1
|
Shi L, Ye X, Zhou J, Fang Y, Yang J, Meng M, Zou J. Roles of DNA methylation in influencing the functions of dental-derived mesenchymal stem cells. Oral Dis 2024; 30:2797-2806. [PMID: 37856651 DOI: 10.1111/odi.14770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE DNA methylation as intensively studied epigenetic regulatory mechanism exerts pleiotropic effects on dental-derived mesenchymal stem cells (DMSCs). DMSCs have self-renewal and multidifferentiation potential. Here, this review aims at summarizing the research status about application of DMSCs in tissue engineering and clarifying the roles of DNA methylation in influencing the functions of DMSCs, with expectation of paving the way for its in-depth exploration in tissue engineering. METHOD The current research status about influence of DNA methylation in DMSCs was acquired by MEDLINE (through PubMed) and Web of Science using the keywords 'DNA methylation', 'dental-derived mesenchymal stem cells', 'dental pulp stem cells', 'periodontal ligament stem cells', 'dental follicle stem cells', 'stem cells from the apical papilla', 'stem cells from human exfoliated deciduous teeth', and 'gingival-derived mesenchymal stem cells'. RESULTS This review indicates DNA methylation affects DMSCs' differentiation and function through inhibiting or enhancing the expression of specific gene resulted by DNA methylation-related genes or relevant inhibitors. CONCLUSION DNA methylation can influence DMSCs in aspects of osteogenesis, adipogenesis, immunomodulatory function, and so on. Yet, the present studies about DNA methylation in DMSCs commonly focus on dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs). Little has been reported for other DMSCs.
Collapse
Affiliation(s)
- Liyan Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwen Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiazhen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingmei Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Nishimura Y. Technology using simulated microgravity. Regen Ther 2023; 24:318-323. [PMID: 37662695 PMCID: PMC10470365 DOI: 10.1016/j.reth.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023] Open
Abstract
The human body experiences constant stimulation from Earth's gravity, and the absence of gravity leads to various impacts at the cellular and tissue levels. Simulated microgravity (s-μg) has been employed on Earth to investigate these effects, circumventing the challenges of conducting experiments in space and providing an opportunity to understand the influence of microgravity on living organisms. Research focusing on stem cells and utilizing s-μg has enhanced our understanding of how microgravity affects stem cell morphology, migration, proliferation, and differentiation. Studies have used systems such as rotating wall vessels, random positioning machines, and clinostats. By uncovering the mechanisms underlying the observed changes in these studies, there is potential to identify therapeutic targets that regulate stem cell function and explore a range of applications, including stem cell-based regenerative medicine. This review will focus on the features of each device designed to simulate microgravity on Earth, as well as the stem cell experiments performed with those devices.
Collapse
Affiliation(s)
- Yusuke Nishimura
- Department of Clinical Engineering, Faculty of Medical Science and Technology, Gunma Paz University, 3-3-4 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
| |
Collapse
|
3
|
Mohebichamkhorami F, Niknam Z, Zali H, Mostafavi E. Therapeutic Potential of Oral-Derived Mesenchymal Stem Cells in Retinal Repair. Stem Cell Rev Rep 2023; 19:2709-2723. [PMID: 37733198 DOI: 10.1007/s12015-023-10626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
The retina has restricted regeneration ability to recover injured cell layer because of reduced production of neurotrophic factors and increased inhibitory molecules against axon regrowth. A diseased retina could be regenerated by repopulating the damaged tissue with functional cell sources like mesenchymal stem cells (MSCs). The cells are able to release neurotrophic factors (NFs) to boost axonal regeneration and cell maintenance. In the current study, we comprehensively explore the potential of various types of stem cells (SCs) from oral cavity as promising therapeutic options in retinal regeneration. The oral MSCs derived from cranial neural crest cells (CNCCs) which explains their broad neural differentiation potential and secret rich NFs. They are comprised of dental pulp SCs (DPSCs), SCs from exfoliated deciduous teeth (SHED), SCs from apical papilla (SCAP), periodontal ligament-derived SCs (PDLSCs), gingival MSCs (GMSCs), and dental follicle SCs (DFSCs). The Oral MSCs are becoming a promising source of cells for cell-free or cell-based therapeutic approach to recover degenerated retinal. These cells have various mechanisms of action in retinal regeneration including cell replacement and the paracrine effect. It was demonstrated that they have more neuroprotective and neurotrophic effects on retinal cells than immediate replacement of injured cells in retina. This could be the reason that their therapeutic effects would be weakened over time. It can be concluded that neuronal and retinal regeneration through these cells is most likely due to their NFs that dramatically suppress oxidative stress, inflammation, and apoptosis. Although, oral MSCs are attractive therapeutic options for retinal injuries, more preclinical and clinical investigations are required.
Collapse
Affiliation(s)
- Fariba Mohebichamkhorami
- Department of Food Science & Technology, University of California, Davis, CA, 95616, USA
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Ma C, Duan X, Lei X. 3D cell culture model: From ground experiment to microgravity study. Front Bioeng Biotechnol 2023; 11:1136583. [PMID: 37034251 PMCID: PMC10080128 DOI: 10.3389/fbioe.2023.1136583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Microgravity has been shown to induce many changes in cell growth and differentiation due to offloading the gravitational strain normally exerted on cells. Although many studies have used two-dimensional (2D) cell culture systems to investigate the effects of microgravity on cell growth, three-dimensional (3D) culture scaffolds can offer more direct indications of the modified cell response to microgravity-related dysregulations compared to 2D culture methods. Thus, knowledge of 3D cell culture is essential for better understanding the in vivo tissue function and physiological response under microgravity conditions. This review discusses the advances in 2D and 3D cell culture studies, particularly emphasizing the role of hydrogels, which can provide cells with a mimic in vivo environment to collect a more natural response. We also summarized recent studies about cell growth and differentiation under real microgravity or simulated microgravity conditions using ground-based equipment. Finally, we anticipate that hydrogel-based 3D culture models will play an essential role in constructing organoids, discovering the causes of microgravity-dependent molecular and cellular changes, improving space tissue regeneration, and developing innovative therapeutic strategies. Future research into the 3D culture in microgravity conditions could lead to valuable therapeutic applications in health and pharmaceuticals.
Collapse
Affiliation(s)
- Chiyuan Ma
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Xianglong Duan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Second Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
- *Correspondence: Xianglong Duan, ; Xiaohua Lei,
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Xianglong Duan, ; Xiaohua Lei,
| |
Collapse
|
5
|
Effect of Long-Term Cryopreservation on the Stemness of Stem Cells of Apical Papilla. Int J Dent 2022; 2022:6004350. [PMID: 36606134 PMCID: PMC9810390 DOI: 10.1155/2022/6004350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022] Open
Abstract
Stem cells of apical papilla (SCAPs) are considered a subpopulation of dental stem cells with unique properties. They originate from a developing tissue, the apical papilla of developing teeth, a characteristic that enhances their stemness. Banking of these stem cells can offer a source of dental stem cells for future regenerative therapies. Until now, only the effect of six months' cryopreservation on SCAPs has been studied. In this study, the long-term (19 months) effect of cryopreservation on SCAPs was examined by means of estimation of their differentiation's capacity, flow cytometry immunophenotypical characterization, and molecular characterization of the main transcriptional factors that coincide with pluripotency. As was indicated from our results, 19-month cryopreservation of SCAPs did not affect negatively their stemness; since no significant difference was observed on their typical fibroblast-like morphology, they retained their differentiation capacity, and no discrepancies were found either on immunophenotypical level or molecular level.
Collapse
|
6
|
Basabrain MS, Zhong J, Luo H, Liu J, Yi B, Zaeneldin A, Koh J, Zou T, Zhang C. Formation of Three-Dimensional Spheres Enhances the Neurogenic Potential of Stem Cells from Apical Papilla. Bioengineering (Basel) 2022; 9:604. [PMID: 36354515 PMCID: PMC9687952 DOI: 10.3390/bioengineering9110604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 10/24/2023] Open
Abstract
UNLABELLED Cell-based neural regeneration is challenging due to the difficulty in obtaining sufficient neural stem cells with clinical applicability. Stem cells from apical papilla (SCAPs) originating from embryonic neural crests with high neurogenic potential could be a promising cell source for neural regeneration. This study aimed to investigate whether the formation of 3D spheres can promote SCAPs' neurogenic potential. MATERIAL AND METHODS Three-dimensional SCAP spheres were first generated in a 256-well agarose microtissue mold. The spheres and single cells were individually cultured on collagen I-coated μ-slides. Cell morphological changes, neural marker expression, and neurite outgrowth were evaluated by confocal microscope, ELISA, and RT-qPCR. RESULTS Pronounced morphological changes were noticed in a time-dependent manner. The migrating cells' morphology changed from fibroblast-like cells to neuron-like cells. Compared to the 2D culture, neurite length, number, and the expression of multiple progenitors, immature and mature neural markers were significantly higher in the 3D spheres. BDNF and NGF-β may play a significant role in the neural differentiation of SCAP spheres. CONCLUSION The formation of 3D spheres enhanced the neurogenic potential of SCAPs, suggesting the advantage of using the 3D spheres of SCAPs for treating neural diseases.
Collapse
Affiliation(s)
- Mohammed S. Basabrain
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jialin Zhong
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Haiyun Luo
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- Stomatological Hospital, Southern Medical University, 366 Jiangnan Avenue South, Guangzhou 510280, China
| | - Junqing Liu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Baicheng Yi
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ahmed Zaeneldin
- Restorative Dental Sciences, Cariology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Junhao Koh
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ting Zou
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
The Role of Epigenetic in Dental and Oral Regenerative Medicine by Different Types of Dental Stem Cells: A Comprehensive Overview. Stem Cells Int 2022; 2022:5304860. [PMID: 35721599 PMCID: PMC9203206 DOI: 10.1155/2022/5304860] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
Postnatal teeth, wisdom teeth, and exfoliated deciduous teeth can be harvested for dental stem cell (DSC) researches. These mesenchymal stem cells (MSCs) can differentiate and also consider as promising candidates for dental and oral regeneration. Thus, the development of DSC therapies can be considered a suitable but challenging target for tissue regeneration. Epigenetics describes changes in gene expression rather than changes in DNA and broadly happens in bone homeostasis, embryogenesis, stem cell fate, and disease development. The epigenetic regulation of gene expression and the regulation of cell fate is mainly governed by deoxyribonucleic acid (DNA) methylation, histone modification, and noncoding RNAs (ncRNAs). Tissue engineering utilizes DSCs as a target. Tissue engineering therapies are based on the multipotent regenerative potential of DSCs. It is believed that epigenetic factors are essential for maintaining the multipotency of DSCs. A wide range of host and environmental factors influence stem cell differentiation and differentiation commitment, of which epigenetic regulation is critical. Several lines of evidence have shown that epigenetic modification of DNA and DNA-correlated histones are necessary for determining cells' phenotypes and regulating stem cells' pluripotency and renewal capacity. It is increasingly recognized that nuclear enzyme activities, such as histone deacetylases, can be used pharmacologically to induce stem cell differentiation and dedifferentiation. In this review, the role of epigenetic in dental and oral regenerative medicine by different types of dental stem cells is discussed in two new and promising areas of medical and biological researches in recent studies (2010-2022).
Collapse
|
8
|
Yin JY, Luo XH, Feng WQ, Miao SH, Ning TT, Lei Q, Jiang T, Ma DD. Multidifferentiation potential of dental-derived stem cells. World J Stem Cells 2021; 13:342-365. [PMID: 34136070 PMCID: PMC8176842 DOI: 10.4252/wjsc.v13.i5.342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth-related diseases and tooth loss are widespread and are a major public health issue. The loss of teeth can affect chewing, speech, appearance and even psychology. Therefore, the science of tooth regeneration has emerged, and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology. As undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells (DMSCs), which are a desirable source of autologous stem cells, play a significant role in tooth regeneration. Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs. Moreover, DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency. This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like tissues, hepatic-like tissues, eye tissues and glands and the influence of various regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration. The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized, and the factors that regulate their differentiation can be well controlled.
Collapse
Affiliation(s)
- Jing-Yao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xing-Hong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Wei-Qing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng-Hong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ting-Ting Ning
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qian Lei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Tao Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dan-Dan Ma
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| |
Collapse
|
9
|
Soudi A, Yazdanian M, Ranjbar R, Tebyanian H, Yazdanian A, Tahmasebi E, Keshvad A, Seifalian A. Role and application of stem cells in dental regeneration: A comprehensive overview. EXCLI JOURNAL 2021; 20:454-489. [PMID: 33746673 PMCID: PMC7975587 DOI: 10.17179/excli2021-3335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022]
Abstract
Recently, a growing attention has been observed toward potential advantages of stem cell (SC)-based therapies in regenerative treatments. Mesenchymal stem/stromal cells (MSCs) are now considered excellent candidates for tissue replacement therapies and tissue engineering. Autologous MSCs importantly contribute to the state-of-the-art clinical strategies for SC-based alveolar bone regeneration. The donor cells and immune cells play a prominent role in determining the clinical success of MSCs therapy. In line with the promising future that stem cell therapy has shown for tissue engineering applications, dental stem cells have also attracted the attention of the relevant researchers in recent years. The current literature review aims to survey the variety and extension of SC-application in tissue-regenerative dentistry. In this regard, the relevant English written literature was searched using keywords: "tissue engineering", "stem cells", "dental stem cells", and "dentistry strategies". According to the available database, SCs application has become increasingly widespread because of its accessibility, plasticity, and high proliferative ability. Among the growing recognized niches and tissues containing higher SCs, dental tissues are evidenced to be rich sources of MSCs. According to the literature, dental SCs are mostly present in the dental pulp, periodontal ligament, and dental follicle tissues. In this regard, the present review has described the recent findings on the potential of dental stem cells to be used in tissue regeneration.
Collapse
Affiliation(s)
- Armin Soudi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Yazdanian
- Department of Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Keshvad
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Bioscience Innovation Centre, London, UK
| |
Collapse
|
10
|
Dental Mesenchymal Stem/Progenitor Cells: A New Prospect in Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Nagata M, Ono N, Ono W. Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell Tissue Res 2020; 383:603-616. [PMID: 32803323 DOI: 10.1007/s00441-020-03271-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
The dental pulp, a non-mineralized connective tissue uniquely encased within the cavity of the tooth, provides a niche for diverse arrays of dental mesenchymal stem cells. Stem cells in the dental pulp, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs) and stem cells from apical papilla (SCAPs), have been isolated from human tissues with an emphasis on their potential application to regenerative therapies. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitor cells derived from neural crest cells (NCCs) in their native conditions, particularly regarding how they contribute to homeostasis and repair of the dental tissue. The current concept is that at least two distinct niches for stem cells exist in the dental pulp, e.g., the perivascular niche and the perineural niche. The precise identities of these stem cells and their niches are now beginning to be unraveled thanks to sophisticated mouse genetic models, which lead to better understanding of the fundamental properties of stem cells in the dental pulp and the apical papilla in humans. The new knowledge will be highly instrumental for developing more effective stem cell-based regenerative therapies to repair teeth in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Noriaki Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Wanida Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
12
|
Driesen RB, Hilkens P, Smisdom N, Vangansewinkel T, Dillen Y, Ratajczak J, Wolfs E, Gervois P, Ameloot M, Bronckaers A, Lambrichts I. Dental Tissue and Stem Cells Revisited: New Insights From the Expression of Fibroblast Activation Protein-Alpha. Front Cell Dev Biol 2020; 7:389. [PMID: 32039205 PMCID: PMC6985075 DOI: 10.3389/fcell.2019.00389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
Fibroblast activation protein-α (FAPα) is a membrane protein with dipeptidyl-peptidase and type I collagenase activity and is expressed during fetal growth. At the age of adolescence, FAPα expression is greatly reduced, only emerging in pathologies associated with extracellular matrix remodeling. We determined whether FAPα is expressed in human dental tissue involved in root maturation i.e., dental follicle and apical papilla and in dental pulp tissue. The dental follicle revealed a high concentration of FAPα and vimentin-positive cells within the stromal tissue. A similar observation was made in cell culture and FACS analysis confirmed these as dental follicle stem cells. Within the remnants of the Hertwigs’ epithelial root sheath, we observed FAPα staining in the E-cadherin positive and vimentin-negative epithelial islands. FAPα- and vimentin-positive cells were encountered at the periphery of the islands suggesting an epithelial mesenchymal transition process. Analysis of the apical papilla revealed two novel histological regions; the periphery with dense and parallel aligned collagen type I defined as cortex fibrosa and the inner stromal tissue composed of less compacted collagen defined as medulla. FAPα expression was highly present within the medulla suggesting a role in extracellular matrix remodeling. Dental pulp tissue uncovered a heterogeneous FAPα staining but strong staining was noted within odontoblasts. In vitro studies confirmed the presence of FAPα expression in stem cells of the apical papilla and dental pulp. This study identified the expression of FAPα expression in dental stem cells which could open new perspectives in understanding dental root maturation and odontoblast function.
Collapse
Affiliation(s)
- Ronald B Driesen
- Faculty of Medicine, Hasselt University, Diepenbeek, Belgium.,Laboratory of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Petra Hilkens
- Faculty of Medicine, Hasselt University, Diepenbeek, Belgium.,Laboratory of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nick Smisdom
- Department of Biophysics, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vangansewinkel
- Faculty of Medicine, Hasselt University, Diepenbeek, Belgium.,Laboratory of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Yörg Dillen
- Faculty of Medicine, Hasselt University, Diepenbeek, Belgium.,Laboratory of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jessica Ratajczak
- Faculty of Medicine, Hasselt University, Diepenbeek, Belgium.,Laboratory of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Esther Wolfs
- Faculty of Medicine, Hasselt University, Diepenbeek, Belgium.,Laboratory of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Pascal Gervois
- Faculty of Medicine, Hasselt University, Diepenbeek, Belgium.,Laboratory of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Marcel Ameloot
- Department of Biophysics, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Faculty of Medicine, Hasselt University, Diepenbeek, Belgium.,Laboratory of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Faculty of Medicine, Hasselt University, Diepenbeek, Belgium.,Laboratory of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
13
|
Ni L, KC P, Zhang G, Zhe J. Enabling single cell electrical stimulation and response recording via a microfluidic platform. BIOMICROFLUIDICS 2019; 13:064126. [PMID: 31867086 PMCID: PMC6910869 DOI: 10.1063/1.5128884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/30/2019] [Indexed: 05/12/2023]
Abstract
Electrical stimulation (ES) has been recognized to play important roles in regulating cell behaviors. A microfluidic device was developed for the electrical stimulation of single cells and simultaneous recording of extracellular field potential (EFP). Each single cell was trapped onto an electrode surface by a constriction channel for ES testing and was then driven to the outlet by the pressure afterward. This design allows the application of ES on and detection of EFP of single cells continuously in a microfluidic channel. Human cardiomyocytes and primary rat cortex neurons were tested with specific ES with the device. Each cell's EFP signal was detected and analyzed during the ES process. Results have shown that after applying specific ES on the excitable single cells, the cells evoked electrical responses. In addition, increased secretion of glutamic acid was detected from the stimulated neurons. Altogether, these results indicated that the developed device can be used to continuously apply ES on and accurately determine cell responses of single cells with shorter probing time. The throughput of the measurement can achieve 1 cell per minute, which is higher than the traditional ES methods that need culturing cells or manually positioning the cells onto the electrode surface. Before and after the application of ES, the cell viability had no significant change. Such a device can be used to study the biological process of various types of cells under electrical stimulation.
Collapse
Affiliation(s)
- Liwei Ni
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Pawan KC
- Department of Biomedical Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
14
|
Dental Follicle Cells: Roles in Development and Beyond. Stem Cells Int 2019; 2019:9159605. [PMID: 31636679 PMCID: PMC6766151 DOI: 10.1155/2019/9159605] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
Dental follicle cells (DFCs) are a group of mesenchymal progenitor cells surrounding the tooth germ, responsible for cementum, periodontal ligament, and alveolar bone formation in tooth development. Cascades of signaling pathways and transcriptional factors in DFCs are involved in directing tooth eruption and tooth root morphogenesis. Substantial researches have been made to decipher multiple aspects of DFCs, including multilineage differentiation, senescence, and immunomodulatory ability. DFCs were proved to be multipotent progenitors with decent amplification, immunosuppressed and acquisition ability. They are able to differentiate into osteoblasts/cementoblasts, adipocytes, neuron-like cells, and so forth. The excellent properties of DFCs facilitated clinical application, as exemplified by bone tissue engineering, tooth root regeneration, and periodontium regeneration. Except for the oral and maxillofacial regeneration, DFCs were also expected to be applied in other tissues such as spinal cord defects (SCD), cardiomyocyte destruction. This article reviewed roles of DFCs in tooth development, their properties, and clinical application potentials, thus providing a novel guidance for tissue engineering.
Collapse
|
15
|
Stem Cells from the Apical Papilla: A Promising Source for Stem Cell-Based Therapy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6104738. [PMID: 30834270 PMCID: PMC6374798 DOI: 10.1155/2019/6104738] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
Stem cells are biological cells that can self-renew and can differentiate into multiple cell lineages. Stem cell-based therapy is emerging as a promising alternative therapeutic option for various disorders. Mesenchymal stem cells (MSCs) are multipotent adult stem cells that are isolated from various tissues and can be used as an alternative to embryonic stem cells. Stem cells from the apical papilla (SCAPs) are a novel population of MSCs residing in the apical papilla of immature permanent teeth. SCAPs present the characteristics of expression of MSCs markers, self-renewal, proliferation, migration, differentiation, and immunosuppression, which support the application of SCAPs in stem cell-based therapy, including the immunotherapy and the regeneration of dental tissues, bone, neural, and vascular tissues. In view of these properties and therapeutic potential, SCAPs can be considered as promising candidates for stem cell-based therapy. Thus the aim of our review was to summarize the current knowledge of SCAPs considering isolation, characterization, and multilineage differentiation. The prospects for their use in stem cell-based therapy were also discussed.
Collapse
|
16
|
Grimm D, Egli M, Krüger M, Riwaldt S, Corydon TJ, Kopp S, Wehland M, Wise P, Infanger M, Mann V, Sundaresan A. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells. Stem Cells Dev 2018; 27:787-804. [PMID: 29596037 DOI: 10.1089/scd.2017.0242] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Experimental cell research studying three-dimensional (3D) tissues in space and on Earth using new techniques to simulate microgravity is currently a hot topic in Gravitational Biology and Biomedicine. This review will focus on the current knowledge of the use of stem cells and specialized cells for tissue engineering under simulated microgravity conditions. We will report on recent advancements in the ability to construct 3D aggregates from various cell types using devices originally created to prepare for spaceflights such as the random positioning machine (RPM), the clinostat, or the NASA-developed rotating wall vessel (RWV) bioreactor, to engineer various tissues such as preliminary vessels, eye tissue, bone, cartilage, multicellular cancer spheroids, and others from different cells. In addition, stem cells had been investigated under microgravity for the purpose to engineer adipose tissue, cartilage, or bone. Recent publications have discussed different changes of stem cells when exposed to microgravity and the relevant pathways involved in these biological processes. Tissue engineering in microgravity is a new technique to produce organoids, spheroids, or tissues with and without scaffolds. These 3D aggregates can be used for drug testing studies or for coculture models. Multicellular tumor spheroids may be interesting for radiation experiments in the future and to reduce the need for in vivo experiments. Current achievements using cells from patients engineered on the RWV or on the RPM represent an important step in the advancement of techniques that may be applied in translational Regenerative Medicine.
Collapse
Affiliation(s)
- Daniela Grimm
- 1 Department of Biomedicine, Aarhus University , Aarhus C, Denmark .,2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Marcel Egli
- 3 Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts , Hergiswil, Switzerland
| | - Marcus Krüger
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Stefan Riwaldt
- 1 Department of Biomedicine, Aarhus University , Aarhus C, Denmark
| | - Thomas J Corydon
- 1 Department of Biomedicine, Aarhus University , Aarhus C, Denmark .,4 Department of Ophthalmology, Aarhus University Hospital , Aarhus, Denmark
| | - Sascha Kopp
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Markus Wehland
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Petra Wise
- 5 Hematology/Oncology, University of Southern California , Children's Hospital Los Angeles, Los Angeles, California
| | - Manfred Infanger
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Vivek Mann
- 6 Department of Biology, Texas Southern University , Houston, Texas
| | | |
Collapse
|
17
|
|
18
|
Yang B, Qiu Y, Zhou N, Ouyang H, Ding J, Cheng B, Sun J. Application of Stem Cells in Oral Disease Therapy: Progresses and Perspectives. Front Physiol 2017; 8:197. [PMID: 28421002 PMCID: PMC5376595 DOI: 10.3389/fphys.2017.00197] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
Stem cells are undifferentiated and pluripotent cells that can differentiate into specialized cells with a more specific function. Stem cell therapies become preferred methods for the treatment of multiple diseases. Oral and maxillofacial defect is one kind of the diseases that could be most possibly cured by stem cell therapies. Here we discussed oral diseases, oral adult stem cells, iPS cells, and the progresses/challenges/perspectives of application of stem cells for oral disease treatment.
Collapse
Affiliation(s)
- Bo Yang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Yi Qiu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Niu Zhou
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen UniversityGuangzhou, China
| | - Junjun Ding
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen UniversityGuangzhou, China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Jianbo Sun
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| |
Collapse
|