1
|
Rodrigues FAP, Oliveira CS, Sá SC, Tavaria FK, Lee SJ, Oliveira AL, Costa JB. Molecules in Motion: Unravelling the Dynamics of Vascularization Control in Tissue Engineering. Macromol Biosci 2024:e2400139. [PMID: 39422632 DOI: 10.1002/mabi.202400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Significant progress has been made in tissue engineering (TE), aiming at providing personalized solutions and overcoming the current limitations of traditional tissue and organ transplantation. 3D bioprinting has emerged as a transformative technology in the field, able to mimic key properties of the natural architecture of the native tissues. However, most successes in the area are still limited to avascular or thin tissues due to the difficulties in controlling the vascularization of the engineered tissues. To address this issue, several molecules, biomaterials, and cells with pro- and anti-angiogenic potential have been intensively investigated. Furthermore, different bioreactors capable to provide a dynamic environment for in vitro vascularization control have been also explored. The present review summarizes the main molecules and TE strategies used to promote and inhibit vascularization in TE, as well as the techniques used to deliver them. Additionally, it also discusses the current challenges in 3D bioprinting and in tissue maturation to control in vitro/in vivo vascularization. Currently, this field of investigation is of utmost importance and may open doors for the design and development of more precise and controlled vascularization strategies in TE.
Collapse
Affiliation(s)
- Francisco A P Rodrigues
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Cláudia S Oliveira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Simone C Sá
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Freni K Tavaria
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ana L Oliveira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - João B Costa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| |
Collapse
|
2
|
Pucci C, De Pasquale D, Degl'Innocenti A, Montorsi M, Desii A, Pero M, Martinelli C, Bartolucci M, Petretto A, Ciofani G. Chlorin e6-Loaded Nanostructured Lipid Carriers Targeted by Angiopep-2: Advancing Photodynamic Therapy in Glioblastoma. Adv Healthc Mater 2024:e2402823. [PMID: 39344523 DOI: 10.1002/adhm.202402823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor known for its resistance to standard treatments. Despite surgery being a primary option, it often leads to incomplete removal and high recurrence rates. Photodynamic therapy (PDT) holds promise as an adjunctive treatment, but safety concerns and the need for high-power lasers have limited its widespread use. This research addresses these challenges by introducing a novel PDT approach, using chlorin e6 (Ce6) enclosed in nanostructured lipid carriers (Ang-Ce6-NLCs) and targeted to GBM with the angiopep-2 peptide. Remarkably, a single 5-min irradiation session with LEDs at 660 nm and low power density (10 mW cm- 2) proves effective against GBM, while reducing safety risks associated with high-power lasers. Encapsulation improves Ce6 stability and performance in physiological environments, while angiopep-2 targeting enhances delivery to GBM cells, maximizing treatment efficacy and minimizing off-target effects. The findings demonstrate that Ang-Ce6-NLCs-mediated PDT brings about a significant reduction in GBM cell viability, increases oxidative stress, reduces tumor migration, and enhances apoptosis. Overall, such treatment holds potential as a safe and efficient intraoperative removal of GBM infiltrating cells that cannot be reached by surgery, using low-power LED light to minimize harm to surrounding healthy tissue while maximizing tumor treatment.
Collapse
Affiliation(s)
- Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Margherita Montorsi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Andrea Desii
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Marta Pero
- Politecnico di Torino, DIMEAS, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Martina Bartolucci
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, Genova, 16147, Italy
| | - Andrea Petretto
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, Genova, 16147, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| |
Collapse
|
3
|
Montorsi M, Pucci C, De Pasquale D, Marino A, Ceccarelli MC, Mazzuferi M, Bartolucci M, Petretto A, Prato M, Debellis D, De Simoni G, Pugliese G, Labardi M, Ciofani G. Ultrasound-Activated Piezoelectric Nanoparticles Trigger Microglia Activity Against Glioblastoma Cells. Adv Healthc Mater 2024; 13:e2304331. [PMID: 38509761 DOI: 10.1002/adhm.202304331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain cancer, characterized by a rapid and drug-resistant progression. GBM "builds" around its primary core a genetically heterogeneous tumor-microenvironment (TME), recruiting surrounding healthy brain cells by releasing various intercellular signals. Glioma-associated microglia (GAM) represent the largest population of collaborating cells, which, in the TME, usually exhibit the anti-inflammatory M2 phenotype, thus promoting an immunosuppressing environment that helps tumor growth. Conversely, "classically activated" M1 microglia could provide proinflammatory and antitumorigenic activity, expected to exert a beneficial effect in defeating glioblastoma. In this work, an immunotherapy approach based on proinflammatory modulation of the GAM phenotype is proposed, through a controlled and localized electrical stimulation. The developed strategy relies on the wireless ultrasonic excitation of polymeric piezoelectric nanoparticles coated with GBM cell membrane extracts, to exploit homotypic targeting in antiglioma applications. Such camouflaged nanotransducers locally generate electrical cues on GAM membranes, activating their M1 phenotype and ultimately triggering a promising anticancer activity. Collected findings open new perspectives in the modulation of immune cell activities through "smart" nanomaterials and, more specifically, provide an innovative auspicious tool in glioma immunotherapy.
Collapse
Affiliation(s)
- Margherita Montorsi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Maria Cristina Ceccarelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Martina Mazzuferi
- Politecnico di Torino, DIMEAS, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Martina Bartolucci
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, Genova, 16147, Italy
| | - Andrea Petretto
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, Genova, 16147, Italy
| | - Mirko Prato
- Istituto Italiano di Tecnologia, Materials Characterization Facility, Via Morego 30, Genova, 16163, Italy
| | - Doriana Debellis
- Istituto Italiano di Tecnologia, Electron Microscopy Facility, Via Morego 30, Genova, 16163, Italy
| | - Giorgio De Simoni
- CNR, Nanoscience Institute, NEST Laboratory, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Giammarino Pugliese
- Istituto Italiano di Tecnologia, Chemistry Facility, Via Morego 30, Genova, 16163, Italy
| | | | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| |
Collapse
|
4
|
Kawecki NS, Chen KK, Smith CS, Xie Q, Cohen JM, Rowat AC. Scalable Processes for Culturing Meat Using Edible Scaffolds. Annu Rev Food Sci Technol 2024; 15:241-264. [PMID: 38211941 DOI: 10.1146/annurev-food-072023-034451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
There is increasing consumer demand for alternative animal protein products that are delicious and sustainably produced to address concerns about the impacts of mass-produced meat on human and planetary health. Cultured meat has the potential to provide a source of nutritious dietary protein that both is palatable and has reduced environmental impact. However, strategies to support the production of cultured meats at the scale required for food consumption will be critical. In this review, we discuss the current challenges and opportunities of using edible scaffolds for scaling up the production of cultured meat. We provide an overview of different types of edible scaffolds, scaffold fabrication techniques, and common scaffold materials. Finally, we highlight potential advantages of using edible scaffolds to advance cultured meat production by accelerating cell growth and differentiation, providing structure to build complex 3D tissues, and enhancing the nutritional and sensory properties of cultured meat.
Collapse
Affiliation(s)
- N Stephanie Kawecki
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Kathleen K Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Corinne S Smith
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Qingwen Xie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Julian M Cohen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Amy C Rowat
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Şen Ö, Pucci C, Ciofani G. Monitoring Cell Cytoskeleton Variations upon Piezoelectric Stimulation: Implications for the Immune System. Methods Mol Biol 2024; 2748:73-83. [PMID: 38070108 DOI: 10.1007/978-1-0716-3593-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Piezoelectric stimulation can have a significant impact on different cellular functions with possible applications in several fields, such as regenerative medicine, cancer therapy, and immunoregulation. For example, piezoelectric stimulation has been shown to modulate cytoskeleton variations: the implications of this effect range from the regulation of migration and invasion of cancer cells to the activation of pro- or anti-inflammatory phenotypes in immune cells. In this chapter, we will present different methodologies to evaluate cytoskeleton variations, focusing on modifications on f-/g-actin ratio and on the migration and invasion ability of tumor cells.
Collapse
Affiliation(s)
- Özlem Şen
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera, Italy
| | - Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera, Italy.
| |
Collapse
|
6
|
Meneses J, Fernandes SR, Silva JC, Ferreira FC, Alves N, Pascoal-Faria P. JANUS: an open-source 3D printable perfusion bioreactor and numerical model-based design strategy for tissue engineering. Front Bioeng Biotechnol 2023; 11:1308096. [PMID: 38162184 PMCID: PMC10757336 DOI: 10.3389/fbioe.2023.1308096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Bioreactors have been employed in tissue engineering to sustain longer and larger cell cultures, managing nutrient transfer and waste removal. Multiple designs have been developed, integrating sensor and stimulation technologies to improve cellular responses, such as proliferation and differentiation. The variability in bioreactor design, stimulation protocols, and cell culture conditions hampered comparison and replicability, possibly hiding biological evidence. This work proposes an open-source 3D printable design for a perfusion bioreactor and a numerical model-driven protocol development strategy for improved cell culture control. This bioreactor can simultaneously deliver capacitive-coupled electric field and fluid-induced shear stress stimulation, both stimulation systems were validated experimentally and in agreement with numerical predictions. A preliminary in vitro validation confirmed the suitability of the developed bioreactor to sustain viable cell cultures. The outputs from this strategy, physical and virtual, are openly available and can be used to improve comparison, replicability, and control in tissue engineering applications.
Collapse
Affiliation(s)
- João Meneses
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia R. Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering and iBB—Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB—Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, Portugal
- Department of Mechanical Engineering, School of Technology and Management, Polytechnic of Leiria, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), Porto, Portugal
| | - Paula Pascoal-Faria
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), Porto, Portugal
- Department of Mathematics, School of Technology and Management, Polytechnic of Leiria, Portugal
| |
Collapse
|
7
|
Teimoori M, Nokhbatolfoghahaei H, Khojasteh A. Bilayer scaffolds/membranes for bone tissue engineering applications: A systematic review. BIOMATERIALS ADVANCES 2023; 153:213528. [PMID: 37352742 DOI: 10.1016/j.bioadv.2023.213528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVE This systematic review evaluates the purpose, materials, physio-mechanical, and biological effects of bilayer scaffolds/membranes used for bone tissue engineering applications. METHODS A comprehensive electronic search of English-language literature from 2012 to October 2022 was conducted in PubMed, Scopus, ScienceDirect, and Google Scholar online databases according to the PRISMA 2020 guidelines. The quality of animal studies was evaluated through the SYRCLE's risk of bias tool. RESULTS A total of 77 studies were sought for retrieval, and 39 studies met the inclusion criteria. According to the synthesis results, most bilayers had a dense barrier layer that prevented connective tissue penetration and a loose osteogenic layer that supported cell migration and osteogenesis. PLGA, PCL, and chitosan were the most common polymers in the barrier layers, while the most utilized polymers in osteogenic layers were PLGA and gelatin. Electrospinning and solvent casting were the most common fabrication methods to design the bilayer structures. Many studies reported higher biological results for bilayers compared to their single layers. Also, fabricated bilayers' in vitro osteogenesis and in vivo new bone formation were significantly superior or at least comparable to the frequently used commercial membranes. CONCLUSION 1) Bilayers with two distinct layers and different materials, porosities, mechanical properties, and biological behavior can significantly improve heterogeneous bone regeneration; 2) the addition of ceramics and/or drugs to the osteogenic layer enhances the osteogenic properties of the bilayers; 3) fabrication method and pore size of the layers play an important role in determining the mechanical and biological behavior of them.
Collapse
Affiliation(s)
- Mahdis Teimoori
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cranio-Maxillofacial Surgery, University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
8
|
Palumbo C, Sisi F, Checchi M. CAM Model: Intriguing Natural Bioreactor for Sustainable Research and Reliable/Versatile Testing. BIOLOGY 2023; 12:1219. [PMID: 37759618 PMCID: PMC10525291 DOI: 10.3390/biology12091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
We are witnessing the revival of the CAM model, which has already used been in the past by several researchers studying angiogenesis and anti-cancer drugs and now offers a refined model to fill, in the translational meaning, the gap between in vitro and in vivo studies. It can be used for a wide range of purposes, from testing cytotoxicity, pharmacokinetics, tumorigenesis, and invasion to the action mechanisms of molecules and validation of new materials from tissue engineering research. The CAM model is easy to use, with a fast outcome, and makes experimental research more sustainable since it allows us to replace, reduce, and refine pre-clinical experimentation ("3Rs" rules). This review aims to highlight some unique potential that the CAM-assay presents; in particular, the authors intend to use the CAM model in the future to verify, in a microenvironment comparable to in vivo conditions, albeit simplified, the angiogenic ability of functionalized 3D constructs to be used in regenerative medicine strategies in the recovery of skeletal injuries of critical size (CSD) that do not repair spontaneously. For this purpose, organotypic cultures will be planned on several CAMs set up in temporal sequences, and a sort of organ model for assessing CSD will be utilized in the CAM bioreactor rather than in vivo.
Collapse
Affiliation(s)
| | | | - Marta Checchi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia—Largo del Pozzo, 41124 Modena, Italy
| |
Collapse
|
9
|
Shi H, Zhou K, Wang M, Wang N, Song Y, Xiong W, Guo S, Yi Z, Wang Q, Yang S. Integrating physicomechanical and biological strategies for BTE: biomaterials-induced osteogenic differentiation of MSCs. Theranostics 2023; 13:3245-3275. [PMID: 37351163 PMCID: PMC10283054 DOI: 10.7150/thno.84759] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023] Open
Abstract
Large bone defects are a major global health concern. Bone tissue engineering (BTE) is the most promising alternative to avoid the drawbacks of autograft and allograft bone. Nevertheless, how to precisely control stem cell osteogenic differentiation has been a long-standing puzzle. Compared with biochemical cues, physicomechanical stimuli have been widely studied for their biosafety and stability. The mechanical properties of various biomaterials (polymers, bioceramics, metal and alloys) become the main source of physicomechanical stimuli. By altering the stiffness, viscoelasticity, and topography of materials, mechanical stimuli with different strengths transmit into precise signals that mediate osteogenic differentiation. In addition, externally mechanical forces also play a critical role in promoting osteogenesis, such as compression stress, tensile stress, fluid shear stress and vibration, etc. When exposed to mechanical forces, mesenchymal stem cells (MSCs) differentiate into osteogenic lineages by sensing mechanical stimuli through mechanical sensors, including integrin and focal adhesions (FAs), cytoskeleton, primary cilium, ions channels, gap junction, and activating osteogenic-related mechanotransduction pathways, such as yes associated proteins (YAP)/TAZ, MAPK, Rho-GTPases, Wnt/β-catenin, TGFβ superfamily, Notch signaling. This review summarizes various biomaterials that transmit mechanical signals, physicomechanical stimuli that directly regulate MSCs differentiation, and the mechanical transduction mechanisms of MSCs. This review provides a deep and broad understanding of mechanical transduction mechanisms and discusses the challenges that remained in clinical translocation as well as the outlook for the future improvements.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kaixuan Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Mingfeng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang 832008, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| |
Collapse
|
10
|
Han J, Park S, Kim JE, Park B, Hong Y, Lim JW, Jeong S, Son H, Kim HB, Seonwoo H, Jang KJ, Chung JH. Development of a Scaffold-on-a-Chip Platform to Evaluate Cell Infiltration and Osteogenesis on the 3D-Printed Scaffold for Bone Regeneration. ACS Biomater Sci Eng 2023; 9:968-977. [PMID: 36701173 DOI: 10.1021/acsbiomaterials.2c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Developing a scaffold for efficient and functional bone regeneration remains challenging. To accomplish this goal, a "scaffold-on-a-chip" device was developed as a platform to aid with the evaluation process. The device mimics a microenvironment experienced by a transplanted bone scaffold. The device contains a circular space at the center for scaffold insert and microfluidic channel that encloses the space. Such a design allows for monitoring of cell behavior at the blood-scaffold interphase. MC3T3-E1 cells were cultured with three different types of scaffold inserts to test its capability as an evaluation platform. Cellular behaviors, including migration, morphology, and osteogenesis with each scaffold, were analyzed through fluorescence images of live/dead assay and immunocytochemistry. Cellular behaviors, such as migration, morphology, and osteogenesis, were evaluated. The results revealed that our platform could effectively evaluate the osteoconductivity and osteoinductivity of scaffolds with various properties. In conclusion, our proposed platform is expected to replace current in vivo animal models as a highly relevant in vitro platform and can contribute to the fundamental study of bone regeneration.
Collapse
Affiliation(s)
- Jinsub Han
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea.,Convergence Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sangbae Park
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae Eun Kim
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea
| | - Byeongjoo Park
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea
| | - Yeonggeol Hong
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju 52828, Korea
| | - Jae Woon Lim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Jeong
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hyunmok Son
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hoon Seonwoo
- Department of Convergent Biosystems Engineering, College of Life Sciences and Natural Resources, Sunchon National University, Suncheon 57922, Korea.,Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju 52828, Korea.,Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jong Hoon Chung
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea.,Convergence Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
11
|
Ji J, Yang C, Shan Y, Sun M, Cui X, Xu L, Liang S, Li T, Fan Y, Luo D, Li Z. Research Trends of Piezoelectric Nanomaterials in Biomedical Engineering. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Jianying Ji
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 China
| | - Chunyu Yang
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- State Key Laboratory of Heavy Oil Processing College of New Energy and Materials Beijing Key Laboratory of Biogas Upgrading Utilization China University of Petroleum (Beijing) Beijing 102249 China
- Institute of Engineering Medicine School of Life Science Beijing Institute of Technology Beijing 100081 China
| | - Yizhu Shan
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Mingjun Sun
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- State Key Laboratory of Heavy Oil Processing College of New Energy and Materials Beijing Key Laboratory of Biogas Upgrading Utilization China University of Petroleum (Beijing) Beijing 102249 China
- Institute of Engineering Medicine School of Life Science Beijing Institute of Technology Beijing 100081 China
| | - Xi Cui
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Lingling Xu
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 China
| | - Shiyuan Liang
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Tong Li
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 China
| | - Yijie Fan
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Dan Luo
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhou Li
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
12
|
Shi F, Fang X, Zhou T, Huang X, Duan K, Wang J, Qu S, Zhi W, Weng J. Macropore Regulation of Hydroxyapatite Osteoinduction via Microfluidic Pathway. Int J Mol Sci 2022; 23:ijms231911459. [PMID: 36232757 PMCID: PMC9570064 DOI: 10.3390/ijms231911459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Macroporous characteristics have been shown to play a key role in the osteoinductivity of hydroxyapatite ceramics, but the physics underlying the new bone formation and distribution in such scaffolds still remain elusive. The work here has emphasized the osteoinductive capacity of porous hydroxyapatite scaffolds containing different macroporous sizes (200–400 μm, 1200–1500 μm) and geometries (star shape, spherical shape). The assumption is that both the size and shape of a macropore structure may affect the microfluidic pathways in the scaffolds, which results in the different bone formations and distribution. Herein, a mathematical model and an animal experiment were proposed to support this hypothesis. The results showed that the porous scaffolds with the spherical macropores and large pore sizes (1200–1500 μm) had higher new bone production and more uniform new bone distribution than others. A finite element analysis suggested that the macropore shape affected the distribution of the medium–high velocity flow field, while the macropore size effected microfluid speed and the value of the shear stress in the scaffolds. Additionally, the result of scaffolds implanted into the dorsal muscle having a higher new bone mass than the abdominal cavity suggested that the mechanical load of the host tissue could play a key role in the microfluidic pathway mechanism. All these findings suggested that the osteoinduction of these scaffolds depends on both the microfluid velocity and shear stress generated by the macropore size and shape. This study, therefore, provides new insights into the inherent osteoinductive mechanisms of bioceramics, and may offer clues toward a rational design of bioceramic scaffolds with improved osteoinductivity.
Collapse
Affiliation(s)
- Feng Shi
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Collaboration and Innovation Center of Tissue Repair Material Engineering Technology, College of Life Science, China West Normal University, Nanchong 637009, China
| | - Xin Fang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Teng Zhou
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xu Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ke Duan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuxin Qu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Zhi
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Correspondence: (W.Z.); (J.W.)
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Correspondence: (W.Z.); (J.W.)
| |
Collapse
|
13
|
Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022; 23:267. [PMID: 36163568 PMCID: PMC9512992 DOI: 10.1208/s12249-022-02419-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023] Open
Abstract
Tissue engineering has emerged as an interesting field nowadays; it focuses on accelerating the auto-healing mechanism of tissues rather than organ transplantation. It involves implanting an In Vitro cultured initiative tissue or a scaffold loaded with tissue regenerating ingredients at the damaged area. Both techniques are based on the use of biodegradable, biocompatible polymers as scaffolding materials which are either derived from natural (e.g. alginates, celluloses, and zein) or synthetic sources (e.g. PLGA, PCL, and PLA). This review discusses in detail the recent applications of different biomaterials in tissue engineering highlighting the targeted tissues besides the in vitro and in vivo key findings. As well, smart biomaterials (e.g. chitosan) are fascinating candidates in the field as they are capable of elucidating a chemical or physical transformation as response to external stimuli (e.g. temperature, pH, magnetic or electric fields). Recent trends in tissue engineering are summarized in this review highlighting the use of stem cells, 3D printing techniques, and the most recent 4D printing approach which relies on the use of smart biomaterials to produce a dynamic scaffold resembling the natural tissue. Furthermore, the application of advanced tissue engineering techniques provides hope for the researchers to recognize COVID-19/host interaction, also, it presents a promising solution to rejuvenate the destroyed lung tissues.
Collapse
Affiliation(s)
- Alaa Emad Eldeeb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Salwa Salah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|