1
|
Lo DY, Ahmadzada B, Stachel MA, Schaefer M, Ashraf U, Wagner JI, Vanderslice EJ, Tornquist M, Mariakis K, Halsten P, Lindsay CD, Beck EC, Nyberg SL, Ross JJ. Transplantation of decellularized porcine kidney grafts repopulated with primary human cells demonstrates filtration function in pigs. COMMUNICATIONS MEDICINE 2024; 4:259. [PMID: 39639166 PMCID: PMC11621697 DOI: 10.1038/s43856-024-00676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND End-stage renal disease is a growing global health issue, disproportionately impacting low- and middle-income countries. While kidney transplantation remains the best treatment for end-stage renal disease, access to this treatment modality is limited by chronic donor organ shortages. To address this critical need, we are developing transplantable bioengineered kidney grafts. METHODS Podocyte differentiation was achieved in adherent monoculture through Wnt and TGF-β inhibition with IWR-1 and SB431542, respectively. Podocytes along with endothelial cells were then used to recapitulate glomeruli within decellularized porcine kidney scaffolds to generate bioengineered kidneys grafts. These bioengineered kidney grafts were functionally assessed via normothermic perfusion which compared kidney grafts recellularized with only endothelial cells as a control to bi-culture kidney grafts comprised of endothelial cells and podocytes. Heterotopic implantation further tested bi-culture kidney graft function over 3 successive implant sessions with 1-2 grafts per session. RESULTS We demonstrate the ability to source primary human podocytes at scale. Decellularized porcine kidney grafts repopulated with podocytes and endothelial cells exhibit native glomerular structure and display blood filtration capabilities during normothermic perfusion testing. Extending these findings to a clinically relevant model, bioengineered kidneys produce urine with indices of filtration when heterotopically implanted in pigs. CONCLUSIONS Our results showcase a human-scale, transplantable bioengineered kidney capable of performing requisite filtration function. This study reinforces the possibility for the bioengineering of transplantable human kidneys, which could someday provide increased and more equitable access to kidney grafts for the treatment of end-stage renal disease.
Collapse
Affiliation(s)
- David Y Lo
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA.
| | | | - MacKenna A Stachel
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Melia Schaefer
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Usman Ashraf
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - John I Wagner
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Ethan J Vanderslice
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Madie Tornquist
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Kendra Mariakis
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Peggy Halsten
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Christopher D Lindsay
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Emily C Beck
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | | | - Jeffrey J Ross
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA.
| |
Collapse
|
2
|
Merigo G, Florio G, Madotto F, Magliocca A, Silvestri I, Fumagalli F, Cerrato M, Motta F, De Giorgio D, Panigada M, Zanella A, Grasselli G, Ristagno G. Treatment with inhaled Argon: a systematic review of pre-clinical and clinical studies with meta-analysis on neuroprotective effect. EBioMedicine 2024; 103:105143. [PMID: 38691938 PMCID: PMC11070688 DOI: 10.1016/j.ebiom.2024.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Argon (Ar) has been proposed as a potential therapeutic agent in multiple clinical conditions, specifically in organ protection. However, conflicting data on pre-clinical models, together with a great variability in Ar administration protocols and outcome assessments, have been reported. The aim of this study was to review evidence on treatment with Ar, with an extensive investigation on its neuroprotective effect, and to summarise all tested administration protocols. METHODS Using the PubMed database, all existing pre-clinical and clinical studies on the treatment with Ar were systematically reviewed (registration: https://doi.org/10.17605/OSF.IO/7983D). Study titles and abstracts were screened, extracting data from relevant studies post full-text review. Exclusion criteria included absence of full text and non-English language. Furthermore, meta-analysis was also performed to assess Ar potential as neuroprotectant agent in different clinical conditions: cardiac arrest, traumatic brain injury, ischemic stroke, perinatal hypoxic-ischemic encephalopathy, subarachnoid haemorrhage. Standardised mean differences for neurological, cognitive and locomotor, histological, and physiological measures were evaluated, through appropriate tests, clinical, and laboratory variables. In vivo studies were evaluated for risk of bias using the Systematic Review Center for Laboratory Animal Experimentation tool, while in vitro studies underwent assessment with a tool developed by the Office of Health Assessment and Translation. FINDINGS The systematic review detected 60 experimental studies (16 in vitro, 7 ex vivo, 31 in vivo, 6 with both in vitro and in vivo) investigating the role of Ar. Only one clinical study was found. Data from six in vitro and nineteen in vivo studies were included in the meta-analyses. In pre-clinical models, Ar administration resulted in improved neurological, cognitive and locomotor, and histological outcomes without any change in physiological parameters (i.e., absence of adverse events). INTERPRETATION This systematic review and meta-analysis based on experimental studies supports the neuroprotective effect of Ar, thus providing a rationale for potential translation of Ar treatment in humans. Despite adherence to established guidelines and methodologies, limitations in data availability prevented further analyses to investigate potential sources of heterogeneity due to study design. FUNDING This study was funded in part by Italian Ministry of Health-Current researchIRCCS and by Ministero della Salute Italiano, Ricerca Finalizzata, project no. RF 2019-12371416.
Collapse
Affiliation(s)
- Giulia Merigo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaetano Florio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Fabiana Madotto
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Aurora Magliocca
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ivan Silvestri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesca Fumagalli
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marianna Cerrato
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Motta
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daria De Giorgio
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mauro Panigada
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo Grasselli
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Ristagno
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Yang J, Chen C, Miao X, Wang T, Guan Y, Zhang L, Chen S, Zhang Z, Xia Z, Kang J, Li H, Yin T, Hei Z, Yao W. Injury Site Specific Xenon Delivered by Platelet Membrane-Mimicking Hybrid Microbubbles to Protect Against Acute Kidney Injury via Inhibition of Cellular Senescence. Adv Healthc Mater 2023; 12:e2203359. [PMID: 36977502 DOI: 10.1002/adhm.202203359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Inhalation of xenon gas improves acute kidney injury (AKI). However, xenon can only be delivered through inhalation, which causes non-specific distribution and low bioavailability of xenon, thus limiting its clinical application. In this study, xenon is loaded into platelet membrane-mimicking hybrid microbubbles (Xe-Pla-MBs). In ischemia-reperfusion-induced AKI, intravenously injected Xe-Pla-MBs adhere to the endothelial injury site in the kidney. Xe-Pla-MBs are then disrupted by ultrasound, and xenon is released to the injured site. This release of xenon reduced ischemia-reperfusion-induced renal fibrosis and improved renal function, which are associated with decreased protein expression of cellular senescence markers p53 and p16, as well as reduced beta-galactosidase in renal tubular epithelial cells. Together, platelet membrane-mimicking hybrid microbubble-delivered xenon to the injred site protects against ischemia-reperfusion-induced AKI, which likely reduces renal senescence. Thus, the delivery of xenon by platelet membrane-mimicking hybrid microbubbles is a potential therapeutic approach for AKI.
Collapse
Affiliation(s)
- Jing Yang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Xiaoyan Miao
- Department of Medical Ultrasonic, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Tienan Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Yu Guan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Linan Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Sufang Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Zheng Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Zhengyuan Xia
- Department of Medicine, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jiayi Kang
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Haobo Li
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Tinghui Yin
- Department of Medical Ultrasonic, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| |
Collapse
|
4
|
Patent Highlights February-March 2022. Pharm Pat Anal 2022; 11:119-126. [PMID: 35861060 DOI: 10.4155/ppa-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
5
|
Bausys A, Maneikyte J, Leber B, Weber J, Feldbacher N, Strupas K, Dschietzig TB, Schemmer P, Stiegler P. Custodiol ® Supplemented with Synthetic Human Relaxin Decreases Ischemia-Reperfusion Injury after Porcine Kidney Transplantation. Int J Mol Sci 2021; 22:ijms222111417. [PMID: 34768845 PMCID: PMC8583819 DOI: 10.3390/ijms222111417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Objective. Ischemia-reperfusion injury (IRI) is inevitable after kidney transplantation (KT), impairing outcomes. Relaxin-2 (RLX) is a promising insulin-related peptide hormone that protects against renal IRI in rodents, although large animal models are needed before RLX can be tested in a human setting. Methods. In this blinded, randomized, and placebo-controlled experimental study kidneys from 19 donor pigs were retrieved after perfusion with Custodiol® ± RLX (5 or 20 nmol/L) and underwent static cold storage (SCS) for 24 and 48 h, respectively. Subsequently, KT was performed after unilateral right nephrectomy. Study outcomes included markers for kidney function, oxidative stress, lipid peroxidation, and endothelial cell damage. PCR analysis for oxidative stress and apoptosis-related gene panels as well as immunohistochemistry were performed. Results. RLX upregulated SOD2 and NFKB expression to 135% (p = 0.042) and 125% (p = 0.019), respectively, while RIPK1 expression was downregulated to 82% (p = 0.016) of corresponding controls. Further RLX significantly downregulated RIPK1 and MLKL expression and decreased the number of Caspase 3- and MPO-positive cells in grafts after SCS. Conclusions. RLX supplemented Custodiol® significantly decreased IRI via both antioxidant and anti-apoptotic mechanisms. Clinical trials are warranted to implement synthetic human RLX as a novel additive to preservation solutions against IRI.
Collapse
Affiliation(s)
- Augustinas Bausys
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (A.B.); (J.M.); (J.W.); (N.F.); (P.S.); (P.S.)
- Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania;
- Department of Abdominal Surgery, National Cancer Institute, 10224 Vilnius, Lithuania
| | - Juste Maneikyte
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (A.B.); (J.M.); (J.W.); (N.F.); (P.S.); (P.S.)
- Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (A.B.); (J.M.); (J.W.); (N.F.); (P.S.); (P.S.)
- Correspondence: ; Tel.: +43-316-385-81181
| | - Jennifer Weber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (A.B.); (J.M.); (J.W.); (N.F.); (P.S.); (P.S.)
| | - Nicole Feldbacher
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (A.B.); (J.M.); (J.W.); (N.F.); (P.S.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania;
| | - Thomas Bernd Dschietzig
- Relaxera GmbH & Co. KG, 64625 Bensheim, Germany;
- MHB Medizinische Hochschule Brandenburg, 16816 Neuruppin, Germany
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (A.B.); (J.M.); (J.W.); (N.F.); (P.S.); (P.S.)
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (A.B.); (J.M.); (J.W.); (N.F.); (P.S.); (P.S.)
| |
Collapse
|
6
|
Urbanellis P, Mazilescu L, Kollmann D, Linares-Cervantes I, Kaths JM, Ganesh S, Oquendo F, Sharma M, Goto T, Noguchi Y, John R, Konvalinka A, Mucsi I, Ghanekar A, Bagli D, Robinson LA, Selzner M. Prolonged warm ischemia time leads to severe renal dysfunction of donation-after-cardiac death kidney grafts. Sci Rep 2021; 11:17930. [PMID: 34504136 PMCID: PMC8429572 DOI: 10.1038/s41598-021-97078-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Kidney transplantation with grafts procured after donation-after-cardiac death (DCD) has led to an increase in incidence of delayed graft function (DGF). It is thought that the warm ischemic (WI) insult encountered during DCD procurement is the cause of this finding, although few studies have been designed to definitely demonstrate this causation in a transplantation setting. Here, we use a large animal renal transplantation model to study the effects of prolonged WI during procurement on post-transplantation renal function. Kidneys from 30 kg-Yorkshire pigs were procured following increasing WI times of 0 min (Heart-Beating Donor), 30 min, 60 min, 90 min, and 120 min (n = 3-6 per group) to mimic DCD. Following 8 h of static cold storage and autotransplantation, animals were followed for 7-days. Significant renal dysfunction (SRD), resembling clinical DGF, was defined as the development of oliguria < 500 mL in 24 h from POD3-4 along with POD4 serum potassium > 6.0 mmol/L. Increasing WI times resulted in incremental elevation of post-operative serum creatinine that peaked later. DCD120min grafts had the highest and latest elevation of serum creatinine compared to all groups (POD5: 19.0 ± 1.1 mg/dL, p < 0.05). All surviving animals in this group had POD4 24 h urine output < 500 cc (mean 235 ± 172 mL) and elevated serum potassium (7.2 ± 1.1 mmol/L). Only animals in the DCD120min group fulfilled our criteria of SRD (p = 0.003), and their renal function improved by POD7 with 24 h urine output > 500 mL and POD7 serum potassium < 6.0 mmol/L distinguishing this state from primary non-function. In a transplantation survival model, this work demonstrates that prolonging WI time similar to that which occurs in DCD conditions contributes to the development of SRD that resembles clinical DGF.
Collapse
Affiliation(s)
- Peter Urbanellis
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Laura Mazilescu
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Dagmar Kollmann
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Ivan Linares-Cervantes
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - J Moritz Kaths
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Sujani Ganesh
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Fabiola Oquendo
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Manraj Sharma
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Toru Goto
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Yuki Noguchi
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Rohan John
- Laboratory Medicine and Pathobiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Ana Konvalinka
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
| | - Istvan Mucsi
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.,Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
| | - Anand Ghanekar
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Darius Bagli
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Departments of Surgery (Urology) and Physiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Program in Developmental and Stem Cell Biology, The Hospital For Sick Children Research Institute, Toronto, ON, Canada
| | - Lisa A Robinson
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada. .,Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.
| | - Markus Selzner
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada. .,Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Zhu W, Zhu J, Zhao S, Li J, Hou D, Zhang Y, Sun H. Xenon Exerts Neuroprotective Effects on Kainic Acid-Induced Acute Generalized Seizures in Rats via Increased Autophagy. Front Cell Neurosci 2020; 14:582872. [PMID: 33132850 PMCID: PMC7573545 DOI: 10.3389/fncel.2020.582872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/03/2020] [Indexed: 12/04/2022] Open
Abstract
Xenon has been shown to have neuroprotective effects and is clinically used as a favorable safe inhalation anesthetic. We previously confirmed the neuroprotective effects of xenon treatment in epileptic animals. However, the mechanism underlying these protective effects remains unclear. We aimed to assess the effects of xenon inhalation on autophagy in neuronal injury induced by acute generalized seizures. Kainic acid (KA) was injected into the lateral ventricle of male Sprague–Dawley rats to induce acute generalized seizures. Next, the rats were treated via inhalation of a 70% xenon/21% oxygen/9% nitrogen mixture for 60 min immediately after KA administration. The control group was treated via inhalation of a 79% nitrogen/21% oxygen mixture. Subsequently, two inhibitors (3-methyladenine or bafilomycin A1) or an autophagy inducer (rapamycin) were administered, respectively, before KA and xenon administration to determine the role of autophagy in the protective effects of xenon. The levels of apoptosis, neuronal injury, and autophagy were determined in all the rats. Xenon inhalation significantly attenuated the severity of the seizure-induced neuronal injury. Increased autophagy accompanied this inhibitive effect. Autophagy inhibition eliminated these xenon neuroprotective effects. A simulation of autophagy using rapamycin recapitulated xenon’s protective effects on KA-induced acute generalized seizures in the rats. These findings confirmed that xenon exerts strong neuroprotective effects in KA-induced acute generalized seizures. Further, they indicate that increased autophagy may underlie the protective effects of xenon. Therefore, xenon and autophagy inducers may be useful clinical options for their neuroprotective effects in epileptic seizures.
Collapse
Affiliation(s)
- Wei Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Jianguo Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | | | - Jieqing Li
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Dianjun Hou
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
8
|
Lo SB, Blaszak RT, Parajuli N. Targeting Mitochondria during Cold Storage to Maintain Proteasome Function and Improve Renal Outcome after Transplantation. Int J Mol Sci 2020; 21:E3506. [PMID: 32429129 PMCID: PMC7279041 DOI: 10.3390/ijms21103506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Kidney transplantation is the preferred treatment for end-stage kidney disease (ESKD). Compared to maintenance dialysis, kidney transplantation results in improved patient survival and quality of life. Kidneys from living donors perform best; however, many patients with ESKD depend on kidneys from deceased donors. After procurement, donor kidneys are placed in a cold-storage solution until a suitable recipient is located. Sadly, prolonged cold storage times are associated with inferior transplant outcomes; therefore, in most situations when considering donor kidneys, long cold-storage times are avoided. The identification of novel mechanisms of cold-storage-related renal damage will lead to the development of new therapeutic strategies for preserving donor kidneys; to date, these mechanisms remain poorly understood. In this review, we discuss the importance of mitochondrial and proteasome function, protein homeostasis, and renal recovery during stress from cold storage plus transplantation. Additionally, we discuss novel targets for therapeutic intervention to improve renal outcomes.
Collapse
Affiliation(s)
- Sorena B. Lo
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Richard T. Blaszak
- Division of Nephrology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
9
|
Anna R, Rolf R, Mark C. Update of the organoprotective properties of xenon and argon: from bench to beside. Intensive Care Med Exp 2020; 8:11. [PMID: 32096000 PMCID: PMC7040108 DOI: 10.1186/s40635-020-0294-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
The growth of the elderly population has led to an increase in patients with myocardial infarction and stroke (Wajngarten and Silva, Eur Cardiol 14: 111–115, 2019). Patients receiving treatment for ST-segment-elevation myocardial infarction (STEMI) highly profit from early reperfusion therapy under 3 h from the onset of symptoms. However, mortality from STEMI remains high due to the increase in age and comorbidities (Menees et al., N Engl J Med 369: 901–909, 2013). These factors also account for patients with acute ischaemic stroke. Reperfusion therapy has been established as the gold standard within the first 4 to 5 h after onset of symptoms (Powers et al., Stroke 49: e46-e110, 2018). Nonetheless, not all patients are eligible for reperfusion therapy. The same is true for traumatic brain injury patients. Due to the complexity of acute myocardial and central nervous injury (CNS), finding organ protective substances to improve the function of remote myocardium and the ischaemic penumbra of the brain is urgent. This narrative review focuses on the noble gases argon and xenon and their possible cardiac, renal and neuroprotectant properties in the elderly high-risk (surgical) population. The article will provide an overview of the latest experimental and clinical studies. It is beyond the scope of this review to give a detailed summary of the mechanistic understanding of organ protection by xenon and argon.
Collapse
Affiliation(s)
- Roehl Anna
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany.
| | - Rossaint Rolf
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| | - Coburn Mark
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| |
Collapse
|
10
|
Xenon exerts anti-seizure and neuroprotective effects in kainic acid-induced status epilepticus and neonatal hypoxia-induced seizure. Exp Neurol 2019; 322:113054. [DOI: 10.1016/j.expneurol.2019.113054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/27/2019] [Accepted: 09/01/2019] [Indexed: 12/16/2022]
|
11
|
Zhang Y, Zhang M, Yu J, Zhu W, Wang Q, Pan X, Gao X, Yang J, Sun H. Mode-Dependent Effect of Xenon Inhalation on Kainic Acid-Induced Status Epilepticus in Rats. Front Cell Neurosci 2019; 13:375. [PMID: 31474835 PMCID: PMC6702968 DOI: 10.3389/fncel.2019.00375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Previous studies have reported the possible neuroprotective effects of xenon treatment. The purpose of this study was to define the range of effective xenon ratio, most effective xenon ratio, and time-window for intervention in the kainic acid (KA) – induced status epilepticus (SE) rat model. Different ratios of xenon (35% xenon, 21% oxygen, 44% nitrogen, 50% xenon, 21% oxygen, 29% nitrogen, 70% xenon, 21% oxygen, and 9% nitrogen) were used to treat the KA-induced SE. Our results confirmed the anti-seizure role of 50 and 70% xenon mixture, with a stronger effect from the latter. Further, 70% xenon mixture was dispensed at three time points (0 min, 15 min delayed, and 30 min delayed) after KA administration, and the results indicated the anti-seizure effect at all treated time points. The results also established that the neuronal injury in the hippocampus and entorhinal cortex (EC), assessed using Fluoro-Jade B (FJB) staining, were reversed by the xenon inhalation, and within 30 min after KA administration. Our study, therefore, indicates the appropriate effective xenon ratio and time-window for intervention that can depress seizures. The prevention of neuronal injury and further reversal of the loss of effective control of depress network in the hippocampus and EC may be the mechanisms underlying the anti-seizure effect of xenon.
Collapse
Affiliation(s)
- Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Wei Zhu
- Shandong Academy of Medical Sciences, Jinan, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Xue Gao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Jing Yang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
12
|
Lo S, MacMillan-Crow LA, Parajuli N. Renal cold storage followed by transplantation impairs proteasome function and mitochondrial protein homeostasis. Am J Physiol Renal Physiol 2018; 316:F42-F53. [PMID: 30303714 DOI: 10.1152/ajprenal.00316.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Identifying pathways related to renal cold storage (CS) that lead to renal damage after transplantation (Tx) will help us design novel pathway-specific therapies to improve graft outcome. Our recent report showed that mitochondrial function was compromised after CS alone, and this was exacerbated when CS was combined with Tx (CS/Tx). The goal of this study was to determine whether the proteasome exacerbates mitochondrial dysfunction after CS/Tx. We exposed the kidneys of male Lewis rats (in vivo) and rat renal proximal tubular (NRK) cells (in vitro) to CS/Tx or rewarming (CS/RW), respectively. To compare CS-induced effects, in vivo kidney Tx without CS exposure (autotransplantation; ATx) was also used. Our study provides the first evidence that the chymotrypsin-like (ChT-L) peptidase activity of the proteasome declined only after CS/Tx or CS/RW, but not after CS or ATx. Interestingly, key mitochondrial proteins involved with respiration [succinate dehydrogenase complex, subunit A (SDHA), a complex II subunit, and ATP5B, an ATP synthase/complex V subunit] were detected in the detergent-insoluble fraction after CS/Tx or CS/RW, with compromised complex V activity. Pharmacological inhibition of ChT-L activity in NRK cells decreased the activity of mitochondrial complexes I, II, and V and also increased the levels of SDHA and ATP5B in the insoluble fraction. On the other hand, inhibiting mitochondrial respiration in NRK cells with antimycin A compromised ChT-L function and increased the amounts of SDHA and ATP5B in the insoluble fraction. Our results suggest that mitochondrial respiratory dysfunction during CS precedes compromised ChT-L function after CS/Tx and proteasome dysfunction further alters mitochondrial protein homeostasis and decreases respiration in the kidneys after CS/Tx. Therefore, therapeutics that preserve mitochondrial and proteasome function during CS may provide beneficial outcomes following transplantation.
Collapse
Affiliation(s)
- Sorena Lo
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Lee Ann MacMillan-Crow
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences , Little Rock, Arkansas.,Arkansas Children's Research Institute, Little Rock, Arkansas
| |
Collapse
|