenzhong Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xin Xin
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
30
|
Kwon SW, Paari KA, Malaviya A, Jang YS. Synthetic Biology Tools for Genome and Transcriptome Engineering of Solventogenic Clostridium. Front Bioeng Biotechnol 2020; 8:282. [PMID: 32363182 PMCID: PMC7181999 DOI: 10.3389/fbioe.2020.00282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Strains of Clostridium genus are used for production of various value-added products including fuels and chemicals. Development of any commercially viable production process requires a combination of both strain and fermentation process development strategies. The strain development in Clostridium sp. could be achieved by random mutagenesis, and targeted gene alteration methods. However, strain improvement in Clostridium sp. by targeted gene alteration method was challenging due to the lack of efficient tools for genome and transcriptome engineering in this organism. Recently, various synthetic biology tools have been developed to facilitate the strain engineering of solventogenic Clostridium. In this review, we consolidated the recent advancements in toolbox development for genome and transcriptome engineering in solventogenic Clostridium. Here we reviewed the genome-engineering tools employing mobile group II intron, pyrE alleles exchange, and CRISPR/Cas9 with their application for strain development of Clostridium sp. Next, transcriptome engineering tools such as untranslated region (UTR) engineering and synthetic sRNA techniques were also discussed in context of Clostridium strain engineering. Application of any of these discussed techniques will facilitate the metabolic engineering of clostridia for development of improved strains with respect to requisite functional attributes. This might lead to the development of an economically viable butanol production process with improved titer, yield and productivity.
Collapse
Affiliation(s)
- Seong Woo Kwon
- Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science (BK21 Plus Program), Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | | | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory (AIBL), Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, India
| | - Yu-Sin Jang
- Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science (BK21 Plus Program), Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
31
|
Li S, Huang L, Ke C, Pang Z, Liu L. Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:39. [PMID: 32165923 PMCID: PMC7060580 DOI: 10.1186/s13068-020-01674-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 06/01/2023]
Abstract
The global energy crisis and limited supply of petroleum fuels have rekindled the interest in utilizing a sustainable biomass to produce biofuel. Butanol, an advanced biofuel, is a superior renewable resource as it has a high energy content and is less hygroscopic than other candidates. At present, the biobutanol route, employing acetone-butanol-ethanol (ABE) fermentation in Clostridium species, is not economically competitive due to the high cost of feedstocks, low butanol titer, and product inhibition. Based on an analysis of the physiological characteristics of solventogenic clostridia, current advances that enhance ABE fermentation from strain improvement to product separation were systematically reviewed, focusing on: (1) elucidating the metabolic pathway and regulation mechanism of butanol synthesis; (2) enhancing cellular performance and robustness through metabolic engineering, and (3) optimizing the process of ABE fermentation. Finally, perspectives on engineering and exploiting clostridia as cell factories to efficiently produce various chemicals and materials are also discussed.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Chengzhu Ke
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Zongwen Pang
- College of Life Science and Technology, Guangxi University, Nanning, 530005 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
32
|
Wen Z, Lu M, Ledesma-Amaro R, Li Q, Jin M, Yang S. TargeTron Technology Applicable in Solventogenic Clostridia: Revisiting 12 Years' Advances. Biotechnol J 2019; 15:e1900284. [PMID: 31475782 DOI: 10.1002/biot.201900284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/20/2019] [Indexed: 12/11/2022]
Abstract
Clostridium has great potential in industrial application and medical research. But low DNA repair capacity and plasmids transformation efficiency severely delay development and application of genetic tools based on homologous recombination (HR). TargeTron is a gene editing technique dependent on the mobility of group II introns, rather than homologous recombination, which makes it very suitable for gene disruption of Clostridium. The application of TargeTron technology in solventogenic Clostridium is academically reported in 2007 and this tool has been introduced in various clostridia as it is easy to operate, time saving, and reliable. TargeTron has made great progress in solventogenic Clostridium in the aspects of acetone-butanol-ethanol (ABE) fermentation pathway modification, important functional genes identification, and xylose metabolic pathway analysis and reconstruction. In the review, 12 years' advances of TargeTron technology applicable in solventogenic Clostridium, including its principle, technical characteristics, application, and efforts to expand its capabilities, or to avoid potential drawbacks, are revisisted. Some other technologies as putative competitors or collaborators are also discussed. It is believed that TargeTron combined with CRISPR/Cas-assisted gene/base editing and gene-expression regulation system will make a better future for clostridial genetic modification.
Collapse
Affiliation(s)
- Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | | | - Qi Li
- College of Life Sciences, Sichuan Normal University, Longquan, Chengdu, 610101, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Zhejiang, 313000, China
| |
Collapse
|
33
|
Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering. Trends Biotechnol 2019; 37:817-837. [DOI: 10.1016/j.tibtech.2019.01.003] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 12/12/2022]
|
34
|
Wang F, Wang L, Zou X, Duan S, Li Z, Deng Z, Luo J, Lee SY, Chen S. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol Adv 2019; 37:708-729. [PMID: 30926472 DOI: 10.1016/j.biotechadv.2019.03.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, especially type II (Cas9) systems, have been widely used in gene/genome targeting. Modifications of Cas9 enable these systems to become platforms for precise DNA manipulations. However, the utilization of CRISPR-Cas systems in RNA targeting remains preliminary. The discovery of type VI CRISPR-Cas systems (Cas13) shed light on RNA-guided RNA targeting. Cas13d, the smallest Cas13 protein, with a length of only ~930 amino acids, is a promising platform for RNA targeting compatible with viral delivery systems. Much effort has also been made to develop Cas9, Cas13a and Cas13b applications for RNA-guided RNA targeting. The discovery of new RNA-targeting CRISPR-Cas systems as well as the development of RNA-targeting platforms with Cas9 and Cas13 will promote RNA-targeting technology substantially. Here, we review new advances in RNA-targeting CRISPR-Cas systems as well as advances in applications of these systems in RNA targeting, tracking and editing. We also compare these Cas protein-based technologies with traditional technologies for RNA targeting, tracking and editing. Finally, we discuss remaining questions and prospects for the future.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Xuan Zou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea
| | - Suling Duan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Jie Luo
- Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea.
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| |
Collapse
|
35
|
Metabolic engineering of Corynebacterium glutamicum by synthetic small regulatory RNAs. ACTA ACUST UNITED AC 2019; 46:203-208. [DOI: 10.1007/s10295-018-02128-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/19/2018] [Indexed: 02/02/2023]
Abstract
Abstract
Corynebacterium glutamicum is an important platform strain that is wildly used in industrial production of amino acids and various other biochemicals. However, due to good genomic stability, C. glutamicum is more difficult to engineer than genetically tractable hosts. Herein, a synthetic small regulatory RNA (sRNA)-based gene knockdown strategy was developed for C. glutamicum. The RNA chaperone Hfq from Escherichia coli and a rationally designed sRNA consisting of the E. coli MicC scaffold and a target binding site were proven to be indispensable for repressing green fluorescent protein expression in C. glutamicum. The synthetic sRNA system was applied to improve glutamate production through knockdown of pyk, ldhA, and odhA, resulting almost a threefold increase in glutamate titer and yield. Gene transcription and enzyme activity were down-regulated by up to 80%. The synthetic sRNA system developed holds promise to accelerate C. glutamicum metabolic engineering for producing valuable chemicals and fuels.
Collapse
|
36
|
Abstract
Renewable biofuel represents one of the answers to solving the energy crisis and climate change problems. Butanol produced naturally by clostridia has superior liquid fuel characteristics and thus has the potential to replace gasoline. Due to the lack of efficient genetic manipulation tools, however, clostridial strain improvement has been slower than improvement of other microorganisms. Furthermore, fermentation coproducing various by-products requires costly downstream processing for butanol purification. Here, we report the results of enzyme engineering of aldehyde/alcohol dehydrogenase (AAD) to increase butanol selectivity. A metabolically engineered Clostridium acetobutylicum strain expressing the engineered aldehyde/alcohol dehydrogenase gene was capable of producing butanol at a high level of selectivity. Butanol production by Clostridium acetobutylicum is accompanied by coproduction of acetone and ethanol, which reduces the yield of butanol and increases the production cost. Here, we report development of several clostridial aldehyde/alcohol dehydrogenase (AAD) variants showing increased butanol selectivity by a series of design and analysis procedures, including random mutagenesis, substrate specificity feature analysis, and structure-based butanol selectivity design. The butanol/ethanol ratios (B/E ratios) were dramatically increased to 17.47 and 15.91 g butanol/g ethanol for AADF716L and AADN655H, respectively, which are 5.8-fold and 5.3-fold higher than the ratios obtained with the wild-type AAD. The much-increased B/E ratio obtained was due to the dramatic reduction in ethanol production (0.59 ± 0.01 g/liter) that resulted from engineering the substrate binding chamber and the active site of AAD. This protein design strategy can be applied generally for engineering enzymes to alter substrate selectivity.
Collapse
|
37
|
Abstract
In bacteria and archaea, small RNAs (sRNAs) regulate complex networks through antisense interactions with target mRNAs in trans, and riboswitches regulate gene expression in cis based on the ability to bind small-molecule ligands. Although our understanding and characterization of these two important regulatory RNA classes is far from complete, these RNA-based mechanisms have proven useful for a wide variety of synthetic biology applications. Besides classic and contemporary applications in the realm of metabolic engineering and orthogonal gene control, this review also covers newer applications of regulatory RNAs as biosensors, logic gates, and tools to determine RNA-RNA interactions. A separate section focuses on critical insights gained and challenges posed by fundamental studies of sRNAs and riboswitches that should aid future development of synthetic regulatory RNAs.
Collapse
|
38
|
Luo H, Zheng P, Xie F, Yang R, Liu L, Han S, Zhao Y, Bilal M. Co-production of solvents and organic acids in butanol fermentation by Clostridium acetobutylicum in the presence of lignin-derived phenolics. RSC Adv 2019; 9:6919-6927. [PMID: 35518483 PMCID: PMC9061099 DOI: 10.1039/c9ra00325h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Co-production of solvents (butanol, acetone, and ethanol) and organic acids (butyrate and acetate) by Clostridium acetobutylicum using lignocellulosic biomass as a substrate could further enlarge the application scope of butanol fermentation. This is mainly because solvents and organic acids could be used for production of fine chemicals such as butyl butyrate, butyl oleate, etc. However, many phenolic fermentation inhibitors are formed during the pretreatment process because of lignin degradation. The present study investigated the effects of five typical lignin-derived phenolics on the biosynthesis of solvents and organic acids in C. acetobutylicum ATCC 824. Results obtained in 100 mL anaerobic bottles indicated that butanol concentration was enhanced from 10.29 g L−1 to 11.36 g L−1 by the addition of 0.1 g L−1 vanillin. Subsequently, a pH-control strategy was proposed in a 5 L anaerobic fermenter to alleviate the “acid crash” phenomenon and improve butanol fermentation performance, simultaneously. Notably, organic acid concentration was enhanced from 6.38 g L−1 (control) to a high level of 9.21–12.57 g L−1 with vanillin or/and vanillic acid addition (0.2 g L−1) under the pH-control strategy. Furthermore, the butyrate/butanol ratio reached the highest level of 0.80 g g−1 with vanillin/vanillic acid co-addition, and solvent concentration reached 13.85 g L−1, a comparable level to the control (13.69 g L−1). The effectiveness and robustness of the strategy for solvent and organic acid co-production was also verified under five typical phenolic environments. In conclusion, these results suggest that the proposed process strategy would potentially promote butanol fermentative products from renewable biomass. Lignin-derived phenolics enhance solvent and organic acid biosynthesis in butanol fermentation by Clostridium acetobutylicum ATCC 824.![]()
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Panli Zheng
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Fang Xie
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Rongling Yang
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Lina Liu
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Shuo Han
- Department of Chemistry
- Missouri University of Science and Technology
- Rolla
- USA
| | - Yuping Zhao
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Muhammad Bilal
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| |
Collapse
|
39
|
Abstract
Synthetic biology has undergone dramatic advancements for over a decade, during which it has expanded our understanding on the systems of life and opened new avenues for microbial engineering. Many biotechnological and computational methods have been developed for the construction of synthetic systems. Achievements in synthetic biology have been widely adopted in metabolic engineering, a field aimed at engineering micro-organisms to produce substances of interest. However, the engineering of metabolic systems requires dynamic redistribution of cellular resources, the creation of novel metabolic pathways, and optimal regulation of the pathways to achieve higher production titers. Thus, the design principles and tools developed in synthetic biology have been employed to create novel and flexible metabolic pathways and to optimize metabolic fluxes to increase the cells’ capability to act as production factories. In this review, we introduce synthetic biology tools and their applications to microbial cell factory constructions.
Collapse
|
40
|
Charubin K, Bennett RK, Fast AG, Papoutsakis ET. Engineering Clostridium organisms as microbial cell-factories: challenges & opportunities. Metab Eng 2018; 50:173-191. [DOI: 10.1016/j.ymben.2018.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 11/25/2022]
|
41
|
Lee SS, Shin H, Jo S, Lee SM, Um Y, Woo HM. Rapid identification of unknown carboxyl esterase activity in Corynebacterium glutamicum using RNA-guided CRISPR interference. Enzyme Microb Technol 2018; 114:63-68. [PMID: 29685355 DOI: 10.1016/j.enzmictec.2018.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 01/06/2023]
Abstract
RNA-guided genome engineering technologies have been developed for the advanced metabolic engineering of microbial cells to enhance production of value-added chemicals in Corynebacterium glutamicum as an industrial host. In this study, the RNA-guided CRISPR interference (CRISPRi) was applied to rapidly identify of unknown genes for native esterase activity in C. glutamicum. Combining with the carboxyl esterase (MekB) protein sequence alignment, two target genes (the cg0961 and cg0754) were selected for the CRISPRi application to investigate the possible native esterase in C. glutamicum. The recombinant strain with repressed expression of the cg0961 gene exhibited almost no capability on degradation of methyl acetate as a substrate of carboxyl esterase. This result was also confirmed in the cg0961 gene deletion mutant. Thus, we concluded that Cg0961 plays a major role of the native carboxyl esterase activity in C. glutamicum. In addition, CRISPRi demonstrated an application for gene identification and its function as another genetic tool for metabolic engineering in C. glutamicum.
Collapse
Affiliation(s)
- Seung Soo Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyojung Shin
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Suah Jo
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
42
|
Patakova P, Kolek J, Sedlar K, Koscova P, Branska B, Kupkova K, Paulova L, Provaznik I. Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol Adv 2018; 36:721-738. [DOI: 10.1016/j.biotechadv.2017.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022]
|
43
|
Mordaka PM, Heap JT. Stringency of Synthetic Promoter Sequences in Clostridium Revealed and Circumvented by Tuning Promoter Library Mutation Rates. ACS Synth Biol 2018; 7:672-681. [PMID: 29320851 DOI: 10.1021/acssynbio.7b00398] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Collections of characterized promoters of different strengths are key resources for synthetic biology, but are not well established for many important organisms, including industrially relevant Clostridium spp. When generating promoters, reporter constructs are used to measure expression, but classical fluorescent reporter proteins are oxygen-dependent and hence inactive in anaerobic bacteria like Clostridium. We directly compared oxygen-independent reporters of different types in Clostridium acetobutylicum and found that glucuronidase (GusA) from E. coli performed best. Using GusA, a library of synthetic promoters was first generated by a typical approach entailing complete randomization of a constitutive thiolase gene promoter (Pthl) except for the consensus -35 and -10 elements. In each synthetic promoter, the chance of each degenerate position matching Pthl was 25%. Surprisingly, none of the tested synthetic promoters from this library were functional in C. acetobutylicum, even though they functioned as expected in E. coli. Next, instead of complete randomization, we specified lower promoter mutation rates using oligonucleotide primers synthesized using custom mixtures of nucleotides. Using these primers, two promoter libraries were constructed in which the chance of each degenerate position matching Pthl was 79% or 58%, instead of 25% as before. Synthetic promoters from these "stringent" libraries functioned well in C. acetobutylicum, covering a wide range of strengths. The promoters functioned similarly in the distantly related species Clostridium sporogenes, and allowed predictable metabolic engineering of C. acetobutylicum for acetoin production. Besides generating the desired promoters and demonstrating their useful properties, this work indicates an unexpected "stringency" of promoter sequences in Clostridium, not reported previously.
Collapse
Affiliation(s)
- Paweł M. Mordaka
- Imperial College Centre for
Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - John T. Heap
- Imperial College Centre for
Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
44
|
Sun T, Li S, Song X, Pei G, Diao J, Cui J, Shi M, Chen L, Zhang W. Re-direction of carbon flux to key precursor malonyl-CoA via artificial small RNAs in photosynthetic Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:26. [PMID: 29441124 PMCID: PMC5798194 DOI: 10.1186/s13068-018-1032-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Photosynthetic cyanobacteria have attracted a significant attention as promising chassis to produce renewable fuels and chemicals due to their capability to utilizing solar energy and CO2. Notably, the enhancing supply of key precursors like malonyl-CoA would benefit the production of many bio-compounds. Nevertheless, the lacking of genetic tools in cyanobacteria, especially the knockdown strategies for essential pathways, has seriously restricted the attempts to re-direct carbon flux from the central carbohydrate metabolism to the synthesis of bioproducts. RESULTS Aiming at developing new genetic tools, two small RNA regulatory tools are reported for the model cyanobacterium Synechocystis sp. PCC6803, based on paired termini RNAs as well as the exogenous Hfq chaperone and MicC scaffold (Hfq-MicC) previously developed in Escherichia coli. Both regulatory tools functioned well in regulating exogenous reporter gene lacZ and endogenous glgC gene in Synechocystis sp. PCC6803, achieving a downregulation of gene expression up to 90% compared with wildtype. In addition, the Hfq-MicC tool was developed to simultaneously regulate multiple genes related to essential fatty acids biosynthesis, which led to decreased fatty acids content by 11%. Furthermore, aiming to re-direct the carbon flux, the Hfq-MicC tool was utilized to interfere the competing pathway of malonyl-CoA, achieving an increased intracellular malonyl-CoA abundance up to 41% (~ 698.3 pg/mL/OD730 nm) compared to the wildtype. Finally, the Hfq-MicC system was further modified into an inducible system based on the theophylline-inducible riboswitch. CONCLUSIONS In this study, two small RNA regulatory tools for manipulating essential metabolic pathways and re-directing carbon flux are reported for Synechocystis sp. PCC6803. The work introduces efficient and valuable metabolic regulatory strategies for photosynthetic cyanobacteria.
Collapse
Affiliation(s)
- Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Xinyu Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Jinjin Diao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
45
|
Thorsing M, dos Santos PT, Kallipolitis BH. Small RNAs in major foodborne pathogens: from novel regulatory activities to future applications. Curr Opin Biotechnol 2018; 49:120-128. [DOI: 10.1016/j.copbio.2017.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022]
|
46
|
Chae TU, Choi SY, Kim JW, Ko YS, Lee SY. Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol 2017; 47:67-82. [DOI: 10.1016/j.copbio.2017.06.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
|
47
|
Lahiry A, Stimple SD, Wood DW, Lease RA. Retargeting a Dual-Acting sRNA for Multiple mRNA Transcript Regulation. ACS Synth Biol 2017; 6:648-658. [PMID: 28067500 DOI: 10.1021/acssynbio.6b00261] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multitargeting small regulatory RNAs (sRNAs) represent a potentially useful tool for metabolic engineering applications. Natural multitargeting sRNAs govern bacterial gene expression by binding to the translation initiation regions of protein-coding mRNAs through base pairing. We designed an Escherichia coli based genetic system to create and assay dual-acting retargeted-sRNA variants. The variants can be assayed for coordinate translational regulation of two alternate mRNA leaders fused to independent reporter genes. Accordingly, we began with the well-characterized E. coli native DsrA sRNA. The merits of using DsrA include its well-characterized separation of function into two independently folded stem-loop domains, wherein alterations at one stem do not necessarily abolish activity at the other stem. Expression of the sRNA and each reporter mRNA was independently controlled by small inducer molecules, allowing precise quantification of the regulatory effects of each sRNA:mRNA interaction in vivo with a microtiter plate assay. Using this system, we semirationally designed DsrA variants screened in E. coli for their ability to regulate key mRNA leader sequences from the Clostridium acetobutylicum n-butanol synthesis pathway. To coordinate intervention at two points in a metabolic pathway, we created bifunctional sRNA prototypes by combining sequences from two singly retargeted DsrA variants. This approach constitutes a platform for designing sRNAs to specifically target arbitrary mRNA transcript sequences, and thus provides a generalizable tool for retargeting and characterizing multitarget sRNAs for metabolic engineering.
Collapse
Affiliation(s)
- Ashwin Lahiry
- Department
of Microbiology, The Ohio State University, 484 W. 12th Avenue, Columbus, Ohio 43210, United States
| | - Samuel D. Stimple
- Department
of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - David W. Wood
- Department
of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
- Department
of Microbiology, The Ohio State University, 484 W. 12th Avenue, Columbus, Ohio 43210, United States
| | - Richard A. Lease
- Department
of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|