1
|
Chen YY, Huang JC, Wu CY, Yu SQ, Wang YT, Ye C, Shi TQ, Huang H. A comprehensive review on the recent advances for 5-aminolevulinic acid production by the engineered bacteria. Crit Rev Biotechnol 2025; 45:148-163. [PMID: 38705840 DOI: 10.1080/07388551.2024.2336532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 05/07/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.
Collapse
Affiliation(s)
- Ying-Ying Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jia-Cong Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Cai-Yun Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Shi-Qin Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Jin K, Yu L, Zhang Y, Niu L, Huang Y, Zhang Y, Wu Y. A Microrobotic System Based on Engineered Bacteria for Targeted Self-Driven Photodynamic Therapy. Angew Chem Int Ed Engl 2025; 64:e202414347. [PMID: 39607388 DOI: 10.1002/anie.202414347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Indexed: 11/29/2024]
Abstract
Photodynamic therapy (PDT) has been used clinically to treat superficial tumors for decades. However, its effectiveness against deep-seated tumors has been limited by the inefficient delivery of the key components -light, photosensitizer, and oxygen- required for the photochemical reactions in PDT. Here, we present a novel platform that enables the photochemical reaction to occur in a self-driven manner, eliminating the need for external delivery of these components and instead orchestrating their endogenous generation within tumors. This was achieved by genetically modifying probiotic Escherichia coli to host three modules - Lux, Hem1, and KatG - responsible for light production, photosensitizer biosynthesis, and oxygen generation, respectively. The system is self-driven, relying solely on substrates within E. coli cells and tumors. The modules exhibited prolonged activity for days within in vivo mouse models, enabling metronomic PDT that induced an immune response. This research holds promise for revolutionizing PDT and overcoming the enduring challenges encountered in its application for treating deep-seated tumors.
Collapse
Affiliation(s)
- Kai Jin
- Department of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd. 333, Shanghai, China
| | - Lin Yu
- Department of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd. 333, Shanghai, China
- School of Medicine, Shanghai University, Nanchen Rd. 333, Shanghai, China
- School of Medicine, Zhejiang University, Yuhangtang Rd. 333, Hangzhou, China
| | - Yue Zhang
- Department of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd. 333, Shanghai, China
| | - Luqi Niu
- Department of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd. 333, Shanghai, China
| | - Yi Huang
- Department of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd. 333, Shanghai, China
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yihan Wu
- Department of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd. 333, Shanghai, China
| |
Collapse
|
3
|
Zhou H, Zhang C, Li Z, Xia M, Li Z, Wang Z, Tan GY, Luo Y, Zhang L, Wang W. Systematic development of a highly efficient cell factory for 5-aminolevulinic acid production. Trends Biotechnol 2024; 42:1479-1502. [PMID: 39112275 DOI: 10.1016/j.tibtech.2024.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 11/17/2024]
Abstract
The versatile applications of 5-aminolevulinic acid (5-ALA) across the fields of agriculture, livestock, and medicine necessitate a cost-efficient biomanufacturing process. In this study, we achieved the economic viability of biomanufacturing this compound through a systematic engineering framework. First, we obtained a 5-ALA synthase (ALAS) with superior performance by exploring its natural diversity with divergent evolution. Subsequently, using a genome-scale model, we identified and modified four key targets from distinct pathways in Escherichia coli, resulting in a final enhancement of 5-ALA titers up to 21.82 g/l in a 5-l bioreactor. Furthermore, recognizing that an imbalance of redox equivalents hindered further titer improvement, we developed a dynamic control system that effectively balances redox status and carbon flux. Ultimately, we collaboratively optimized the artificial redox homeostasis system at the transcription level with other cofactors at the feeding level, demonstrating the highest recorded performance to date with a titer of 63.39 g/l for the biomanufacturing of 5-ALA.
Collapse
Affiliation(s)
- Houming Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Menglei Xia
- Metabolism and Fermentation Process Control, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenghong Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Yu F, Wang Z, Zhang Z, Zhou J, Li J, Chen J, Du G, Zhao X. Biosynthesis, acquisition, regulation, and upcycling of heme: recent advances. Crit Rev Biotechnol 2024; 44:1422-1438. [PMID: 38228501 DOI: 10.1080/07388551.2023.2291339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/25/2023] [Indexed: 01/18/2024]
Abstract
Heme, an iron-containing tetrapyrrole in hemoproteins, including: hemoglobin, myoglobin, catalase, cytochrome c, and cytochrome P450, plays critical physiological roles in different organisms. Heme-derived chemicals, such as biliverdin, bilirubin, and phycocyanobilin, are known for their antioxidant and anti-inflammatory properties and have shown great potential in fighting viruses and diseases. Therefore, more and more attention has been paid to the biosynthesis of hemoproteins and heme derivatives, which depends on the adequate heme supply in various microbial cell factories. The enhancement of endogenous biosynthesis and exogenous uptake can improve the intracellular heme supply, but the excess free heme is toxic to the cells. Therefore, based on the heme-responsive regulators, several sensitive biosensors were developed to fine-tune the intracellular levels of heme. In this review, recent advances in the: biosynthesis, acquisition, regulation, and upcycling of heme were summarized to provide a solid foundation for the efficient production and application of high-value-added hemoproteins and heme derivatives.
Collapse
Affiliation(s)
- Fei Yu
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Ziwei Wang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Zihan Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Wu J, Wu J, He RL, Hu L, Liu DF, Li WW. Modularized Engineering of Shewanella oneidensis MR-1 for Efficient and Directional Synthesis of 5-Aminolevulinic Acid. Metab Eng 2024; 83:206-215. [PMID: 38710300 DOI: 10.1016/j.ymben.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Shewanella oneidensis MR-1 has found widespread applications in pollutant transformation and bioenergy production, closely tied to its outstanding heme synthesis capabilities. However, this significant biosynthetic potential is still unexploited so far. Here, we turned this bacterium into a highly-efficient bio-factory for green synthesis of 5-Aminolevulinic Acid (5-ALA), an important chemical for broad applications in agriculture, medicine, and the food industries. The native C5 pathway genes of S. oneidensis was employed, together with the introduction of foreign anti-oxidation module, to establish the 5-ALA production module, resulting 87-fold higher 5-ALA yield and drastically enhanced tolerance than the wild type. Furthermore, the metabolic flux was regulated by using CRISPR interference and base editing techniques to suppress the competitive pathways to further improve the 5-ALA titer. The engineered strain exhibited 123-fold higher 5-ALA production capability than the wild type. This study not only provides an appealing new route for 5-ALA biosynthesis, but also presents a multi-dimensional modularized engineering strategy to broaden the application scope of S. oneidensis.
Collapse
Affiliation(s)
- Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China; Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230000, China
| | - Jing Wu
- School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230026, China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China; Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230000, China
| | - Lan Hu
- School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China.
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China; Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230000, China; School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
6
|
Wang W, Xiang Y, Yin G, Hu S, Cheng J, Chen J, Du G, Kang Z, Wang Y. Construction of 5-Aminolevulinic Acid Microbial Cell Factories through Identification of Novel Synthases and Metabolic Pathway Screens and Transporters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8006-8017. [PMID: 38554273 DOI: 10.1021/acs.jafc.4c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
5-Aminolevulinic acid (5-ALA) plays a pivotal role in the biosynthesis of heme and chlorophyll and has garnered great attention for its agricultural applications. This study explores the multifaceted construction of 5-ALA microbial cell factories. Evolutionary analysis-guided screening identified a novel 5-ALA synthase from Sphingobium amiense as the best synthase. An sRNA library facilitated global gene screening that demonstrated that trpC and ilvA repression enhanced 5-ALA production by 74.3% and 102%, respectively. Subsequently, efflux of 5-ALA by the transporter Gdx increased 5-ALA biosynthesis by 25.7%. To mitigate oxidative toxicity, DNA-binding proteins from starved cells were employed, enhancing cell density and 5-ALA titer by 21.1 and 4.1%, respectively. Combining these strategies resulted in an Escherichia coli strain that produced 5-ALA to 1.51 g·L-1 in shake flask experiments and 6.19 g·L-1 through fed-batch fermentation. This study broadens the repertoire of available 5-ALA synthases and transporters and provides a new platform for optimizing 5-ALA bioproduction.
Collapse
Affiliation(s)
- Wenqiu Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Yulong Xiang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shan Hu
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Jian Cheng
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Zdubek A, Maliszewska I. On the Possibility of Using 5-Aminolevulinic Acid in the Light-Induced Destruction of Microorganisms. Int J Mol Sci 2024; 25:3590. [PMID: 38612403 PMCID: PMC11011456 DOI: 10.3390/ijms25073590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial photodynamic inactivation (aPDI) is a method that specifically kills target cells by combining a photosensitizer and irradiation with light at the appropriate wavelength. The natural amino acid, 5-aminolevulinic acid (5-ALA), is the precursor of endogenous porphyrins in the heme biosynthesis pathway. This review summarizes the recent progress in understanding the biosynthetic pathways and regulatory mechanisms of 5-ALA synthesis in biological hosts. The effectiveness of 5-ALA-aPDI in destroying various groups of pathogens (viruses, fungi, yeasts, parasites) was presented, but greater attention was focused on the antibacterial activity of this technique. Finally, the clinical applications of 5-ALA in therapies using 5-ALA and visible light (treatment of ulcers and disinfection of dental canals) were described.
Collapse
Affiliation(s)
| | - Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| |
Collapse
|
8
|
Lim X, Zhang C, Chen X. Advances and applications of CRISPR/Cas-mediated interference in Escherichia coli. ENGINEERING MICROBIOLOGY 2024; 4:100123. [PMID: 39628789 PMCID: PMC11611006 DOI: 10.1016/j.engmic.2023.100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/06/2024]
Abstract
The bacterium Escherichia coli (E. coli) is one of the most widely used chassis microbes employed for the biosynthesis of numerous valuable chemical compounds. In the past decade, the metabolic engineering of E. coli has undergone significant advances, although further productivity improvements will require extensive genome modification, multi-dimensional regulation, and multiple metabolic-pathway coordination. In this context, clustered regularly interspaced short palindromic repeats (CRISPR), along with CRISPR-associated protein (Cas) and its inactive variant (dCas), have emerged as notable recombination and transcriptional regulation tools that are particularly useful for multiplex metabolic engineering in E. coli. In this review, we briefly describe the CRISPR/Cas9 technology in E. coli, and then summarize the recent advances in CRISPR/dCas9 interference (CRISPRi) systems in E. coli, particularly the strategies designed to effectively regulate gene repression and overcome retroactivity during multiplexing. Moreover, we discuss recent applications of the CRISPRi system for enhancing metabolite production in E. coli, and finally highlight the major challenges and future perspectives of this technology.
Collapse
Affiliation(s)
- Xiaohui Lim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| |
Collapse
|
9
|
Pu W, Chen J, Zhou Y, Qiu H, Shi T, Zhou W, Guo X, Cai N, Tan Z, Liu J, Feng J, Wang Y, Zheng P, Sun J. Systems metabolic engineering of Escherichia coli for hyper-production of 5‑aminolevulinic acid. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:31. [PMID: 36829220 PMCID: PMC9951541 DOI: 10.1186/s13068-023-02280-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND 5-Aminolevulinic acid (5-ALA) is a promising biostimulant, feed nutrient, and photodynamic drug with wide applications in modern agriculture and therapy. Although microbial production of 5-ALA has been improved realized by using metabolic engineering strategies during the past few years, there is still a gap between the present production level and the requirement of industrialization. RESULTS In this study, pathway, protein, and cellular engineering strategies were systematically employed to construct an industrially competitive 5-ALA producing Escherichia coli. Pathways involved in precursor supply and product degradation were regulated by gene overexpression and synthetic sRNA-based repression to channel metabolic flux to 5-ALA biosynthesis. 5-ALA synthase was rationally engineered to release the inhibition of heme and improve the catalytic activity. 5-ALA transport and antioxidant defense systems were targeted to enhance cellular tolerance to intra- and extra-cellular 5-ALA. The final engineered strain produced 30.7 g/L of 5-ALA in bioreactors with a productivity of 1.02 g/L/h and a yield of 0.532 mol/mol glucose, represent a new record of 5-ALA bioproduction. CONCLUSIONS An industrially competitive 5-ALA producing E. coli strain was constructed with the metabolic engineering strategies at multiple layers (protein, pathway, and cellular engineering), and the strategies here can be useful for developing industrial-strength strains for biomanufacturing.
Collapse
Affiliation(s)
- Wei Pu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jiuzhou Chen
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Yingyu Zhou
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Huamin Qiu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tuo Shi
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Wenjuan Zhou
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Xuan Guo
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Ningyun Cai
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Zijian Tan
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jinhui Feng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
10
|
Unveiling the Effect of NCgl0580 Gene Deletion on 5-Aminolevulinic Acid Biosynthesis in Corynebacterium glutamicum. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
5-Aminolevulinic acid (5-ALA) has recently received much attention for its wide applications in medicine and agriculture. In this study, we investigated the effect of NCgl0580 in Corynebacterium glutamicum on 5-ALA biosynthesis as well as its possible mechanism. It was found that the overexpression of NCgl0580 increased 5-ALA production by approximately 53.3%. Interestingly, the knockout of this gene led to an even more significant 2.49-fold increase in 5-ALA production. According to transcriptome analysis and functional validation of phenotype-related targets, the deletion of NCgl0580 brought about considerable changes in the transcript levels of genes involved in central carbon metabolism, leading to fluxes redistribution toward the 5-ALA precursor succinyl-CoA as well as ATP-binding cassette (ABC) transporters affecting 5-ALA biosynthesis. In particular, the positive effects of enhanced sugar transport (by overexpressing NCgl1445 and iolT1), glycolysis (by overexpressing pyk2), iron uptake (by overexpressing afuABC), and phosphate uptake (by overexpressing pstSCAB and ugpQ) on 5-ALA biosynthesis were demonstrated for the first time. Thus, the transcriptional mechanism underlying the effect of NCgl0580 deletion on 5-ALA biosynthesis was elucidated, providing new strategies to regulate the metabolic network of C. glutamicum to achieve a further increase in 5-ALA production.
Collapse
|
11
|
Yeom J, Park JS, Jung SW, Lee S, Kwon H, Yoo SM. High-throughput genetic engineering tools for regulating gene expression in a microbial cell factory. Crit Rev Biotechnol 2023; 43:82-99. [PMID: 34957867 DOI: 10.1080/07388551.2021.2007351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
With the rapid advances in biotechnological tools and strategies, microbial cell factory-constructing strategies have been established for the production of value-added compounds. However, optimizing the tradeoff between the biomass, yield, and titer remains a challenge in microbial production. Gene regulation is necessary to optimize and control metabolic fluxes in microorganisms for high-production performance. Various high-throughput genetic engineering tools have been developed for achieving rational gene regulation and genetic perturbation, diversifying the cellular phenotype and enhancing bioproduction performance. In this paper, we review the current high-throughput genetic engineering tools for gene regulation. In particular, technological approaches used in a diverse range of genetic tools for constructing microbial cell factories are introduced, and representative applications of these tools are presented. Finally, the prospects for high-throughput genetic engineering tools for gene regulation are discussed.
Collapse
Affiliation(s)
- Jinho Yeom
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jong Seong Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Seung-Woon Jung
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Sumin Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Hyukjin Kwon
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Yang P, Liu W, Chen Y, Gong AD. Engineering the glyoxylate cycle for chemical bioproduction. Front Bioeng Biotechnol 2022; 10:1066651. [PMID: 36532595 PMCID: PMC9755347 DOI: 10.3389/fbioe.2022.1066651] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 07/24/2023] Open
Abstract
With growing concerns about environmental issues and sustainable economy, bioproduction of chemicals utilizing microbial cell factories provides an eco-friendly alternative to current petro-based processes. Creating high-performance strains (with high titer, yield, and productivity) through metabolic engineering strategies is critical for cost-competitive production. Commonly, it is inevitable to fine-tuning or rewire the endogenous or heterologous pathways in such processes. As an important pathway involved in the synthesis of many kinds of chemicals, the potential of the glyoxylate cycle in metabolic engineering has been studied extensively these years. Here, we review the metabolic regulation of the glyoxylate cycle and summarize recent achievements in microbial production of chemicals through tuning of the glyoxylate cycle, with a focus on studies implemented in model microorganisms. Also, future prospects for bioproduction of glyoxylate cycle-related chemicals are discussed.
Collapse
|
13
|
Ting WW, Yu JY, Lin YC, Ng IS. Enhanced recombinant carbonic anhydrase in T7RNAP-equipped Escherichia coli W3110 for carbon capture storage and utilization (CCSU). BIORESOURCE TECHNOLOGY 2022; 363:128010. [PMID: 36167176 DOI: 10.1016/j.biortech.2022.128010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Sulfurihydrogenibium yellowstonense carbonic anhydrase (SyCA) is a well-known thermophilic CA for carbon mineralization. To broaden the applications of SyCA, the activity of SyCA was improved through stepwise engineering and in different cultural conditions, as well as extended to co-expression with other enzymes. The engineered W3110 strains with 4 different T7 RNA polymerase levels were employed for SyCA production. As a result, the best strain WT7L cultured in modified M9 medium with temperature shifted from 37 to 30 °C after induction increased SyCA activity to 9122 U/mL. The SyCA whole-cell biocatalyst was successfully applied for carbon capture and storage (CCS) of CaCO3. Furthermore, SyCA was applied for low-carbon footprint synthesis of 5-aminolevulinic acid (5-ALA) and cadaverine (DAP) by coupling with ALA synthetase (ALAS) and lysine decarboxylase (CadA), suppressing CO2 release to -6.1 g-CO2/g-ALA and -2.53 g-CO2/g-DAP, respectively. Harnessing a highly active SyCA offers a complete strategy for CCSU in a green process.
Collapse
Affiliation(s)
- Wan-Wen Ting
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jie-Yao Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Chieh Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
14
|
Zhao M, Li Y, Wang F, Ren Y, Wei D. A CRISPRi mediated self-inducible system for dynamic regulation of TCA cycle and improvement of itaconic acid production in Escherichia coli. Synth Syst Biotechnol 2022; 7:982-988. [PMID: 35782485 PMCID: PMC9213231 DOI: 10.1016/j.synbio.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Itaconic acid (ITA), an effective alternative fossil fuel, derives from the bypass pathway of the tricarboxylic acid (TCA) cycle. Therefore, the imbalance of metabolic flux between TCA cycle and ITA biosynthetic pathway seriously limits the production of ITA. The optimization of flux distribution between biomass and production has the potential to the productivity of ITA. Based on the previously constructed strain Escherichia coli MG1655 Δ1-SAS-3 (ITA titer: 1.87 g/L), a CRISPRi-mediated self-inducible system (CiMS), which contained a responsive module based on the ITA biosensor YpItcR/P ccl and a regulative CRISPRi-mediated interferential module, was developed to regulate the flux of the TCA cycle and to enhance the capacity of the strain to produce ITA. First, a higher ITA-yielding strain, Δ4-P rmd -SAS-3 (ITA titer: 3.20 g/L), derived from Δ1-SAS-3, was constructed by replacing the promoter P J23100 , for the expression of ITA synthesis genes, with P rmd and knocking out the three bypass genes poxB, pflB, and ldhA. Subsequently, the CiMS was used to inhibit the expression of key genes icd, pykA, and sucCD to dynamically balance the metabolic flux between TCA cycle and ITA biosynthetic pathway during the ITA production stage. The constructed strain Δ4-P rmd -SAS-3 under the dynamic regulation of the CiMS, showed a 23% increase in the ITA titer, which reached 3.93 g/L. This study indicated that CiMS was a practical strategy to dynamically and precisely regulated the metabolic flux in microbial cell factories.
Collapse
Affiliation(s)
- Ming Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Yuting Li
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Fengqing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuhong Ren
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
15
|
Yeom J, Park JS, Jeon YM, Song BS, Yoo SM. Synthetic fused sRNA for the simultaneous repression of multiple genes. Appl Microbiol Biotechnol 2022; 106:2517-2527. [PMID: 35291022 DOI: 10.1007/s00253-022-11867-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/02/2022]
Abstract
Efficient control over multiple gene expression still presents a major challenge. Synthetic sRNA enables targeted gene expression control in trans without directly modifying the chromosome, but its use to simultaneously target multiple genes can often cause cell growth defects because of the need for additional energy for transcription and lowering of their repression efficiency by limiting the amount of Hfq protein. To address these limitations, we present fusion sRNA (fsRNA) that simultaneously regulates the translation of multiple genes efficiently. It is constructed by linking the mRNA-binding modules for multiple targeted genes in one sRNA scaffold via one-pot generation using overlap extension PCR. The repression capacity of fsRNA was demonstrated by the construction of sRNAs to target four endogenous genes: caiF, hybG, ytfR and minD in Escherichia coli. Their cross-reactivity and the effect on cell growth were also investigated. As practical applications, we applied fsRNA to violacein- and protocatechuic acid-producing strains, resulting in increases of 13% violacein and 81% protocatechuic acid, respectively. The developed fsRNA-mediated multiple gene expression regulation system thus enables rapid and efficient development of optimised cell factories for valuable chemicals without cell growth defects and limiting cellular resources.Key points• Synthetic fusion sRNA (fsRNA)-based system was constructed for the repression of multiple target genes.• fsRNA repressed multiple genes by only expressing a single sRNA while minimising the cellular burden.• The application of fsRNA showed the increased production titers of violacein (13%) and protocatechuic acid (81%).
Collapse
Affiliation(s)
- Jinho Yeom
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jong Seong Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Yong Min Jeon
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Beom Seop Song
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
16
|
Jiang M, Hong K, Mao Y, Ma H, Chen T, Wang Z. Natural 5-Aminolevulinic Acid: Sources, Biosynthesis, Detection and Applications. Front Bioeng Biotechnol 2022; 10:841443. [PMID: 35284403 PMCID: PMC8913508 DOI: 10.3389/fbioe.2022.841443] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is the key precursor for the biosynthesis of tetrapyrrole compounds, with wide applications in medicine, agriculture and other burgeoning fields. Because of its potential applications and disadvantages of chemical synthesis, alternative biotechnological methods have drawn increasing attention. In this review, the recent progress in biosynthetic pathways and regulatory mechanisms of 5-ALA synthesis in biological hosts are summarized. The research progress on 5-ALA biosynthesis via the C4/C5 pathway in microbial cells is emphasized, and the corresponding biotechnological design strategies are highlighted and discussed in detail. In addition, the detection methods and applications of 5-ALA are also reviewed. Finally, perspectives on potential strategies for improving the biosynthesis of 5-ALA and understanding the related mechanisms to further promote its industrial application are conceived and proposed.
Collapse
Affiliation(s)
- Meiru Jiang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Kunqiang Hong
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yufeng Mao
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hongwu Ma
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
17
|
Ziegler M, Hägele L, Gäbele T, Takors R. CRISPRi enables fast growth followed by stable aerobic pyruvate formation in Escherichia coli without auxotrophy. Eng Life Sci 2022; 22:70-84. [PMID: 35140555 PMCID: PMC8811725 DOI: 10.1002/elsc.202100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/06/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
CRISPR interference (CRISPRi) was applied to enable the aerobic production of pyruvate in Escherichia coli MG1655 under glucose excess conditions by targeting the promoter regions of aceE or pdhR. Knockdown strains were cultivated in aerobic shaking flasks and the influence of inducer concentration and different sgRNA binding sites on the production of pyruvate was measured. Targeting the promoter regions of aceE or pdhR triggered pyruvate production during the exponential phase and reduced expression of aceE. In lab-scale bioreactor fermentations, an aceE silenced strain successfully produced pyruvate under fully aerobic conditions during the exponential phase, but loss of productivity occurred during a subsequent nitrogen-limited phase. Targeting the promoter region of pdhR enabled pyruvate production during the growth phase of cultivations, and a continued low-level accumulation during the nitrogen-limited production phase. Combinatorial targeting of the promoter regions of both aceE and pdhR in E. coli MG1655 pdCas9 psgRNA_aceE_234_pdhR_329 resulted in the stable aerobic production of pyruvate with non-growing cells at YP/S = 0.36 ± 0.029 gPyruvate/gGlucose in lab-scale bioreactors throughout an extended nitrogen-limited production phase.
Collapse
Affiliation(s)
- Martin Ziegler
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Lorena Hägele
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Teresa Gäbele
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| |
Collapse
|
18
|
Lall D, Miscevic D, Bruder M, Westbrook A, Aucoin M, Moo-Young M, Perry Chou C. Strain engineering and bioprocessing strategies for biobased production of porphobilinogen in Escherichia coli. BIORESOUR BIOPROCESS 2022; 8:122. [PMID: 34970474 PMCID: PMC8668860 DOI: 10.1186/s40643-021-00482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/04/2021] [Indexed: 11/10/2022] Open
Abstract
Strain engineering and bioprocessing strategies were applied for biobased production of porphobilinogen (PBG) using Escherichia coli as the cell factory. The non-native Shemin/C4 pathway was first implemented by heterologous expression of hemA from Rhodopseudomonas spheroids to supply carbon flux from the natural tricarboxylic acid (TCA) pathways for PBG biosynthesis via succinyl-CoA. Metabolic strategies were then applied for carbon flux direction from the TCA pathways to the C4 pathway. To promote PBG stability and accumulation, Clustered Regularly Interspersed Short Palindromic Repeats interference (CRISPRi) was applied to repress hemC expression and, therefore, reduce carbon flowthrough toward porphyrin biosynthesis with minimal impact to cell physiology. To further enhance PBG biosynthesis and accumulation under the hemC-repressed genetic background, we further heterologously expressed native E. coli hemB. Using these engineered E. coli strains for bioreactor cultivation based on ~ 30 g L−1 glycerol, we achieved high PBG titers up to 209 mg L−1, representing 1.73% of the theoretical PBG yield, with improved PBG stability and accumulation. Potential biochemical, genetic, and metabolic factors limiting PBG production were systematically identified for characterization.
Collapse
Affiliation(s)
- Davinder Lall
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Dragan Miscevic
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Mark Bruder
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Adam Westbrook
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Marc Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
19
|
Modular control of multiple pathways of Corynebacterium glutamicum for 5-aminolevulinic acid production. AMB Express 2021; 11:179. [PMID: 34958433 PMCID: PMC8712284 DOI: 10.1186/s13568-021-01335-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
5-aminolevulinic acid (ALA) has broad potential applications in the medical, agricultural and food industries. Several strategies have been implemented successfully to try to improve ALA synthesis. Nonetheless, the low yield has got in the way of large-scale bio-manufacture of 5-ALA. In this study, we explored strain engineering strategies for high-level 5-ALA production in Corynebacterium glutamicum F343 using the C4 pathway. Initially, the glutamate dehydrogenase-encoding gene gdhA was deleted to reduce glutamate yield. Then the C4 pathway was introduced in the gdhA mutant strain F2-A (∆gdhA + hemA), resulting in a 5-ALA yield of up to 3.2 g/L. Furthermore, the accumulations of downstream metabolites such as heme, porphobilinogen, and protoporphyrin IX, were decreased. After evaluating the mechanisms of this synthetic pathway by RNA-Seq, the results showed that genes involved in both the C5 pathway and heme pathways were down-regulated in strain F2-A (∆gdhA + hemA). Interestingly, upstream genes of succinyl-CoA in the tricarboxylic acid (TCA) cycle, such as icd, lpdA, were up-regulated, while its downstream genes, including sucC, sucD, sdhB, sdhA, sdhCD, were down-regulated. These changes amplify the sources of succinyl-CoA and reduce its expenditure, before pulling the carbon flux to produce 5-ALA. Furthermore, the down-regulation of most genes of the heme pathway could reduce the drainage of 5-ALA, which further enhance its accumulation. To alleviate competition between glyoxylate and the TCA cycle, the isocitrate dehydrogenase-encoding gene aceA was also knocked out, resulting in 3.86 g/L of 5-ALA. Finally, the fermentation conditions were optimized, resulting in a maximum 5-ALA yield of 5.6 g/L. Overall, the blocking of the glutamate synthesis pathway could be a powerful strategy to re-allocate the carbon flux to produce 5-ALA. It could also enable the efficient synthesis of other TCA derivatives in C. glutamicum.
Collapse
|
20
|
Yi YC, Shih IT, Yu TH, Lee YJ, Ng IS. Challenges and opportunities of bioprocessing 5-aminolevulinic acid using genetic and metabolic engineering: a critical review. BIORESOUR BIOPROCESS 2021; 8:100. [PMID: 38650260 PMCID: PMC10991938 DOI: 10.1186/s40643-021-00455-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA), a non-proteinogenic five-carbon amino acid, has received intensive attentions in medicine due to its approval by the US Food and Drug Administration (FDA) for cancer diagnosis and treatment as photodynamic therapy. As chemical synthesis of 5-ALA performed low yield, complicated processes, and high cost, biosynthesis of 5-ALA via C4 (also called Shemin pathway) and C5 pathway related to heme biosynthesis in microorganism equipped more advantages. In C4 pathway, 5-ALA is derived from condensation of succinyl-CoA and glycine by 5-aminolevulic acid synthase (ALAS) with pyridoxal phosphate (PLP) as co-factor in one-step biotransformation. The C5 pathway involves three enzymes comprising glutamyl-tRNA synthetase (GltX), glutamyl-tRNA reductase (HemA), and glutamate-1-semialdehyde aminotransferase (HemL) from α-ketoglutarate in TCA cycle to 5-ALA and heme. In this review, we describe the recent results of 5-ALA production from different genes and microorganisms via genetic and metabolic engineering approaches. The regulation of different chassis is fine-tuned by applying synthetic biology and boosts 5-ALA production eventually. The purification process, challenges, and opportunities of 5-ALA for industrial applications are also summarized.
Collapse
Affiliation(s)
- Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - I-Tai Shih
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tzu-Hsuan Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yen-Ju Lee
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
21
|
Sheng Q, Wu XY, Xu X, Tan X, Li Z, Zhang B. Production of l-glutamate family amino acids in Corynebacterium glutamicum: Physiological mechanism, genetic modulation, and prospects. Synth Syst Biotechnol 2021; 6:302-325. [PMID: 34632124 PMCID: PMC8484045 DOI: 10.1016/j.synbio.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
l-glutamate family amino acids (GFAAs), consisting of l-glutamate, l-arginine, l-citrulline, l-ornithine, l-proline, l-hydroxyproline, γ-aminobutyric acid, and 5-aminolevulinic acid, are widely applied in the food, pharmaceutical, cosmetic, and animal feed industries, accounting for billions of dollars of market activity. These GFAAs have many functions, including being protein constituents, maintaining the urea cycle, and providing precursors for the biosynthesis of pharmaceuticals. Currently, the production of GFAAs mainly depends on microbial fermentation using Corynebacterium glutamicum (including its related subspecies Corynebacterium crenatum), which is substantially engineered through multistep metabolic engineering strategies. This review systematically summarizes recent advances in the metabolic pathways, regulatory mechanisms, and metabolic engineering strategies for GFAA accumulation in C. glutamicum and C. crenatum, which provides insights into the recent progress in l-glutamate-derived chemical production.
Collapse
Affiliation(s)
- Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinyi Xu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
22
|
Cui Z, Zhu Z, Zhang J, Jiang Z, Liu Y, Wang Q, Hou J, Qi Q. Efficient 5-aminolevulinic acid production through reconstructing the metabolic pathway in SDH-deficient Yarrowia lipolytica. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Recent advances in tuning the expression and regulation of genes for constructing microbial cell factories. Biotechnol Adv 2021; 50:107767. [PMID: 33974979 DOI: 10.1016/j.biotechadv.2021.107767] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
To overcome environmental problems caused by the use of fossil resources, microbial cell factories have become a promising technique for the sustainable and eco-friendly development of valuable products from renewable resources. Constructing microbial cell factories with high titers, yields, and productivity requires a balance between growth and production; to this end, tuning gene expression and regulation is necessary to optimise and precisely control complicated metabolic fluxes. In this article, we review the current trends and advances in tuning gene expression and regulation and consider their engineering at each of the three stages of gene regulation: genomic, mRNA, and protein. In particular, the technological approaches utilised in a diverse range of genetic-engineering-based tools for the construction of microbial cell factories are reviewed and representative applications of these strategies are presented. Finally, the prospects for strategies and systems for tuning gene expression and regulation are discussed.
Collapse
|
24
|
Xue C, Yu TH, Ng IS. Engineering pyridoxal kinase PdxY-integrated Escherichia coli strain and optimization for high-level 5-aminolevulinic acid production. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|