1
|
Rebnegger C, Flores-Villegas M, Kowarz V, De S, Pusterla A, Holm H, Adelantado N, Kiziak C, Mattanovich D, Gasser B. Knock-out of the major regulator Flo8 in Komagataella phaffii results in unique host strain performance for methanol-free recombinant protein production. N Biotechnol 2024; 84:105-114. [PMID: 39384085 DOI: 10.1016/j.nbt.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Flo8 is a main transcriptional regulator of flocculation and pseudohyphal growth in yeast. Disruption of FLO8 in the popular recombinant protein production host Komagataella phaffii (Pichia pastoris) prevents pseudohyphal growth and reduces cell-to-surface adherence, making the mutant an interesting platform for research and industry. However, knowledge of the physiological impact of the mutation remained scarce. In-depth analysis of transcriptome data from FLO8-deficient K. phaffii revealed that Flo8 affects genes involved in cell cycle, mating, respiration, and catabolite repression additionally to flocculation targets. One gene with considerably increased expression in flo8 was GTH1, encoding a high-affinity glucose transporter in K. phaffii. Its promoter (PG1) was previously established as a strong, glucose-regulatable alternative to methanol-induced promoters. PG1 and its improved derivatives PG1-3, D-PGS4 and D-PGS5, proved to be promising candidates for controlling recombinant protein production in the FLO8-deficient background. In small-scale screenings, PG13-controlled intracellular EGFP levels were 2.8-fold higher, and yields of different secreted recombinant proteins were up to 4.8-fold increased. The enhanced productivity of the flo8 mutant in combination with the PG1 variants was transferrable to glucose-limited fed-batch processes and could largely be attributed to higher transcriptional activity of the promoter, leading to a much higher productivity per chromosomally integrated gene copy. K. phaffii flo8 has many advantageous characteristics, such as reduced surface growth and increased transcriptional strength of glucose-regulatable promoters. These features turn the flo8 strain into a valuable new base strain for various experimental designs and establish flo8 as an excellent strain background for methanol-free recombinant protein production processes.
Collapse
Affiliation(s)
- Corinna Rebnegger
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, BOKU University, Vienna, Austria; BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | - Mirelle Flores-Villegas
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, BOKU University, Vienna, Austria; BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, Austria
| | - Viktoria Kowarz
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, BOKU University, Vienna, Austria; BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, Austria
| | - Sonakshi De
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria; Lonza AG, Visp, Switzerland
| | | | | | | | | | - Diethard Mattanovich
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | - Brigitte Gasser
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, BOKU University, Vienna, Austria; BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.
| |
Collapse
|
2
|
Li D, Wang Y, Zhu S, Hu X, Liang R. Recombinant fibrous protein biomaterials meet skin tissue engineering. Front Bioeng Biotechnol 2024; 12:1411550. [PMID: 39205856 PMCID: PMC11349559 DOI: 10.3389/fbioe.2024.1411550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Natural biomaterials, particularly fibrous proteins, are extensively utilized in skin tissue engineering. However, their application is impeded by batch-to-batch variance, limited chemical or physical versatility, and environmental concerns. Recent advancements in gene editing and fermentation technology have catalyzed the emergence of recombinant fibrous protein biomaterials, which are gaining traction in skin tissue engineering. The modular and highly customizable nature of recombinant synthesis enables precise control over biomaterial design, facilitating the incorporation of multiple functional motifs. Additionally, recombinant synthesis allows for a transition from animal-derived sources to microbial sources, thereby reducing endotoxin content and rendering recombinant fibrous protein biomaterials more amenable to scalable production and clinical use. In this review, we provide an overview of prevalent recombinant fibrous protein biomaterials (collagens, elastin, silk proteins and their chimeric derivatives) used in skin tissue engineering (STE) and compare them with their animal-derived counterparts. Furthermore, we discuss their applications in STE, along with the associated challenges and future prospects.
Collapse
Affiliation(s)
- Dipeng Li
- Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Yirong Wang
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Shan Zhu
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Xuezhong Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Renjie Liang
- Hangzhou Ninth People’s Hospital, Hangzhou, China
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
- School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Inokuma K, Toyohara K, Hamada T, Kondo A, Hasunuma T. One-pot synthesis of cellobiose from sucrose using sucrose phosphorylase and cellobiose phosphorylase co-displaying Pichia pastoris as a reusable whole-cell biocatalyst. Sci Rep 2024; 14:18540. [PMID: 39122907 PMCID: PMC11315685 DOI: 10.1038/s41598-024-69676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
Cellobiose has received increasing attention in various industrial sectors, ranging from food and feed to cosmetics. The development of large-scale cellobiose applications requires a cost-effective production technology as currently used methods based on cellulose hydrolysis are costly. Here, a one-pot synthesis of cellobiose from sucrose was conducted using a recombinant Pichia pastoris strain as a reusable whole-cell biocatalyst. Thermophilic sucrose phosphorylase from Bifidobacterium longum (BlSP) and cellobiose phosphorylase from Clostridium stercorarium (CsCBP) were co-displayed on the cell surface of P. pastoris via a glycosylphosphatidylinositol-anchoring system. Cells of the BlSP and CsCBP co-displaying P. pastoris strain were used as whole-cell biocatalysts to convert sucrose to cellobiose with commercial thermophilic xylose isomerase. Cellobiose productivity significantly improved with yeast cells grown on glycerol compared to glucose-grown cells. In one-pot bioconversion using glycerol-grown yeast cells, approximately 81.2 g/L of cellobiose was produced from 100 g/L of sucrose, corresponding to 81.2% of the theoretical maximum yield, within 24 h at 60 °C. Moreover, recombinant yeast cells maintained a cellobiose titer > 80 g/L, even after three consecutive cell-recycling one-pot bioconversion cycles. These results indicated that one-pot bioconversion using yeast cells displaying two phosphorylases as whole-cell catalysts is a promising approach for cost-effective cellobiose production.
Collapse
Affiliation(s)
- Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Kiyotsuna Toyohara
- Iwakuni Research Center, TEIJIN Limited, 2-1 Hinode, Iwakuni, Yamagichi, 740-8511, Japan
| | - Tomoya Hamada
- Iwakuni Research Center, TEIJIN Limited, 2-1 Hinode, Iwakuni, Yamagichi, 740-8511, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan.
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan.
| |
Collapse
|
4
|
Kastberg LLB, Petrov MS, Strucko T, Jensen MK, Workman CT. Codon-tRNA Coadaptation Bias for Identifying Strong Native Promoters in Komagataella phaffii. ACS Synth Biol 2024; 13:714-720. [PMID: 38381624 DOI: 10.1021/acssynbio.3c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Promoters are crucial elements for engineering microbial production strains used in bioprocesses. For the increasingly popular chassis Komagataella phaffii (formerly Pichia pastoris), a limited number of well-characterized promoters constrain the data-driven engineering of production strains. Here, we present an in silico approach for condition-independent de novo identification of strong native promoters. The method relies on tRNA-codon coadaptation of coding sequences in the K. phaffii genome and is based on two complementary scores: the number of effective codons and the tRNA adaptation index. Genes with high codon bias are expected to be translated efficiently and, thus, also be under control of strong promoters. Using this approach, we identified promising strong promoter candidates and experimentally assessed their activity using fluorescent reporter assays characterizing 50 promoters spanning a 76-fold difference in expression levels in a glucose medium. Overall, we report several promoters that should be added to the molecular toolbox for engineering of K. phaffii and present an approach for identifying promoters in microbial genomes.
Collapse
Affiliation(s)
- Louise La Barbera Kastberg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, 2800 Kgs. Lyngby, Denmark
| | - Mykhaylo S Petrov
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Tomas Strucko
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, 2800 Kgs. Lyngby, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Rebnegger C, Coltman BL, Kowarz V, Peña DA, Mentler A, Troyer C, Hann S, Schöny H, Koellensperger G, Mattanovich D, Gasser B. Protein production dynamics and physiological adaptation of recombinant Komagataella phaffii at near-zero growth rates. Microb Cell Fact 2024; 23:43. [PMID: 38331812 PMCID: PMC10851509 DOI: 10.1186/s12934-024-02314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Specific productivity (qP) in yeast correlates with growth, typically peaking at intermediate or maximum specific growth rates (μ). Understanding the factors limiting productivity at extremely low μ might reveal decoupling strategies, but knowledge of production dynamics and physiology in such conditions is scarce. Retentostats, a type of continuous cultivation, enable the well-controlled transition to near-zero µ through the combined retention of biomass and limited substrate supply. Recombinant Komagataella phaffii (syn Pichia pastoris) secreting a bivalent single domain antibody (VHH) was cultivated in aerobic, glucose-limited retentostats to investigate recombinant protein production dynamics and broaden our understanding of relevant physiological adaptations at near-zero growth conditions. RESULTS By the end of the retentostat cultivation, doubling times of approx. two months were reached, corresponding to µ = 0.00047 h-1. Despite these extremely slow growth rates, the proportion of viable cells remained high, and de novo synthesis and secretion of the VHH were observed. The average qP at the end of the retentostat was estimated at 0.019 mg g-1 h-1. Transcriptomics indicated that genes involved in protein biosynthesis were only moderately downregulated towards zero growth, while secretory pathway genes were mostly regulated in a manner seemingly detrimental to protein secretion. Adaptation to near-zero growth conditions of recombinant K. phaffii resulted in significant changes in the total protein, RNA, DNA and lipid content, and lipidomics revealed a complex adaptation pattern regarding the lipid class composition. The higher abundance of storage lipids as well as storage carbohydrates indicates that the cells are preparing for long-term survival. CONCLUSIONS In conclusion, retentostat cultivation proved to be a valuable tool to identify potential engineering targets to decouple growth and protein production and gain important insights into the physiological adaptation of K. phaffii to near-zero growth conditions.
Collapse
Affiliation(s)
- Corinna Rebnegger
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Benjamin L Coltman
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Viktoria Kowarz
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - David A Peña
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Axel Mentler
- Department of Forest- and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82, 1190, Vienna, Austria
| | - Christina Troyer
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Harald Schöny
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Diethard Mattanovich
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Brigitte Gasser
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
6
|
De Brabander P, Uitterhaegen E, Delmulle T, De Winter K, Soetaert W. Challenges and progress towards industrial recombinant protein production in yeasts: A review. Biotechnol Adv 2023; 64:108121. [PMID: 36775001 DOI: 10.1016/j.biotechadv.2023.108121] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Recombinant proteins (RP) are widely used as biopharmaceuticals, industrial enzymes, or sustainable food source. Yeasts, with their ability to produce complex proteins through a broad variety of cheap carbon sources, have emerged as promising eukaryotic production hosts. As such, the prevalence of yeasts as favourable production organisms in commercial RP production is expected to increase. Yet, with the selection of a robust production host on the one hand, successful scale-up is dependent on a thorough understanding of the challenging environment and limitations of large-scale bioreactors on the other hand. In the present work, several prominent yeast species, including Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, Kluyveromyces lactis and Kluyveromyces marxianus are reviewed for their current state and performance in commercial RP production. Thereafter, the impact of principal process control parameters, including dissolved oxygen, pH, substrate concentration, and temperature, on large-scale RP production are discussed. Finally, technical challenges of process scale-up are identified. To that end, process intensification strategies to enhance industrial feasibility are summarized, specifically highlighting fermentation strategies to ensure sufficient cooling capacity, overcome oxygen limitation, and increase protein quality and productivity. As such, this review aims to contribute to the pursuit of sustainable yeast-based RP production.
Collapse
Affiliation(s)
- Pieter De Brabander
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Evelien Uitterhaegen
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Tom Delmulle
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Karel De Winter
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium.
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| |
Collapse
|
7
|
Montini N, Doughty TW, Domenzain I, Fenton DA, Baranov PV, Harrington R, Nielsen J, Siewers V, Morrissey JP. Identification of a novel gene required for competitive growth at high temperature in the thermotolerant yeast Kluyveromyces marxianus. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35333706 PMCID: PMC9558357 DOI: 10.1099/mic.0.001148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is important to understand the basis of thermotolerance in yeasts to broaden their application in industrial biotechnology. The capacity to run bioprocesses at temperatures above 40 °C is of great interest but this is beyond the growth range of most of the commonly used yeast species. In contrast, some industrial yeasts such as Kluyveromyces marxianus can grow at temperatures of 45 °C or higher. Such species are valuable for direct use in industrial biotechnology and as a vehicle to study the genetic and physiological basis of yeast thermotolerance. In previous work, we reported that evolutionarily young genes disproportionately changed expression when yeast were growing under stressful conditions and postulated that such genes could be important for long-term adaptation to stress. Here, we tested this hypothesis in K. marxianus by identifying and studying species-specific genes that showed increased expression during high-temperature growth. Twelve such genes were identified and 11 were successfully inactivated using CRISPR-mediated mutagenesis. One gene, KLMX_70384, is required for competitive growth at high temperature, supporting the hypothesis that evolutionary young genes could play roles in adaptation to harsh environments. KLMX_70384 is predicted to encode an 83 aa peptide, and RNA sequencing and ribo-sequencing were used to confirm transcription and translation of the gene. The precise function of KLMX_70384 remains unknown but some features are suggestive of RNA-binding activity. The gene is located in what was previously considered an intergenic region of the genome, which lacks homologues in other yeasts or in databases. Overall, the data support the hypothesis that genes that arose de novo in K. marxianus after the speciation event that separated K. marxianus and K. lactis contribute to some of its unique traits.
Collapse
Affiliation(s)
- Noemi Montini
- School of Microbiology, APC Microbiome Ireland, Environmental Research Institute and SUSFERM Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Tyler W Doughty
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Iván Domenzain
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Darren A Fenton
- School of Microbiology, APC Microbiome Ireland, Environmental Research Institute and SUSFERM Centre, University College Cork, Cork T12 K8AF, Ireland.,School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland
| | - Ronan Harrington
- School of Microbiology, APC Microbiome Ireland, Environmental Research Institute and SUSFERM Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - John P Morrissey
- School of Microbiology, APC Microbiome Ireland, Environmental Research Institute and SUSFERM Centre, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
8
|
Gao J, Ye C, Cheng J, Jiang L, Yuan X, Lian J. Enhancing Homologous Recombination Efficiency in Pichia pastoris for Multiplex Genome Integration Using Short Homology Arms. ACS Synth Biol 2022; 11:547-553. [PMID: 35061355 DOI: 10.1021/acssynbio.1c00366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is a growing interest in establishing the methylotrophic yeast Pichia pastoris as microbial cell factories for producing fuels, chemicals, and natural products, particularly with methanol as the feedstock. Although CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) based genome editing technology has been established for the integration of multigene biosynthetic pathways, long (500-1000 bp) homology arms are generally required, probably due to low homologous recombination (HR) efficiency in P. pastoris. To achieve efficient genome integration of heterologous genes with short homology arms, we aimed to enhance HR efficiency by introducing the recombination machinery from Saccharomyces cerevisiae. First, we overexpressed HR related genes, including RAD52, RAD59, MRE11, and SAE2, and evaluated their effects on genome integration efficiency. Then, we constructed HR efficiency enhanced P. pastoris, which enabled single-, two-, and three-loci integration of heterologous gene expression cassettes with ∼40 bp homology arms with efficiencies as high as 100%, ∼98%, and ∼81%, respectively. Finally, we demonstrated the construction of β-carotene producing strain and the optimization of betaxanthin producing strain in a single step. The HR efficiency enhanced P. pastoris strains can be used for the construction of robust cell factories, and our machinery engineering strategy can be employed for the modification of other nonconventional yeasts.
Collapse
Affiliation(s)
- Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Jintao Cheng
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinghao Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Rinnofner C, Felber M, Pichler H. Strains and Molecular Tools for Recombinant Protein Production in Pichia pastoris. Methods Mol Biol 2022; 2513:79-112. [PMID: 35781201 DOI: 10.1007/978-1-0716-2399-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Within the last two decades, the methylotrophic yeast Pichia pastoris (Komagataella phaffii) has become an important alternative to E. coli or mammalian cell lines for the production of recombinant proteins. Easy handling, strong promoters, and high cell density cultivations as well as the capability of posttranslational modifications are some of the major benefits of this yeast. The high secretion capacity and low level of endogenously secreted proteins further promoted the rapid development of a versatile Pichia pastoris toolbox. This chapter reviews common and new "Pichia tools" and their specific features. Special focus is given to expression strains, such as different methanol utilization, protease-deficient or glycoengineered strains, combined with application highlights. Different promoters and signal sequences are also discussed.
Collapse
Affiliation(s)
- Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.
- Bisy GmbH, Hofstaetten/Raab, Austria.
| | - Michael Felber
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
10
|
Ergün BG, Berrios J, Binay B, Fickers P. Recombinant protein production in Pichia pastoris: From transcriptionally redesigned strains to bioprocess optimization and metabolic modelling. FEMS Yeast Res 2021; 21:6424904. [PMID: 34755853 DOI: 10.1093/femsyr/foab057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Pichia pastoris is one of the most widely used host for the production of recombinant proteins. Expression systems that rely mostly on promoters from genes encoding alcohol oxidase 1 or glyceraldehyde-3-phosphate dehydrogenase have been developed together with related bioreactor operation strategies based on carbon sources such as methanol, glycerol, or glucose. Although, these processes are relatively efficient and easy to use, there have been notable improvements over the last twenty years to better control gene expression from these promoters and their engineered variants. Methanol-free and more efficient protein production platforms have been developed by engineering promoters and transcription factors. The production window of P. pastoris has been also extended by using alternative feedstocks including ethanol, lactic acid, mannitol, sorbitol, sucrose, xylose, gluconate, formate, or rhamnose. Herein, the specific aspects that are emerging as key parameters for recombinant protein synthesis are discussed. For this purpose, a holistic approach has been considered to scrutinize protein production processes from strain design to bioprocess optimization, particularly focusing on promoter engineering, transcriptional circuitry redesign. This review also considers the optimization of bioprocess based on alternative carbon sources and derived co-feeding strategies. Optimization strategies for recombinant protein synthesis through metabolic modelling are also discussed.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biotechnology Research Center, Ministry of Agriculture and Forestry, 06330 Ankara, Turkey.,Department of Chemical Engineering, Middle East Technical University, 06800 Ankara, Turkey.,UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Julio Berrios
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Patrick Fickers
- TERRA Teaching and Research Centre, University of Liege, Gembloux Agro-Bio Tech, Gembloux, Belgium
| |
Collapse
|
11
|
Gao J, Jiang L, Lian J. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products. Synth Syst Biotechnol 2021; 6:110-119. [PMID: 33997361 PMCID: PMC8113645 DOI: 10.1016/j.synbio.2021.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023] Open
Abstract
The methylotrophic yeast Pichia pastoris (a.k.a. Komagataella phaffii) is one of the most commonly used hosts for industrial production of recombinant proteins. As a non-conventional yeast, P. pastoris has unique biological characteristics and its expression system has been well developed. With the advances in synthetic biology, more efforts have been devoted to developing P. pastoris into a chassis for the production of various high-value compounds, such as natural products. This review begins with the introduction of synthetic biology tools for the engineering of P. pastoris, including vectors, promoters, and terminators for heterologous gene expression as well as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated System (CRISPR/Cas) for genome editing. This review is then followed by examples of the production of value-added natural products in metabolically engineered P. pastoris strains. Finally, challenges and outlooks in developing P. pastoris as a synthetic biology chassis are prospected.
Collapse
Affiliation(s)
- Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
12
|
Nieto-Taype MA, Garcia-Ortega X, Albiol J, Montesinos-Seguí JL, Valero F. Continuous Cultivation as a Tool Toward the Rational Bioprocess Development With Pichia Pastoris Cell Factory. Front Bioeng Biotechnol 2020; 8:632. [PMID: 32671036 PMCID: PMC7330098 DOI: 10.3389/fbioe.2020.00632] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is currently considered one of the most promising hosts for recombinant protein production (RPP) and metabolites due to the availability of several tools to efficiently regulate the recombinant expression, its ability to perform eukaryotic post-translational modifications and to secrete the product in the extracellular media. The challenge of improving the bioprocess efficiency can be faced from two main approaches: the strain engineering, which includes enhancements in the recombinant expression regulation as well as overcoming potential cell capacity bottlenecks; and the bioprocess engineering, focused on the development of rational-based efficient operational strategies. Understanding the effect of strain and operational improvements in bioprocess efficiency requires to attain a robust knowledge about the metabolic and physiological changes triggered into the cells. For this purpose, a number of studies have revealed chemostat cultures to provide a robust tool for accurate, reliable, and reproducible bioprocess characterization. It should involve the determination of key specific rates, productivities, and yields for different C and N sources, as well as optimizing media formulation and operating conditions. Furthermore, studies along the different levels of systems biology are usually performed also in chemostat cultures. Transcriptomic, proteomic and metabolic flux analysis, using different techniques like differential target gene expression, protein description and 13C-based metabolic flux analysis, are widely described as valued examples in the literature. In this scenario, the main advantage of a continuous operation relies on the quality of the homogeneous samples obtained under steady-state conditions, where both the metabolic and physiological status of the cells remain unaltered in an all-encompassing picture of the cell environment. This contribution aims to provide the state of the art of the different approaches that allow the design of rational strain and bioprocess engineering improvements in Pichia pastoris toward optimizing bioprocesses based on the results obtained in chemostat cultures. Interestingly, continuous cultivation is also currently emerging as an alternative operational mode in industrial biotechnology for implementing continuous process operations.
Collapse
Affiliation(s)
- Miguel Angel Nieto-Taype
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Garcia-Ortega
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joan Albiol
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - José Luis Montesinos-Seguí
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
13
|
Zavec D, Gasser B, Mattanovich D. Characterization of methanol utilization negative Pichia pastoris for secreted protein production: New cultivation strategies for current and future applications. Biotechnol Bioeng 2020; 117:1394-1405. [PMID: 32034758 PMCID: PMC7187134 DOI: 10.1002/bit.27303] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022]
Abstract
The methanol utilization (Mut) phenotype in the yeast Pichia pastoris (syn. Komagataella spp.) is defined by the deletion of the genes AOX1 and AOX2. The Mut- phenotype cannot grow on methanol as a single carbon source. We assessed the Mut- phenotype for secreted recombinant protein production. The methanol inducible AOX1 promoter (PAOX1 ) was active in the Mut- phenotype and showed adequate eGFP fluorescence levels and protein yields (YP/X ) in small-scale screenings. Different bioreactor cultivation scenarios with methanol excess concentrations were tested using PAOX1 HSA and PAOX1 vHH expression constructs. Scenario B comprising a glucose-methanol phase and a 72-hr-long methanol only phase was the best performing, producing 531 mg/L HSA and 1631 mg/L vHH. 61% of the HSA was produced in the methanol only phase where no biomass growth was observed, representing a special case of growth independent production. By using the Mut- phenotype, the oxygen demand, heat output, and specific methanol uptake (qmethanol ) in the methanol phase were reduced by more than 80% compared with the MutS phenotype. The highlighted improved process parameters coupled with growth independent protein production are overlooked benefits of the Mut- strain for current and future applications in the field of recombinant protein production.
Collapse
Affiliation(s)
- Domen Zavec
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- CD‐Laboratory for Growth‐Decoupled Protein Production in Yeast, Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Brigitte Gasser
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- CD‐Laboratory for Growth‐Decoupled Protein Production in Yeast, Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Diethard Mattanovich
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- CD‐Laboratory for Growth‐Decoupled Protein Production in Yeast, Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
14
|
Nieto-Taype MA, Garrigós-Martínez J, Sánchez-Farrando M, Valero F, Garcia-Ortega X, Montesinos-Seguí JL. Rationale-based selection of optimal operating strategies and gene dosage impact on recombinant protein production in Komagataella phaffii (Pichia pastoris). Microb Biotechnol 2019; 13:315-327. [PMID: 31657146 PMCID: PMC7017824 DOI: 10.1111/1751-7915.13498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/26/2022] Open
Abstract
Its features as a microbial and eukaryotic organism have turned Komagataella phaffii (Pichia pastoris) into an emerging cell factory for recombinant protein production (RPP). As a key step of the bioprocess development, this work aimed to demonstrate the importance of tailor designing the cultivation strategy according to the production kinetics of the cell factory. For this purpose, K. phaffii clones constitutively expressing (PGAP) Candida rugosa lipase 1 (Crl1) with different gene dosage were used as models in continuous and fed‐batch cultures. Production parameters were much greater with a multicopy clone (MCC) than with the single‐copy clone (SCC). Regarding production kinetics, the specific product generation rate (qP) increased linearly with increasing specific growth rate (µ) in SCC; by contrast, qP exhibited saturation in MCC. A transcriptional analysis in chemostat cultures suggested the presence of eventual post‐transcriptional bottlenecks in MCC. After the strain characterization, in order to fulfil overall development of the bioprocess, the performance of both clones was also evaluated in fed‐batch mode. Strikingly, different optimal strategies were determined for both models due to the different production kinetic patterns observed as a trade‐off for product titre, yields and productivity. The combined effect of gene dosage and adequate µ enables rational process development with a view to optimize K. phaffii RPP bioprocesses.
Collapse
Affiliation(s)
- Miguel Angel Nieto-Taype
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Javier Garrigós-Martínez
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marc Sánchez-Farrando
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Xavier Garcia-Ortega
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - José Luis Montesinos-Seguí
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
15
|
de Macedo Robert J, Garcia-Ortega X, Montesinos-Seguí JL, Guimaraes Freire DM, Valero F. Continuous operation, a realistic alternative to fed-batch fermentation for the production of recombinant lipase B from Candida antarctica under the constitutive promoter PGK in Pichia pastoris. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Cankorur-Cetinkaya A, Narraidoo N, Kasavi C, Slater NKH, Archer DB, Oliver SG. Process development for the continuous production of heterologous proteins by the industrial yeast, Komagataella phaffii. Biotechnol Bioeng 2018; 115:2962-2973. [PMID: 30267565 PMCID: PMC6283250 DOI: 10.1002/bit.26846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
The current trend in industrial biotechnology is to move from batch or fed-batch fermentations to continuous operations. The success of this transition will require the development of genetically stable production strains, the use of strong constitutive promoters, and the development of new medium formulations that allow an appropriate balance between cell growth and product formation. We identified genes that showed high expression in Komagataella phaffii during different steady-state conditions and explored the utility of promoters of these genes (Chr1-4_0586 and FragB_0052) in optimizing the expression of two different r-proteins, human lysozyme (HuLy), and the anti-idiotypic antibody fragment, Fab-3H6, in comparison with the widely used glyceraldehyde-3-phosphate dehydrogenase promoter. Our results showed that the promoter strength was highly dependent on the cultivation conditions and thus constructs should be tested under a range of conditions to determine both the best performing clone and the ideal promoter for the expression of the protein of interest. An important benefit of continuous production is that it facilitates the use of the genome-scale metabolic models in the design of strains and cultivation media. In silico flux distributions showed that production of either protein increased the flux through aromatic amino acid biosynthesis. Tyrosine supplementation increased the productivity for both proteins, whereas tryptophan addition did not cause any significant change and, phenylalanine addition increased the expression of HuLy but decreased that of Fab-3H6. These results showed that a genome-scale metabolic model can be used to assess the metabolic burden imposed by the synthesis of a specific r-protein and then this information can be used to tailor a cultivation medium to increase production.
Collapse
Affiliation(s)
- Ayca Cankorur-Cetinkaya
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Nathalie Narraidoo
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Ceyda Kasavi
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Nigel K H Slater
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge University West Site, Cambridge, United Kingdom
| | - David B Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Stephen G Oliver
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|