1
|
Li Y, Wu X, Liu Y, Taidi B. Immobilized microalgae: principles, processes and its applications in wastewater treatment. World J Microbiol Biotechnol 2024; 40:150. [PMID: 38548998 DOI: 10.1007/s11274-024-03930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/16/2024] [Indexed: 04/02/2024]
Abstract
Microalgae have emerged as potential candidates for biomass production and pollutant removal. However, expensive biomass harvesting, insufficient biomass productivity, and low energy intensity limit the large-scale production of microalgae. To break through these bottlenecks, a novel technology of immobilized microalgae culture coupled with wastewater treatment has received increasing attention in recent years. In this review, the characteristics of two immobilized microalgae culture technologies are first presented and then their mechanisms are discussed in terms of biofilm formation theories, including thermodynamic theory, Derjaguin-Landau-Verwei-Overbeek theory (DLVO) and its extended theory (xDLVO), as well as ionic cross-linking mechanisms in the process of microalgae encapsulated in alginate. The main factors (algal strains, carriers, and culture conditions) affecting the growth of microalgae are also discussed. It is also summarized that immobilized microalgae show considerable potential for nitrogen and phosphorus removal, heavy metal removal, pesticide and antibiotic removal in wastewater treatment. The role of bacteria in the cultivation of microalgae by immobilization techniques and their application in wastewater treatment are clarified. This is economically feasible and technically superior. The problems and challenges faced by immobilized microalgae are finally presented.
Collapse
Affiliation(s)
- Yanpeng Li
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang`an University, Xi`an, 710054, People's Republic of China.
| | - Xuexue Wu
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China
| | - Yi Liu
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China
| | - Behnam Taidi
- LGPM, CentraleSupélec, Université Paris Saclay, 3 rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Tong S, Chen W, Hong R, Chai M, Sun Y, Wang Q, Li D. Efficient Mycoprotein Production with Low CO 2 Emissions through Metabolic Engineering and Fermentation Optimization of Fusarium venenatum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:604-612. [PMID: 38153978 DOI: 10.1021/acs.jafc.3c08509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The global protein shortage is intensifying, and promising means to ensure daily protein supply are desperately needed. The mycoprotein produced by Fusarium venenatum is a good alternative to animal/plant-derived protein. To comprehensively improve the mycoprotein synthesis, a stepwise strategy by blocking the byproduct ethanol synthesis and the gluconeogenesis pathway and by optimizing the fermentation medium was herein employed. Ultimately, compared to the wild-type strain, the synthesis rate, carbon conversion ratio, and protein content of mycoprotein produced from the engineered strain were increased by 57% (0.212 vs 0.135 g/L·h), 62% (0.351 vs 0.217 g/g), and 57% (61.9 vs 39.4%), respectively, accompanied by significant reductions in CO2 emissions. These results provide a referential strategy that could be useful for improving mycoprotein synthesis in other fungi; more importantly, the obtained high-mycoprotein-producing strain has the potential to promote the development of the edible protein industry and compensate for the gap in protein resources.
Collapse
Affiliation(s)
- Sheng Tong
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Ruru Hong
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Mengdan Chai
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Yuanxia Sun
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Qinhong Wang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
3
|
Wang Y, Li L, Zhao D, Zhou W, Chen L, Su G, Zhang Z, Liu T. Surface patterns of mortar plates influence Spirulina platensis biofilm attached cultivation: Experiment and modeling. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
4
|
Enhanced Algal Biomass Production in a Novel Electromagnetic Photobioreactor (E-PBR). Curr Microbiol 2022; 79:395. [DOI: 10.1007/s00284-022-03100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
|
5
|
Sun Y, Yu G, Xiao G, Duan Z, Dai C, Hu J, Wang Y, Yang Y, Jiang X. Enhancing CO 2 photo-biochemical conversion in a newly-designed attached photobioreactor characterized by stacked horizontal planar waveguide modules. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144041. [PMID: 33341632 DOI: 10.1016/j.scitotenv.2020.144041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Aiming at alleviating the adverse effects on attached microalgae biofilm growth caused by heterogeneous spatial light distributions within the attached cultivation photobioreactors (PBRs), an innovative PBR integrated with stacked horizontal planar waveguide modules (SHPW-PBR) was proposed in this work. Different from the conventional PBR, the emergent light from the external LED light bars were guided and evenly redistributed within the SHPW-PBR by the planar waveguides and hence provided light energy for microalgae cells photoautotrophic growth. In comparison with the control PBR, the average light intensity illuminating the attached Chlorella vulgaris biofilm in the SHPW-PBR was elevated by 204.11% and contributed to a 145.20% improvement on areal C. vulgaris biofilm production. Thereafter, responses of attached C. vulgaris biofilm growth in the SHPW-PBR to various light intensities were evaluated and the maximum areal C. vulgaris biofilm density reached 90.43 g m-2 under the light intensity of 136 μmol m-2 s-1 after 9 days cultivation. Furthermore, the SHPW-PBR can be easily scaled-up by increasing the quantity of the stacked planar waveguide modules and thus shows great potential in biofilm-based biomass production.
Collapse
Affiliation(s)
- Yahui Sun
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China; School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education of China, Chongqing University, Chongqing 400044, China
| | - Guotao Yu
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Gang Xiao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ziyang Duan
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chuanchao Dai
- School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jun Hu
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yunjun Wang
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yu Yang
- College of Mechanical and Power Engineering, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Xiaoxiang Jiang
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
6
|
Sun Y, Duan D, Chang H, Guo C. Optimizing Light Distributions in a Membrane Photobioreactor via Optical Fibers To Enhance CO 2 Photobiochemical Conversion by a Scenedesmus obliquus Biofilm. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yahui Sun
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Danru Duan
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chenglong Guo
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
7
|
Ronan P, Kroukamp O, Liss SN, Wolfaardt G. A Novel System for Real-Time, In Situ Monitoring of CO 2 Sequestration in Photoautotrophic Biofilms. Microorganisms 2020; 8:microorganisms8081163. [PMID: 32751859 PMCID: PMC7464137 DOI: 10.3390/microorganisms8081163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 01/26/2023] Open
Abstract
Climate change brought about by anthropogenic CO2 emissions has created a critical need for effective CO2 management solutions. Microalgae are well suited to contribute to efforts aimed at addressing this challenge, given their ability to rapidly sequester CO2 coupled with the commercial value of their biomass. Recently, microalgal biofilms have garnered significant attention over the more conventional suspended algal growth systems, since they allow for easier and cheaper biomass harvesting, among other key benefits. However, the path to cost-effectiveness and scaling up is hindered by a need for new tools and methodologies which can help evaluate, and in turn optimize, algal biofilm growth. Presented here is a novel system which facilitates the real-time in situ monitoring of algal biofilm CO2 sequestration. Utilizing a CO2-permeable membrane and a tube-within-a-tube design, the CO2 sequestration monitoring system (CSMS) was able to reliably detect slight changes in algal biofilm CO2 uptake brought about by light–dark cycling, light intensity shifts, and varying amounts of phototrophic biomass. This work presents an approach to advance our understanding of carbon flux in algal biofilms, and a base for potentially useful innovations to optimize, and eventually realize, algae biofilm-based CO2 sequestration.
Collapse
Affiliation(s)
- Patrick Ronan
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada; (P.R.); (O.K.); (S.N.L.)
| | - Otini Kroukamp
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada; (P.R.); (O.K.); (S.N.L.)
| | - Steven N. Liss
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada; (P.R.); (O.K.); (S.N.L.)
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Gideon Wolfaardt
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada; (P.R.); (O.K.); (S.N.L.)
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Correspondence:
| |
Collapse
|
8
|
Deprá MC, Mérida LG, de Menezes CR, Zepka LQ, Jacob-Lopes E. A new hybrid photobioreactor design for microalgae culture. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Gouveia JD, Lian J, Steinert G, Smidt H, Sipkema D, Wijffels RH, Barbosa MJ. Associated bacteria of Botryococcus braunii (Chlorophyta). PeerJ 2019; 7:e6610. [PMID: 30944776 PMCID: PMC6441321 DOI: 10.7717/peerj.6610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/12/2019] [Indexed: 01/14/2023] Open
Abstract
Botryococcus braunii (Chlorophyta) is a green microalga known for producing hydrocarbons and exopolysaccharides (EPS). Improving the biomass productivity of B. braunii and hence, the productivity of the hydrocarbons and of the EPS, will make B. braunii more attractive for industries. Microalgae usually cohabit with bacteria which leads to the formation of species-specific communities with environmental and biological advantages. Bacteria have been found and identified with a few B. braunii strains, but little is known about the bacterial community across the different strains. A better knowledge of the bacterial community of B. braunii will help to optimize the biomass productivity, hydrocarbons, and EPS accumulation. To better understand the bacterial community diversity of B. braunii, we screened 12 strains from culture collections. Using 16S rRNA gene analysis by MiSeq we described the bacterial diversity across 12 B. braunii strains and identified possible shared communities. We found three bacterial families common to all strains: Rhizobiaceae, Bradyrhizobiaceae, and Comamonadaceae. Additionally, the results also suggest that each strain has its own specific bacteria that may be the result of long-term isolated culture.
Collapse
Affiliation(s)
- Joao D. Gouveia
- Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
| | - Jie Lian
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Georg Steinert
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Rene H. Wijffels
- Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Maria J. Barbosa
- Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
- Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
Mantzorou A, Ververidis F. Microalgal biofilms: A further step over current microalgal cultivation techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:3187-3201. [PMID: 30463168 DOI: 10.1016/j.scitotenv.2018.09.355] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 05/15/2023]
Abstract
The scientific community has turned its interest to microalgae lately, because of their countless applications such as wastewater treatment and pharmaceutical industry. Nevertheless, so far applied cultivation methods are still prohibitive. Ordinary cultivation techniques in which microalgae are suspended in liquid medium suffer from many bottlenecks, such as low biomass productivities, difficulty in biomass harvesting and recovery, high installation and operating cost, high water requirements etc. Although, microalgal biofilms are known to be a nuisance because of surfaces fouling, they have emerged as an innovative technology with which microalgae are developed attached to a solid surface. This technique seems to be advantageous as compared to conventional cultivation systems. Microalgal biofilm systems could resolve the problematic aspects of ordinary cultivation techniques such as low biomass productivities, water management and biomass recovery. A detailed description of this technique with respect to the parameters affecting them is reviewed in this work.
Collapse
Affiliation(s)
- Antonia Mantzorou
- Plant Biochemistry and Biotechnology Group, Biological and Biotechnological Applications Laboratory, Department of Agriculture, School of Agriculture, Food and Nutrition, Technological Educational Institute of Crete, Heraklion, Greece
| | - Filippos Ververidis
- Plant Biochemistry and Biotechnology Group, Biological and Biotechnological Applications Laboratory, Department of Agriculture, School of Agriculture, Food and Nutrition, Technological Educational Institute of Crete, Heraklion, Greece.
| |
Collapse
|
11
|
Kumar G, Nguyen DD, Sivagurunathan P, Kobayashi T, Xu K, Chang SW. Cultivation of microalgal biomass using swine manure for biohydrogen production: Impact of dilution ratio and pretreatment. BIORESOURCE TECHNOLOGY 2018; 260:16-22. [PMID: 29604564 DOI: 10.1016/j.biortech.2018.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
This study assessed the impact of swine manure (SM) dilution ratio on the microalgal biomass cultivation and further tested for biohydrogen production efficiency from the mixed microalgal biomass. At first, various solid/liquid (S/L) ratio of the SM ranged from 2.5 to 10 g/L was prepared as a nutrient medium for the algal biomass cultivation without addition of the external nutrient sources over a period of 18 d. The peak biomass concentration of 2.57 ± 0.03 g/L was obtained under the initial S/L loading rates of 5 g/L. Further, the cultivated biomass was subjected to two-step (ultrasonication + enzymatic) pretreatment and evaluated for biohydrogen production potential. Results showed that the variable amount of hydrogen production was observed with different S/L ratio of the SM. The peak hydrogen yield of 116 ± 6 mL/g TSadded was observed at the 5 g/L grown SM mixed algal biomass.
Collapse
Affiliation(s)
- Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 94 San, Iui-dong, Youngtong-gu, Suwon-si, Gyeonggi-do 16227, Republic of Korea
| | - Periyasamy Sivagurunathan
- Green Energy Technology Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Takuro Kobayashi
- Center for Materials Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Kaiqin Xu
- Center for Materials Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 94 San, Iui-dong, Youngtong-gu, Suwon-si, Gyeonggi-do 16227, Republic of Korea
| |
Collapse
|
12
|
Li T, Strous M, Melkonian M. Biofilm-based photobioreactors: their design and improving productivity through efficient supply of dissolved inorganic carbon. FEMS Microbiol Lett 2017; 364:4561052. [DOI: 10.1093/femsle/fnx218] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/17/2017] [Indexed: 12/25/2022] Open
|