1
|
Jing W, Yang C, Lin X, Tang M, Lian D, Yu Y, Liu D. MnFe 2O 4-loaded bamboo pulp carbon-based aerogel composite: synthesis, characterization and adsorption behavior study for heavy metals removal. RSC Adv 2024; 14:39995-40005. [PMID: 39713181 PMCID: PMC11659952 DOI: 10.1039/d4ra06363e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
Heavy metal wastewater is a direct threat to the ecological environment and human health because it is highly toxic at low concentrations. Therefore, it is very important to explore and develop efficient wastewater treatment agents. MnFe2O4-loaded bamboo pulp carbon-based aerogel (MCA) is prepared by directional freeze-drying and carbonization. SEM, TEM, XPS, XRD, BET and FTIR are used to evaluate the physical and chemical properties of MCA. Meanwhile, the adsorption performances of MCA on Pb2+, Cu2+ and Cd2+ are also studied by adsorption kinetics, isothermal curves and thermodynamics. The results show that the adsorption process involves chemical adsorption and physical adsorption, and the adsorption process is a spontaneous endothermic process. The maximum adsorption capacities of MCA for Pb2+, Cu2+ and Cd2+ obtained in the adsorption isotherm experiments were 74.38, 84.21 and 73.63 mg g-1, respectively, showing excellent adsorption performance for Pb2+, Cu2+ and Cd2+. Therefore, the MCA has potential application for wastewater purification of heavy metals containing Pb2+, Cu2+ and Cd2+, meanwhile, this study provides some guidance for the design and application of microspheres for the separation and removal of Pb2+, Cu2+ and Cd2+.
Collapse
Affiliation(s)
- Wenxiang Jing
- School of Materials and Chemistry, Southwest University of Science and Technology 621010 Mianyang Sichuan China
- Yibin Forestry and Bamboo Industry Research Institute Yibin 644005 China
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology Mianyang 621010 China
| | - Chai Yang
- Yibin Forestry and Bamboo Industry Research Institute Yibin 644005 China
| | - Xiaoyan Lin
- School of Materials and Chemistry, Southwest University of Science and Technology 621010 Mianyang Sichuan China
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology Mianyang 621010 China
| | - Min Tang
- Yibin Forestry and Bamboo Industry Research Institute Yibin 644005 China
| | - Dongming Lian
- Yibin Forestry and Bamboo Industry Research Institute Yibin 644005 China
| | - Ying Yu
- Yibin Forestry and Bamboo Industry Research Institute Yibin 644005 China
| | - Dongyang Liu
- Yibin Forestry and Bamboo Industry Research Institute Yibin 644005 China
| |
Collapse
|
2
|
Chawla N, Gupta L, Kumar S. Bioremediation technologies for remediation of dyes from wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1229. [PMID: 39570539 DOI: 10.1007/s10661-024-13410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The colored dyes are extensively applied in diverse industrial setups such as textiles, paper, leather, and cosmetics. The unutilized dyes are released in the waste and pose a serious menace to the environment, ecological balance, and human health. Because of their chemical nature, they are extremely resistant to common methods of treatment and often persist in the aquatic environment. A sustainable and eco-friendly approach for treating dye-contaminated wastewater is "bioremediation." This manuscript aims to discuss the exclusive role of diversified microorganisms and plants, immobilized microbial cells/enzymes, microbial consortia, nanomaterials, and combination approaches in the bioremediation of dyes. It also provides a comprehensive understanding of different bio-remedial technologies used to remove dyes from wastewater. In addition, the underlying mechanisms affecting the efficacy of bio-remedial technologies, the latest breakthroughs, challenges, and potential solutions in scaling up, and prospects in this area are also explored. We also detail the noteworthiness of genetic engineering in different bioremediation technologies to solve the issues associated with dye contamination in wastewater and its removal from the environment.
Collapse
Affiliation(s)
- Niti Chawla
- Department of Biotechnology, Chaudhary Bansi Lal University, Prem Nagar, Bhiwani, 127031, Haryana, India
| | - Lalita Gupta
- Department of Zoology, Chaudhary Bansi Lal University, Prem Nagar, Bhiwani, 127031, Haryana, India
| | - Sanjeev Kumar
- Department of Biotechnology, Chaudhary Bansi Lal University, Prem Nagar, Bhiwani, 127031, Haryana, India.
| |
Collapse
|
3
|
Adeleke BS, Olowe OM, Ayilara MS, Fasusi OA, Omotayo OP, Fadiji AE, Onwudiwe DC, Babalola OO. Biosynthesis of nanoparticles using microorganisms: A focus on endophytic fungi. Heliyon 2024; 10:e39636. [PMID: 39553612 PMCID: PMC11564013 DOI: 10.1016/j.heliyon.2024.e39636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
The concept of this review underscores a significant shift towards sustainable agricultural practices, particularly from the view point of microbial biotechnology and nanotechnology. The global food insecurity that causes increasing ecological imbalances is exacerbating food insecurity, and this has necessitated eco-friendly agricultural innovations. The chemical fertilizers usage aims at boosting crop yields, but with negative environmental impact, thus pushing for alternatives. Microbial biotechnology and nanotechnology fields are gaining traction for their potential in sustainable agriculture. Endophytic fungi promise to synthesize nanoparticles (NPs) that can enhance crop productivity and contribute to ecosystem stability. Leveraging on endophytic fungi could be key to achieving food security goals. Endophytic fungi explore diverse mechanisms in enhancing plant growth and resilience to environmental stresses. The application of endophytic fungi in agricultural settings is profound with notable successes. Hence, adopting interdisciplinary research approaches by combining mycology, nanotechnology, agronomy, and environmental science can meaningfully serve as potential pathways and hurdles for the commercialization of these biotechnologies. Therefore, setting regulatory frameworks for endophytic nanomaterials use in agriculture, by considering their safety and environmental impact assessments will potentially provide future research directions in addressing the current constraints and unlock the potential of endophytic fungi in agriculture.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Microbiology Programme, Department of Biological Sciences, School of Science, Olusegun Agagu University of Science and Technology, PMB 353, Okitipupa, Nigeria
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olumayowa Mary Olowe
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Deaprtment of Biological Sciences, Kings University, Ode-Omu, Nigeria
| | - Oluwaseun Adeyinka Fasusi
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Deaprtment of Biological Sciences, Kings University, Ode-Omu, Nigeria
| | - Oluwadara Pelumi Omotayo
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Hawkesbury Institute for Environment, Western Sydney University, Penrith, Australia
| | - Damian C. Onwudiwe
- Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
4
|
Cui L, Wang J, Zhou H, Shao S, Kang J, Yu X, Zhao H, Shen L. Insights of using microbial material in fluoride removal from wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122867. [PMID: 39423626 DOI: 10.1016/j.jenvman.2024.122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Fluoride is an essential trace element for the human body, but excessive fluoride can cause serious environmental and health problems. Therefore, developing efficient fluoride removal technologies is crucial. This review summarizes the progress made in using microbial materials to remove fluoride from wastewater, covering strategies that involve pure cultures of bacteria, fungi, and algae, as well as modified microbial materials and bioreactors. Live microorganisms exhibit high efficiency in adsorbing low concentrations of fluoride, while modified microbial materials are more suitable for treating high concentrations of fluoride. The review discusses the adsorption mechanisms and influencing factors of these technologies, and evaluates their practical application potential through techno-economic analysis. Finally, future research directions are proposed, including the optimization of modification technologies and the selection of effective microbial species, providing theoretical guidance and a basis for future microbial defluoridation technologies.
Collapse
Affiliation(s)
- Linlin Cui
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Shiyu Shao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Hongbo Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
5
|
Ren M, Bai Y, Wang Y, Su J, Hou C, Zhang Y. Simultaneous removal of nitrate, manganese, zinc, and bisphenol a by manganese redox cycling system: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 407:131106. [PMID: 39004108 DOI: 10.1016/j.biortech.2024.131106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The manganese(Mn) redox cycling system in this work was created by combining Mn(IV)-reducing bacteria MFG10 with Mn(II)-oxidizing bacteria HY129. The biomanganese oxides (BMO) generated by strain HY129 were transformed by strain MFG10 to Mn(II), finishing the Mn redox cycling, in which nitrate (NO3--N) was converted to nitrite, which was further reduced to nitrogen gas. The system could achieve 85.7 % and 98.8 % elimination efficiencies of Mn(ⅠⅠ) and NO3--N, respectively, at Mn(ⅠⅠ) = 20.0 mg/L, C/N = 2.0, pH = 6.5, and NO3--N = 16.0 mg/L. The removal of bisphenol A (BPA) and zinc (Zn(II)) at 36 h reached 91.7 % and 89.7 % under the optimal condition, respectively. Furthermore, the Mn redox cycling system can reinforce the metabolic activity and electron transfer activity of microorganisms. The findings showed that the adsorption by bioprecipitation throughout the Mn cycling was responsible for the elimination of Zn(II) and BPA.
Collapse
Affiliation(s)
- Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ying Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
6
|
Almutairi HH. Microbial communities in petroleum refinery effluents and their complex functions. Saudi J Biol Sci 2024; 31:104008. [PMID: 38766506 PMCID: PMC11097069 DOI: 10.1016/j.sjbs.2024.104008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Petroleum refinery effluents (PRE) are a significant cause of pollution. It contains toxic compounds such as total petroleum hydrocarbons (TPH), and polycyclic aromatic hydrocarbons (PAHs), as well as heavy metals. They show a huge threat facing the aquaculture habitats, human health, and the environment if they are not treated before discharging into the environment. Physical and chemical procedures are used to treat hydrocarbon pollution in PRE, but these techniques often result in the formation of hazardous by-products during the remediation process. However, PRE contains various microbial communities, including bacteria, yeast, microalgae, and fungi. The bioremediation and biodegradation of oil contaminants are the primary functions of these microbial communities. However, these microorganisms can perform various additional functions including but not limited to heavy metals removal, production of biosurfactants, and nitrogen fixation. This review contributes to the comprehension of natural microbial communities and their complex functions in petroleum refinery effluents. Understanding microbial communities would facilitate the advancement of innovative biotechnology aimed at treating PRE, improving bioremediation processes, and potentially transforming PRE into valuable bio-products. Moreover, it assists in determining the most effective bioaugmentation strategy to enhance biodegradation and bioremediation in PRE. The review highlights the potential for sustainable green approaches using microbial communities to replace toxic chemical therapies and expensive physical treatments in the future.
Collapse
Affiliation(s)
- Hayfa Habes Almutairi
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
7
|
Zhang X, Zhang L, Yu T, Gao Y, Zhai T, Zhao T, Xing Z. Genetic response analysis of Beauveria bassiana Z1 under high concentration Cd(II) stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132984. [PMID: 37995637 DOI: 10.1016/j.jhazmat.2023.132984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Cadmium (Cd(II)) has carcinogenic and teratogenic toxicity, which can be accumulated in the human body through the food chain, endangering human health and life. In this study, a highly Cd(II)-tolerant fungus named Beauveria bassiana Z1 was studied, and its Cd(Ⅱ) removal efficiency was 71.2% when the Cd(II) concentration was 10 mM. Through bioanalysis and experimental verification of the transcriptome data, it was found that cadmium entered the cells through calcium ion channels, and then complexed with intracellular glutathione (GSH) and stored in vacuoles or excluded extracellular by ABC transporters. Cytochrome P450 was significantly upregulated in many pathways and actively participated in detoxification related reactions. The addition of cytochrome inhibitor taxifolin reduced the removal efficiency of Cd(II) by 45%. In the analysis, it demonstrated that ACOX1 gene and OPR gene of jasmonic acid (JA) synthesis pathway were significantly up-regulated, and were correlated with bZIP family transcription factors cpc-1_0 and pa p1_0. The results showed that exogenous JA could improve the removal efficiency of Cd(II) by strain Z1.
Collapse
Affiliation(s)
- Xiaoping Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lijie Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Tiantian Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yanhui Gao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Tianrui Zhai
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
8
|
Ali MH, Muzaffar A, Khan MI, Farooq Q, Tanvir MA, Dawood M, Hussain MI. Microbes-assisted phytoremediation of lead and petroleum hydrocarbons contaminated water by water hyacinth. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:405-415. [PMID: 37578104 DOI: 10.1080/15226514.2023.2245905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
An experiment was carried out to explore the impact of petroleum hydrocarbons (PHs)-degrading microbial consortium (MC) on phytoremediation ability and growth of water hyacinth (WH) plants in water contaminated with lead (Pb) and PHs. Buckets (12-L capacity) were filled with water and WH plants, PHs (2,400 mg L-1) and Pb (10 mg L-1) in respective buckets. Plants were harvested after 30 days of transplanting and results showed that PHs and Pb substantially reduced the agronomic (up to 62%) and physiological (up to 49%) attributes of WH plants. However, the application of MC resulted in a substantial increase in growth (38%) and physiology (22%) of WH plants over uninoculated contaminated control. The WH + MC were able to accumulate 93% Pb and degrade/accumulate 72% of PHs as compared to initial concentration. Furthermore, combined use of WH plants and MC in co-contamination of PHs and Pb, reduced Pb and PHs contents in water by 74% and 68%, respectively, than that of initially applied concentration. Our findings suggest that the WH in combination with PHs-degrading MC could be a suitable nature-based water remediation technology for organic and inorganic contaminants and in future it can be used for decontamination of mix pollutants from water bodies.
Collapse
Affiliation(s)
- Muhammad Hayder Ali
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Amna Muzaffar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Imran Khan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Qammar Farooq
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Ayyoub Tanvir
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Dawood
- Department of Environmental Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
9
|
Geris R, Malta M, Soares LA, de Souza Neta LC, Pereira NS, Soares M, Reis VDS, Pereira MDG. A Review about the Mycoremediation of Soil Impacted by War-like Activities: Challenges and Gaps. J Fungi (Basel) 2024; 10:94. [PMID: 38392767 PMCID: PMC10890077 DOI: 10.3390/jof10020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
(1) Background: The frequency and intensity of war-like activities (war, military training, and shooting ranges) worldwide cause soil pollution by metals, metalloids, explosives, radionuclides, and herbicides. Despite this environmentally worrying scenario, soil decontamination in former war zones almost always involves incineration. Nevertheless, this practice is expensive, and its efficiency is suitable only for organic pollutants. Therefore, treating soils polluted by wars requires efficient and economically viable alternatives. In this sense, this manuscript reviews the status and knowledge gaps of mycoremediation. (2) Methods: The literature review consisted of searches on ScienceDirect and Web of Science for articles (1980 to 2023) on the mycoremediation of soils containing pollutants derived from war-like activities. (3) Results: This review highlighted that mycoremediation has many successful applications for removing all pollutants of war-like activities. However, the mycoremediation of soils in former war zones and those impacted by military training and shooting ranges is still very incipient, with most applications emphasizing explosives. (4) Conclusion: The mycoremediation of soils from conflict zones is an entirely open field of research, and the main challenge is to optimize experimental conditions on a field scale.
Collapse
Affiliation(s)
- Regina Geris
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Marcos Malta
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Luar Aguiar Soares
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Lourdes Cardoso de Souza Neta
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Natan Silva Pereira
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Miguel Soares
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Vanessa da Silva Reis
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Madson de Godoi Pereira
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| |
Collapse
|
10
|
Pang B, Zuo D, Yang T, Yu J, Zhou L, Hou Y, Yu J, Ye L, Gu L, Wang H, Du X, Liu Y, Zhu B. BcaSOD1 enhances cadmium tolerance in transgenic Arabidopsis by regulating the expression of genes related to heavy metal detoxification and arginine synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108299. [PMID: 38150840 DOI: 10.1016/j.plaphy.2023.108299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Cadmium (Cd), which is a nonessential heavy metal element for organisms, can have a severe impact on the growth and development of organisms that absorb excessive Cd. Studies have shown that Brassica carinata, a semiwild oil crop, has strong tolerance to various abiotic stresses, and RNA-seq has revealed that the B. carinata superoxide dismutase gene (BcaSOD1) likely responds to Cd stress. To elucidate the BcaSOD1 function involved in tolerance of Cd stress, we cloned the coding sequences of BcaSOD1 from a purple B. carinata accession and successfully transferred it into Arabidopsis thaliana. The subcellular localization results demonstrated that BcaSOD1 was primarily located in the plasma membrane, mitochondria and nucleus. Overexpression of BcaSOD1 in transgenic Arabidopsis (OE) effectively decreased the toxicity caused by Cd stress. Compared to the WT (wild type lines), the OE lines exhibited significantly increased activities of antioxidant enzymes (APX, CAT, POD, and SOD) after exposure to 2.5 mM CdCl2. The Cd content of underground (root) in the OE line was dominantly higher than that in the WT; however, the Cd content of aboveground (shoot) was comparable between the OE and WT types. Moreover, the qRT‒PCR results showed that several heavy metal detoxification-related genes (AtIREG2, AtMTP3, AtHMA3, and AtNAS4) were significantly upregulated in the roots of OE lines under Cd treatment, suggesting that these genes are likely involved in Cd absorption in the roots of OE lines. In addition, both comparable transcriptome and qRT-PCR analyses revealed that exogenous BcaSOD1 noticeably facilitates detoxification by stimulating the expression of two arginine (Arg) biosynthesis genes (AtGDH1 and AtGDH2) while inhibiting the expression of AtARGAH1, a negative regulator in biosynthesis of Arg. The Arg content was subsequently confirmed to be significantly enhanced in OE lines under Cd treatment, indicating that BcaSOD1 likely strengthened Cd tolerance by regulating the expression of Arg-related genes. This study demonstrates that BcaSOD1 can enhance Cd tolerance and reveals the molecular mechanism of this gene, providing valuable insights into the molecular mechanism of Cd tolerance in plants.
Collapse
Affiliation(s)
- Biao Pang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Dan Zuo
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Tinghai Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Junxing Yu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Lizhou Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Yunyan Hou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Jie Yu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Lvlan Ye
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Yingliang Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China.
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
11
|
AbuQamar SF, Abd El-Fattah HI, Nader MM, Zaghloul RA, Abd El-Mageed TA, Selim S, Omar BA, Mosa WF, Saad AM, El-Tarabily KA, El-Saadony MT. Exploiting fungi in bioremediation for cleaning-up emerging pollutants in aquatic ecosystems. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106068. [PMID: 37421706 DOI: 10.1016/j.marenvres.2023.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/04/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023]
Abstract
Aquatic pollution negatively affects water bodies, marine ecosystems, public health, and economy. Restoration of contaminated habitats has attracted global interest since protecting the health of marine ecosystems is crucial. Bioremediation is a cost-effective and eco-friendly way of transforming hazardous, resistant contaminants into environmentally benign products using diverse biological treatments. Because of their robust morphology and broad metabolic capabilities, fungi play an important role in bioremediation. This review summarizes the features employed by aquatic fungi for detoxification and subsequent bioremediation of different toxic and recalcitrant compounds in aquatic ecosystems. It also details how mycoremediation may convert chemically-suspended matters, microbial, nutritional, and oxygen-depleting aquatic contaminants into ecologically less hazardous products using multiple modes of action. Mycoremediation can also be considered in future research studies on aquatic, including marine, ecosystems as a possible tool for sustainable management, providing a foundation for selecting and utilizing fungi either independently or in microbial consortia.
Collapse
Affiliation(s)
- Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Hassan I Abd El-Fattah
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Maha M Nader
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Rashed A Zaghloul
- Department of Agricultural Microbiology, Faculty of Agriculture, Moshtohor, Benha University, Benha, 13511, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Belal A Omar
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Walid F Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21526, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
12
|
Naseri A, Abed Z, Rajabi M, Asghari A, Lal B, Baigenzhenov O, Arghavani-Beydokhti S, Hosseini-Bandegharaei A. Use of Chrysosporium/carbon nanotubes for preconcentration of ultra-trace cadmium levels from various samples after extensive studies on its adsorption properties. CHEMOSPHERE 2023; 335:139168. [PMID: 37295689 DOI: 10.1016/j.chemosphere.2023.139168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Carbon nanotubes were used to immobilize Chrysosporium fungus for building an adequate adsorbent to be used as an desirable sorbent for preconcentration and measurement of cadmium ultra-trace levels in various samples. After characterization, the potential of Chrysosporium/carbon nanotubes for the sorption of Cd(II) ions was scrutinized by the aid of central composite design, and comprehensive studies of sorption equilibrium, kinetics and thermodynamic aspects were accomplished. Then, the composite was utilized for preconcentration of ultra-trace cadmium levels, by a mini-column packed with Chrysosporium/carbon nanotubes, before its determination with ICP-OES. The outcomes vouchsafed that (i) Chrysosporium/carbon nanotube has a high tendency for selective and rapid sorption of cadmium ion, at pH 6.1, and (ii) kinetic, equilibrium, and thermodynamic studies showed a high affinity of the Chrysosporium/carbon nanotubes for cadmium ion. Also, the outcomes displayed that cadmium can quantitatively be sorbed at a flow speed lesser than 7.0 mL/min and a 1.0 M HCl solution (3.0 mL) was sufficient to desorbe the analyte. Eventually, preconcentration and measurement of Cd(II) in different foods and waters were successfully accomplished with good accuracy, high precision (RSDs ≤5.65%), and low limit of detection (0.015 μg/L).
Collapse
Affiliation(s)
- Ali Naseri
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Abed
- Faculty of Chemistry, Semnan University, Semnan, Iran
| | - Maryam Rajabi
- Faculty of Chemistry, Semnan University, Semnan, Iran.
| | | | - Basant Lal
- Department of Chemistry, Institute of Applied Science and Humanities, GLA University, Mathura, 281406, India
| | - Omirserik Baigenzhenov
- Department of Metallurgical Sciences, Satbayev University, 22a Satbaev Str., Almaty, 050013, Kazakhstan
| | | | | |
Collapse
|