1
|
Huff LK, Amurgis CM, Kokai LE, Abbott RD. Optimization and validation of a fat-on-a-chip model for non-invasive therapeutic drug discovery. Front Bioeng Biotechnol 2024; 12:1404327. [PMID: 38988864 PMCID: PMC11235003 DOI: 10.3389/fbioe.2024.1404327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/24/2024] [Indexed: 07/12/2024] Open
Abstract
Obesity is a significant public health concern that is closely associated with various comorbidities such as heart disease, stroke, type II diabetes (T2D), and certain cancers. Due to the central role of adipose tissue in many disease etiologies and the pervasive nature in the body, engineered adipose tissue models are essential for drug discovery and studying disease progression. This study validates a fat-on-a-chip (FOAC) model derived from primary mature adipocytes. Our FOAC model uses a Micronit perfusion device and introduces a novel approach for collecting continuous data by using two non-invasive readout techniques, resazurin and glucose uptake. The Micronit platform proved to be a reproducible model that can effectively maintain adipocyte viability, metabolic activity, and basic functionality, and is capable of mimicking physiologically relevant responses such as adipocyte hypertrophy and insulin-mediated glucose uptake. Importantly, we demonstrate that adipocyte size is highly dependent on extracellular matrix properties, as adipocytes derived from different patients with variable starting lipid areas equilibrate to the same size in the hyaluronic acid hydrogel. This model can be used to study T2D and monitor adipocyte responses to insulin for longitudinally tracking therapeutic efficacy of novel drugs or drug combinations.
Collapse
Affiliation(s)
- Lindsey K. Huff
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Charles M. Amurgis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lauren E. Kokai
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Morais AS, Mendes M, Cordeiro MA, Sousa JJ, Pais AC, Mihăilă SM, Vitorino C. Organ-on-a-Chip: Ubi sumus? Fundamentals and Design Aspects. Pharmaceutics 2024; 16:615. [PMID: 38794277 PMCID: PMC11124787 DOI: 10.3390/pharmaceutics16050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
This review outlines the evolutionary journey from traditional two-dimensional (2D) cell culture to the revolutionary field of organ-on-a-chip technology. Organ-on-a-chip technology integrates microfluidic systems to mimic the complex physiological environments of human organs, surpassing the limitations of conventional 2D cultures. This evolution has opened new possibilities for understanding cell-cell interactions, cellular responses, drug screening, and disease modeling. However, the design and manufacture of microchips significantly influence their functionality, reliability, and applicability to different biomedical applications. Therefore, it is important to carefully consider design parameters, including the number of channels (single, double, or multi-channels), the channel shape, and the biological context. Simultaneously, the selection of appropriate materials compatible with the cells and fabrication methods optimize the chips' capabilities for specific applications, mitigating some disadvantages associated with these systems. Furthermore, the success of organ-on-a-chip platforms greatly depends on the careful selection and utilization of cell resources. Advances in stem cell technology and tissue engineering have contributed to the availability of diverse cell sources, facilitating the development of more accurate and reliable organ-on-a-chip models. In conclusion, a holistic perspective of in vitro cellular modeling is provided, highlighting the integration of microfluidic technology and meticulous chip design, which play a pivotal role in replicating organ-specific microenvironments. At the same time, the sensible use of cell resources ensures the fidelity and applicability of these innovative platforms in several biomedical applications.
Collapse
Affiliation(s)
- Ana Sofia Morais
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Marta Agostinho Cordeiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - João J. Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Alberto Canelas Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| |
Collapse
|
3
|
Navarro-Perez J, Carobbio S. Adipose tissue-derived stem cells, in vivo and in vitro models for metabolic diseases. Biochem Pharmacol 2024; 222:116108. [PMID: 38438053 DOI: 10.1016/j.bcp.2024.116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The primary role of adipose tissue stem cells (ADSCs) is to support the function and homeostasis of adipose tissue in physiological and pathophysiological conditions. However, when ADSCs become dysfunctional in diseases such as obesity and cancer, they become impaired, undergo signalling changes, and their epigenome is altered, which can have a dramatic effect on human health. In more recent years, the therapeutic potential of ADSCs in regenerative medicine, wound healing, and for treating conditions such as cancer and metabolic diseases has been extensively investigated with very promising results. ADSCs have also been used to generate two-dimensional (2D) and three-dimensional (3D) cellular and in vivo models to study adipose tissue biology and function as well as intracellular communication. Characterising the biology and function of ADSCs, how it is altered in health and disease, and its therapeutic potential and uses in cellular models is key for designing intervention strategies for complex metabolic diseases and cancer.
Collapse
|
4
|
Chandran Suja V, Qi QM, Halloran K, Zhang J, Shaha S, Prakash S, Kumbhojkar N, Deslandes A, Huille S, Gokarn YR, Mitragotri S. A biomimetic chip to assess subcutaneous bioavailability of monoclonal antibodies in humans. PNAS NEXUS 2023; 2:pgad317. [PMID: 37901442 PMCID: PMC10612570 DOI: 10.1093/pnasnexus/pgad317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023]
Abstract
Subcutaneous (subQ) injection is a common route for delivering biotherapeutics, wherein pharmacokinetics is largely influenced by drug transport in a complex subQ tissue microenvironment. The selection of good drug candidates with beneficial pharmacokinetics for subQ injections is currently limited by a lack of reliable testing models. To address this limitation, we report here a Subcutaneous Co-Culture Tissue-on-a-chip for Injection Simulation (SubCuTIS). SubCuTIS possesses a 3D coculture tissue architecture, and it allows facile quantitative determination of relevant scale independent drug transport rate constants. SubCuTIS captures key in vivo physiological characteristics of the subQ tissues, and it differentiates the transport behavior of various chemically distinct molecules. We supplemented the transport measurements with theoretical modeling, which identified subtle differences in the local absorption rate constants of seven clinically available mAbs. Accounting for first-order proteolytic catabolism, we established a mathematical framework to assess clinical bioavailability using the local absorption rate constants obtained from SubCuTIS. Taken together, the technology described here broadens the applicability of organs-on-chips as a standardized and easy-to-use device for quantitative analysis of subQ drug transport.
Collapse
Affiliation(s)
- Vineeth Chandran Suja
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Qin M Qi
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, MA 02115, USA
| | | | | | - Suyog Shaha
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Supriya Prakash
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Ninad Kumbhojkar
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, MA 02115, USA
| | | | - Sylvain Huille
- Sanofi R&D, Impasse Des Ateliers, Vitry-sur-Seine 94400 France
| | | | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, MA 02115, USA
| |
Collapse
|
5
|
Li ZA, Sant S, Cho SK, Goodman SB, Bunnell BA, Tuan RS, Gold MS, Lin H. Synovial joint-on-a-chip for modeling arthritis: progress, pitfalls, and potential. Trends Biotechnol 2023; 41:511-527. [PMID: 35995600 PMCID: PMC9938846 DOI: 10.1016/j.tibtech.2022.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 12/30/2022]
Abstract
Disorders of the synovial joint, such as osteoarthritis (OA) and rheumatoid arthritis (RA), afflict a substantial proportion of the global population. However, current clinical management has not been focused on fully restoring the native function of joints. Organ-on-chip (OoC), also called a microphysiological system, which typically accommodates multiple human cell-derived tissues/organs under physiological culture conditions, is an emerging platform that potentially overcomes the limitations of current models in developing therapeutics. Herein, we review major steps in the generation of OoCs for studying arthritis, discuss the challenges faced when these novel platforms enter the next phase of development and application, and present the potential for OoC technology to investigate the pathogenesis of joint diseases and the development of efficacious therapies.
Collapse
Affiliation(s)
- Zhong Alan Li
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15260, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Sung Kwon Cho
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA
| | - Stuart B Goodman
- Departments of Orthopaedic Surgery and Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rocky S Tuan
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Michael S Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15260, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
6
|
Rogal J, Roosz J, Teufel C, Cipriano M, Xu R, Eisler W, Weiss M, Schenke‐Layland K, Loskill P. Autologous Human Immunocompetent White Adipose Tissue-on-Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104451. [PMID: 35466539 PMCID: PMC9218765 DOI: 10.1002/advs.202104451] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/03/2022] [Indexed: 05/07/2023]
Abstract
Obesity and associated diseases, such as diabetes, have reached epidemic proportions globally. In this era of "diabesity", white adipose tissue (WAT) has become a target of high interest for therapeutic strategies. To gain insights into mechanisms of adipose (patho-)physiology, researchers traditionally relied on animal models. Leveraging Organ-on-Chip technology, a microphysiological in vitro model of human WAT is introduced: a tailored microfluidic platform featuring vasculature-like perfusion that integrates 3D tissues comprising all major WAT-associated cellular components (mature adipocytes, organotypic endothelial barriers, stromovascular cells including adipose tissue macrophages) in an autologous manner and recapitulates pivotal WAT functions, such as energy storage and mobilization as well as endocrine and immunomodulatory activities. A precisely controllable bottom-up approach enables the generation of a multitude of replicates per donor circumventing inter-donor variability issues and paving the way for personalized medicine. Moreover, it allows to adjust the model's degree of complexity via a flexible mix-and-match approach. This WAT-on-Chip system constitutes the first human-based, autologous, and immunocompetent in vitro adipose tissue model that recapitulates almost full tissue heterogeneity and can become a powerful tool for human-relevant research in the field of metabolism and its associated diseases as well as for compound testing and personalized- and precision medicine applications.
Collapse
Affiliation(s)
- Julia Rogal
- Department for Microphysiological Systems, Institute of Biomedical EngineeringEberhard Karls University TübingenÖsterbergstr. 3Tübingen72074Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGBNobelstr. 12Stuttgart70569Germany
| | - Julia Roosz
- NMI Natural and Medical Sciences Institute at the University of TübingenMarkwiesenstr. 55Reutlingen72770Germany
| | - Claudia Teufel
- Department for Microphysiological Systems, Institute of Biomedical EngineeringEberhard Karls University TübingenÖsterbergstr. 3Tübingen72074Germany
| | - Madalena Cipriano
- Department for Microphysiological Systems, Institute of Biomedical EngineeringEberhard Karls University TübingenÖsterbergstr. 3Tübingen72074Germany
- 3R‐Center for In vitro Models and Alternatives to Animal TestingEberhard Karls University TübingenÖsterbergstr. 3Tübingen72074Germany
| | - Raylin Xu
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGBNobelstr. 12Stuttgart70569Germany
- Harvard Medical School (HMS)25 Shattuck StBostonMA02115USA
| | - Wiebke Eisler
- Clinic for PlasticReconstructiveHand and Burn SurgeryBG Trauma CenterEberhard Karls University TübingenSchnarrenbergstraße 95Tübingen72076Germany
| | - Martin Weiss
- NMI Natural and Medical Sciences Institute at the University of TübingenMarkwiesenstr. 55Reutlingen72770Germany
- Department of Women's HealthEberhard Karls University TübingenCalwerstrasse 7Tübingen72076Germany
| | - Katja Schenke‐Layland
- NMI Natural and Medical Sciences Institute at the University of TübingenMarkwiesenstr. 55Reutlingen72770Germany
- Department of Medicine/CardiologyCardiovascular Research LaboratoriesDavid Geffen School of Medicine at UCLA675 Charles E. Young Drive South, MRL 3645Los AngelesCA90095USA
- Cluster of Excellence iFIT (EXC2180) “Image‐Guided and Functionally Instructed Tumor Therapies”Eberhard Karls University TuebingenRöntgenweg 11Tuebingen72076Germany
- Department for Medical Technologies and Regenerative MedicineInstitute of Biomedical EngineeringEberhard Karls University TübingenSilcherstr. 7/1Tübingen72076Germany
| | - Peter Loskill
- Department for Microphysiological Systems, Institute of Biomedical EngineeringEberhard Karls University TübingenÖsterbergstr. 3Tübingen72074Germany
- NMI Natural and Medical Sciences Institute at the University of TübingenMarkwiesenstr. 55Reutlingen72770Germany
- 3R‐Center for In vitro Models and Alternatives to Animal TestingEberhard Karls University TübingenÖsterbergstr. 3Tübingen72074Germany
| |
Collapse
|
7
|
Qi L, Zushin PJ, Chang CF, Lee YT, Alba DL, Koliwad S, Stahl A. Probing Insulin Sensitivity with Metabolically Competent Human Stem Cell-Derived White Adipose Tissue Microphysiological Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103157. [PMID: 34761526 PMCID: PMC8776615 DOI: 10.1002/smll.202103157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/21/2021] [Indexed: 05/13/2023]
Abstract
Impaired white adipose tissue (WAT) function has been recognized as a critical early event in obesity-driven disorders, but high buoyancy, fragility, and heterogeneity of primary adipocytes have largely prevented their use in drug discovery efforts highlighting the need for human stem cell-based approaches. Here, human stem cells are utilized to derive metabolically functional 3D adipose tissue (iADIPO) in a microphysiological system (MPS). Surprisingly, previously reported WAT differentiation approaches create insulin resistant WAT ill-suited for type-2 diabetes mellitus drug discovery. Using three independent insulin sensitivity assays, i.e., glucose and fatty acid uptake and suppression of lipolysis, as the functional readouts new differentiation conditions yielding hormonally responsive iADIPO are derived. Through concomitant optimization of an iADIPO-MPS, it is abled to obtain WAT with more unilocular and significantly larger (≈40%) lipid droplets compared to iADIPO in 2D culture, increased insulin responsiveness of glucose uptake (≈2-3 fold), fatty acid uptake (≈3-6 fold), and ≈40% suppressing of stimulated lipolysis giving a dynamic range that is competent to current in vivo and ex vivo models, allowing to identify both insulin sensitizers and desensitizers.
Collapse
Affiliation(s)
- Lin Qi
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Peter James Zushin
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Ching-Fang Chang
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Yue Tung Lee
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Diana L. Alba
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California, San Francisco; Diabetes Center, University of California, San Francisco, San Francisco, California 94143, USA
| | - Suneil Koliwad
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California, San Francisco; Diabetes Center, University of California, San Francisco, San Francisco, California 94143, USA
| | - Andreas Stahl
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, California, 94720, USA
| |
Collapse
|
8
|
Tanataweethum N, Trang A, Lee C, Mehta J, Patel N, Cohen RN, Bhushan A. Investigation of insulin resistance through a multiorgan microfluidic organ-on-chip. Biomed Mater 2021; 17. [PMID: 34942604 DOI: 10.1088/1748-605x/ac4611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022]
Abstract
The development of hepatic insulin resistance (IR) is a critical factor in developing type 2 diabetes (T2D), where insulin fails to inhibit hepatic glucose production but retains its capacity to promote hepatic lipogenesis. Improving insulin sensitivity can be effective in preventing and treating T2D. However, selective control of glucose and lipid synthesis has been difficult. It is known that excess white adipose tissue is detrimental to insulin sensitivity, whereas brown adipose tissue transplantation can restore it in diabetic mice. However, challenges remain in our understanding of liver-adipose communication because the confounding effects of hypothalamic regulation of metabolic function cannot be ruled out in previous studies. There is a lack of in vitro models that use primary cells to study cellular-crosstalk under insulin resistant conditions. Building upon our previous work on the microfluidic primary liver and adipose organ-on-chips, we report for the first time the development of integrated insulin resistant liver-adipose (white and brown) organ-on-chip. The design of the microfluidic device was carried out using computational fluid dynamics; the experimental studies were conducted by carrying out detailed biochemical analysis RNA-seq analysis on both cell types. Further, we tested the hypothesis that brown adipocytes regulated both hepatic insulin sensitivity and lipogenesis. Our results show effective co-modulation of hepatic glucose and lipid synthesis through a platform for identifying potential therapeutics for IR and diabetes.
Collapse
Affiliation(s)
- Nida Tanataweethum
- Biomedical Engineering, Illinois Institute of Technology, Dept of Biomedical Engineering, 3255 South dearborn street, Chicago, Chicago, Illinois, 60616-3717, UNITED STATES
| | - Allyson Trang
- Biomedical Engineering, Illinois Institute of Technology, Dept of Biomedical Engineering, 3255 South Dearborn Street Wishnick Hall, Suite 314, Chicago, Chicago, Illinois, 60616-3717, UNITED STATES
| | - Chaeeun Lee
- Biomedical Engineering, Illinois Institute of Technology, Dept of Biomedical Engineering, 3255 South Dearborn Street Wishnick Hall, Suite 314, Chicago, Chicago, Illinois, 60616-3717, UNITED STATES
| | - Jhalak Mehta
- Biomedical Engineering, Illinois Institute of Technology, Dept of Biomedical Engineering, 3255 South dearborn street, Chicago, Chicago, Illinois, 60616-3717, UNITED STATES
| | - Neha Patel
- Illinois Institute of Technology, Dept of Biomedical Engineering, 3255 South dearborn street, Chicago, Chicago, Illinois, 60616-3717, UNITED STATES
| | - Ronald N Cohen
- Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC 1027, Chicago, Chicago, Illinois, 60637-1476, UNITED STATES
| | - Abhinav Bhushan
- Biomedical Engineering, Illinois Institute of Technology, 3255 S Dearborn St, Wishnick 314, Chicago, Chicago, Illinois, 60616-3717, UNITED STATES
| |
Collapse
|
9
|
Joseph X, Akhil V, Arathi A, Mohanan PV. Comprehensive Development in Organ-On-A-Chip Technology. J Pharm Sci 2021; 111:18-31. [PMID: 34324944 DOI: 10.1016/j.xphs.2021.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022]
Abstract
The expeditious advancement in the organ on chip technology provided a phase change to the conventional in vitro tests used to evaluate absorption, distribution, metabolism, excretion (ADME) studies and toxicity assessments. The demand for an accurate predictive model for assessing toxicity and reducing the potential risk factors became the prime area of any drug delivery process. Researchers around the globe are welcoming the incorporation of organ-on-a-chips for ADME and toxicity evaluation. Organ-on-a-chip (OOC) is an interdisciplinary technology that evolved as a contemporary in vitro model for the pharmacokinetics and pharmacodynamics (PK-PD) studies of a proposed drug candidate in the pre-clinical phases of drug development. The OOC provides a platform that mimics the physiological functions occurring in the human body. The precise flow control systems and the rapid sample processing makes OOC more advanced than the conventional two-dimensional (2D) culture systems. The integration of various organs as in the multi organs-on-a-chip provides more significant ideas about the time and dose dependant effects occurring in the body when a new drug molecule is administered as part of the pre-clinical times. This review outlines the comprehensive development in the organ-on-a-chip technology, various OOC models and its drug development applications, toxicity evaluation and efficacy studies.
Collapse
Affiliation(s)
- X Joseph
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - V Akhil
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| |
Collapse
|
10
|
Weems AC, Arno MC, Yu W, Huckstepp RTR, Dove AP. 4D polycarbonates via stereolithography as scaffolds for soft tissue repair. Nat Commun 2021; 12:3771. [PMID: 34226548 PMCID: PMC8257657 DOI: 10.1038/s41467-021-23956-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
3D printing has emerged as one of the most promising tools to overcome the processing and morphological limitations of traditional tissue engineering scaffold design. However, there is a need for improved minimally invasive, void-filling materials to provide mechanical support, biocompatibility, and surface erosion characteristics to ensure consistent tissue support during the healing process. Herein, soft, elastomeric aliphatic polycarbonate-based materials were designed to undergo photopolymerization into supportive soft tissue engineering scaffolds. The 4D nature of the printed scaffolds is manifested in their shape memory properties, which allows them to fill model soft tissue voids without deforming the surrounding material. In vivo, adipocyte lobules were found to infiltrate the surface-eroding scaffold within 2 months, and neovascularization was observed over the same time. Notably, reduced collagen capsule thickness indicates that these scaffolds are highly promising for adipose tissue engineering and repair. Shape memory scaffolds are needed for minimally invasive tissue repair and void filling. Here the authors report on the development of 4D printed polycarbonate-based scaffolds with surface degradation properties which fill voids without deforming tissue and allow for tissue ingrowth with reduced immune response.
Collapse
Affiliation(s)
- Andrew C Weems
- School of Chemistry, University of Birmingham, Birmingham, UK.
| | - Maria C Arno
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Wei Yu
- School of Chemistry, University of Birmingham, Birmingham, UK
| | | | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Arora S, Srinivasan A, Leung CM, Toh YC. Bio-mimicking Shear Stress Environments for Enhancing Mesenchymal Stem Cell Differentiation. Curr Stem Cell Res Ther 2021; 15:414-427. [PMID: 32268869 DOI: 10.2174/1574888x15666200408113630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/03/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells, with the ability to differentiate into mesodermal (e.g., adipocyte, chondrocyte, hematopoietic, myocyte, osteoblast), ectodermal (e.g., epithelial, neural) and endodermal (e.g., hepatocyte, islet cell) lineages based on the type of induction cues provided. As compared to embryonic stem cells, MSCs hold a multitude of advantages from a clinical translation perspective, including ease of isolation, low immunogenicity and limited ethical concerns. Therefore, MSCs are a promising stem cell source for different regenerative medicine applications. The in vitro differentiation of MSCs into different lineages relies on effective mimicking of the in vivo milieu, including both biochemical and mechanical stimuli. As compared to other biophysical cues, such as substrate stiffness and topography, the role of fluid shear stress (SS) in regulating MSC differentiation has been investigated to a lesser extent although the role of interstitial fluid and vascular flow in regulating the normal physiology of bone, muscle and cardiovascular tissues is well-known. This review aims to summarise the current state-of-the-art regarding the role of SS in the differentiation of MSCs into osteogenic, cardiovascular, chondrogenic, adipogenic and neurogenic lineages. We will also highlight and discuss the potential of employing SS to augment the differentiation of MSCs to other lineages, where SS is known to play a role physiologically but has not yet been successfully harnessed for in vitro differentiation, including liver, kidney and corneal tissue lineage cells. The incorporation of SS, in combination with biochemical and biophysical cues during MSC differentiation, may provide a promising avenue to improve the functionality of the differentiated cells by more closely mimicking the in vivo milieu.
Collapse
Affiliation(s)
- Seep Arora
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, 117583, Singapore
| | - Akshaya Srinivasan
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, 117583, Singapore
| | - Chak Ming Leung
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, 117583, Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, 117583, Singapore
| |
Collapse
|
12
|
Hargrove-Grimes P, Low LA, Tagle DA. Microphysiological systems: What it takes for community adoption. Exp Biol Med (Maywood) 2021; 246:1435-1446. [PMID: 33899539 DOI: 10.1177/15353702211008872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microphysiological systems (MPS) are promising in vitro tools which could substantially improve the drug development process, particularly for underserved patient populations such as those with rare diseases, neural disorders, and diseases impacting pediatric populations. Currently, one of the major goals of the National Institutes of Health MPS program, led by the National Center for Advancing Translational Sciences (NCATS), is to demonstrate the utility of this emerging technology and help support the path to community adoption. However, community adoption of MPS technology has been hindered by a variety of factors including biological and technological challenges in device creation, issues with validation and standardization of MPS technology, and potential complications related to commercialization. In this brief Minireview, we offer an NCATS perspective on what current barriers exist to MPS adoption and provide an outlook on the future path to adoption of these in vitro tools.
Collapse
Affiliation(s)
- Passley Hargrove-Grimes
- 390834National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucie A Low
- 390834National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danilo A Tagle
- 390834National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Yang F, Carmona A, Stojkova K, Garcia Huitron EI, Goddi A, Bhushan A, Cohen RN, Brey EM. A 3D human adipose tissue model within a microfluidic device. LAB ON A CHIP 2021; 21:435-446. [PMID: 33351023 PMCID: PMC7876365 DOI: 10.1039/d0lc00981d] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An accurate in vitro model of human adipose tissue could assist in the study of adipocyte function and allow for better tools for screening new therapeutic compounds. Cell culture models on two-dimensional surfaces fall short of mimicking the three-dimensional in vivo adipose environment, while three-dimensional culture models are often unable to support long-term cell culture due, in part, to insufficient mass transport. Microfluidic systems have been explored for adipose tissue models. However, current systems have primarily focused on 2D cultured adipocytes. In this work, a 3D human adipose microtissue was engineered within a microfluidic system. Human adipose-derived stem cells (ADSCs) were used as the cell source for generating differentiated adipocytes. The ADSCs differentiated within the microfluidic system formed a dense lipid-loaded mass with the expression of adipose tissue genetic markers. Engineered adipose tissue showed a decreased adiponectin secretion and increased free fatty acid secretion with increasing shear stress. Adipogenesis markers were downregulated with increasing shear stress. Overall, this microfluidic system enables the on-chip differentiation and development of a functional 3D human adipose microtissue supported by the interstitial flow. This system could potentially serve as a platform for in vitro drug testing for adipose tissue-related diseases.
Collapse
Affiliation(s)
- Feipeng Yang
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, 60616, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
McCarthy M, Brown T, Alarcon A, Williams C, Wu X, Abbott RD, Gimble J, Frazier T. Fat-On-A-Chip Models for Research and Discovery in Obesity and Its Metabolic Comorbidities. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:586-595. [PMID: 32216545 PMCID: PMC8196547 DOI: 10.1089/ten.teb.2019.0261] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
The obesity epidemic and its associated comorbidities present a looming challenge to health care delivery throughout the world. Obesity is characterized as a sterile inflammatory process within adipose tissues leading to dysregulated secretion of bioactive adipokines such as adiponectin and leptin, as well as systemic metabolic dysfunction. The majority of current obesity research has focused primarily on preclinical animal models in vivo and two-dimensional cell culture models in vitro. Neither of these generalized approaches is optimal due to interspecies variability, insufficient accuracy with respect to predicting human outcomes, and failure to recapitulate the three-dimensional (3D) microenvironment. Consequently, there is a growing demand and need for more sophisticated microphysiological systems to reproduce more physiologically accurate human white and brown/beige adipose depots. To address this research need, human and murine cell lines and primary cultures are being combined with bioscaffolds to create functional 3D environments that are suitable for metabolically active adipose organoids in both static and perfusion bioreactor cultures. The development of these technologies will have considerable impact on the future pace of discovery for novel small molecules and biologics designed to prevent and treat metabolic syndrome and obesity in humans. Furthermore, when these adipose tissue models are integrated with other organ systems they will have applicability to obesity-related disorders such as diabetes, nonalcoholic fatty liver disease, and osteoarthritis. Impact statement The current review article summarizes the advances made within the organ-onchip field, as it pertains to adipose tissue models of obesity and obesity-related syndromes, such as diabetes, non-alcoholic fatty liver disease, and osteoarthritis. As humanized 3D adipose-derived constructs become more accessible to the research community, it is anticipated that they will accelerate and enhance the drug discovery pipeline for obesity, diabetes, and metabolic diseases by reducing the preclinical evaluation process and improving predictive accuracy. Such developments, applications, and usages of existing technologies can change the paradigm of personalized medicine and create substantial progress in our approach to modern medicine.
Collapse
Affiliation(s)
| | - Theodore Brown
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Andrea Alarcon
- LaCell LLC, New Orleans, Louisiana, USA
- Obatala Sciences, Inc., New Orleans, Louisiana, USA
| | | | - Xiying Wu
- LaCell LLC, New Orleans, Louisiana, USA
- Obatala Sciences, Inc., New Orleans, Louisiana, USA
| | - Rosalyn D. Abbott
- Materials Science and Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Gimble
- LaCell LLC, New Orleans, Louisiana, USA
- Obatala Sciences, Inc., New Orleans, Louisiana, USA
| | - Trivia Frazier
- LaCell LLC, New Orleans, Louisiana, USA
- Obatala Sciences, Inc., New Orleans, Louisiana, USA
| |
Collapse
|
15
|
Pope BD, Warren CR, Dahl MO, Pizza CV, Henze DE, Sinatra NR, Gonzalez GM, Chang H, Liu Q, Glieberman AL, Ferrier JP, Cowan CA, Parker KK. Fattening chips: hypertrophy, feeding, and fasting of human white adipocytes in vitro. LAB ON A CHIP 2020; 20:4152-4165. [PMID: 33034335 PMCID: PMC7818847 DOI: 10.1039/d0lc00508h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Adipose is a distributed organ that performs vital endocrine and energy homeostatic functions. Hypertrophy of white adipocytes is a primary mode of both adaptive and maladaptive weight gain in animals and predicts metabolic syndrome independent of obesity. Due to the failure of conventional culture to recapitulate adipocyte hypertrophy, technology for production of adult-size adipocytes would enable applications such as in vitro testing of weight loss therapeutics. To model adaptive adipocyte hypertrophy in vitro, we designed and built fat-on-a-chip using fiber networks inspired by extracellular matrix in adipose tissue. Fiber networks extended the lifespan of differentiated adipocytes, enabling growth to adult sizes. By micropatterning preadipocytes in a native cytoarchitecture and by adjusting cell-to-cell spacing, rates of hypertrophy were controlled independent of culture time or differentiation efficiency. In vitro hypertrophy followed a nonlinear, nonexponential growth model similar to human development and elicited transcriptomic changes that increased overall similarity with primary tissue. Cells on the chip responded to simulated meals and starvation, which potentiated some adipocyte endocrine and metabolic functions. To test the utility of the platform for therapeutic development, transcriptional network analysis was performed, and retinoic acid receptors were identified as candidate drug targets. Regulation by retinoid signaling was suggested further by pharmacological modulation, where activation accelerated and inhibition slowed hypertrophy. Altogether, this work presents technology for mature adipocyte engineering, addresses the regulation of cell growth, and informs broader applications for synthetic adipose in pharmaceutical development, regenerative medicine, and cellular agriculture.
Collapse
Affiliation(s)
- Benjamin D Pope
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA. and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Curtis R Warren
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Madeleine O Dahl
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Christina V Pizza
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Douglas E Henze
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Nina R Sinatra
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Grant M Gonzalez
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Huibin Chang
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Qihan Liu
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Aaron L Glieberman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - John P Ferrier
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Chad A Cowan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA. and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
16
|
Tanataweethum N, Zhong F, Trang A, Lee C, Cohen RN, Bhushan A. Towards an Insulin Resistant Adipose Model on a Chip. Cell Mol Bioeng 2020; 14:89-99. [PMID: 33643468 DOI: 10.1007/s12195-020-00636-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/07/2020] [Indexed: 12/25/2022] Open
Abstract
Introduction Adipose tissue and adipocytes are primary regulators of insulin sensitivity and energy homeostasis. Defects in insulin sensitivity of the adipocytes predispose the body to insulin resistance (IR) that could lead to diabetes. However, the mechanisms mediating adipocyte IR remain elusive, which emphasizes the need to develop experimental models that can validate the insulin signaling pathways and discover new mechanisms in the search for novel therapeutics. Currently in vitro adipose organ-chip devices show superior cell function over conventional cell culture. However, none of these models represent disease states. Only when these in vitro models can represent both healthy and disease states, they can be useful for developing therapeutics. Here, we establish an organ-on-chip model of insulin-resistant adipocytes, as well as characterization in terms of insulin signaling pathway and lipid metabolism. Methods We differentiated, maintained, and induced insulin resistance into primary adipocytes in a microfluidic organ-on-chip. We then characterized IR by looking at the insulin signaling pathway and lipid metabolism, and validated by studying a diabetic drug, rosiglitazone. Results We confirmed the presence of insulin resistance through reduction of Akt phosphorylation, Glut4 expression, Glut4 translocation and glucose uptake. We also confirmed defects of disrupted insulin signaling through reduction of lipid accumulation from fatty acid uptake and elevation of glycerol secretion. Testing with rosiglitazone showed a significant improvement in insulin sensitivity and fatty acid metabolism as suggested by previous reports. Conclusions The adipose-chip exhibited key characteristics of IR and can serve as model to study diabetes and facilitate discovery of novel therapeutics.
Collapse
Affiliation(s)
- Nida Tanataweethum
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Franklin Zhong
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Allyson Trang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Chaeeun Lee
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Ronald N Cohen
- Section of Endocrinology, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| |
Collapse
|