1
|
The Potential Role of Nigella sativa Seed Oil as Epigenetic Therapy of Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092779. [PMID: 35566130 PMCID: PMC9101516 DOI: 10.3390/molecules27092779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 01/12/2023]
Abstract
Nigella sativa oil, commonly known as black seed oil (BSO), is a well-known Mediterranean food, and its consumption is associated with beneficial effects on human health. A large number of BSO's therapeutic properties is attributed to its pharmacologically active compound, thymoquinone (TQ), which inhibits cell proliferation and induces apoptosis by targeting several epigenetic players, including the ubiquitin-like, containing plant homeodomain (PHD) and an interesting new gene, RING finger domains 1 (UHRF1), and its partners, DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1). This study was designed to compare the effects of locally sourced BSO with those of pure TQ on the expression of the epigenetic complex UHRF1/DNMT1/HDAC1 and the related events in several cancer cells. The gas chromatographs obtained from GC-MS analyses of extracted BSO showed that TQ was the major volatile compound. BSO significantly inhibited the proliferation of MCF-7, HeLa and Jurkat cells in a dose-dependent manner, and it induced apoptosis in these cell lines. BSO-induced inhibitory effects were associated with a significant decrease in mRNA expression of UHRF1, DNMT1 and HDAC1. Molecular docking and MD simulation showed that TQ had good binding affinity to UHRF1 and HDAC1. Of note, TQ formed a stable metal coordinate bond with zinc tom, found in the active site of the HDAC1 protein. These findings suggest that the use of TQ-rich BSO represents a promising strategy for epigenetic therapy for both solid and blood tumors through direct targeting of the trimeric epigenetic complex UHRF1/DNMT1/ HDAC1.
Collapse
|
2
|
Zaky AA, Shim JH, Abd El-Aty AM. A Review on Extraction, Characterization, and Applications of Bioactive Peptides From Pressed Black Cumin Seed Cake. Front Nutr 2021; 8:743909. [PMID: 34540882 PMCID: PMC8440799 DOI: 10.3389/fnut.2021.743909] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Plenty of black cumin cake was generated as a natural waste material after pressing the oil. Nigella sativa (black cumin) seeds and cakes are of precious nutritional value as they contain proteins, phenolics, essential amino acids, and bioactive compounds. Owing to their antioxidant properties, scientists and food manufacturers have extensively developed them. Notably, global awareness among consumers about the benefits of innovative food ingredients has been increased. Meanwhile, it has to be noted that vast amounts of cake by-products are not effectively utilized, which might cause economic loss and environmental consequences. This review aimed to highlight the antioxidant abilities, extraction, characterization, functional characteristics, and utilization of active peptides acquired from black seed oil cake. This overview would critically evaluate black seed cake proteins, plentiful in bioactive peptides that might be utilized as valuable additives in feed, food, pharmaceutical, and cosmetic industries. The addition of bioactive peptides to restrain the oxidation of fat-based products and preserve food safety is also addressed.
Collapse
Affiliation(s)
- Ahmed A. Zaky
- Department of Food Technology, National Research Centre, Cairo, Egypt
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Shandong Academy of Science, Qilu University of Technology, Jinan, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
3
|
Kabir Y, Akasaka-Hashimoto Y, Kubota K, Komai M. Volatile compounds of black cumin ( Nigella sativa L.) seeds cultivated in Bangladesh and India. Heliyon 2020; 6:e05343. [PMID: 33163654 PMCID: PMC7610257 DOI: 10.1016/j.heliyon.2020.e05343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/02/2020] [Accepted: 10/22/2020] [Indexed: 12/28/2022] Open
Abstract
The compositional analysis of volatile compounds of Nigella sativa L. seeds obtained from India and Bangladesh was carried out in this study. Apart from the proportion of volatile compounds, the chemical composition of seeds from both sources were similar. The major volatile compounds in Bangladesh seeds were p-cymene (36.35%), thymoquinone (29.77%), α-thujene (12.40%), carvacrol (2.85%), β-pinene (2.41%), limonene (1.64%), methyl linoleate (1.33%) and sabinene (1.18%), contribution of these is 87.93% of the total volatile oil. On the other hand, the major volatile compounds in Indian seeds were p-cymene (41.80%), α-thujene (13.93%), thymoquinone (10.27%), methyl linoleate (4.02%), carvacrol (3.65%), β-pinene (2.96%), d-limonene (2.11%), 4,5-epoxy-1-isopropyl-4- methyl-1-cyclohexene (1.80%), sabinene (1.50%) and 4-terpineol (1.22%); contribution of these were 83.24% of the total volatile oil. In both seeds, p-cymene, thymoquinone, and α-thujene were the major components. Importantly, N. sativa seeds of Bangladesh contained almost 3-fold thymoquinone compared to Indian seeds. In conclusion, the seeds from Bangladesh contain a higher amount of terpene ketones (29.86%) represented by thymoquinone in comparison to Indian seeds (10.61%); on the other hand, Indian seeds contained a higher amount of terpene hydrocarbons (63.18%) mainly p-cymene, compared to Bangladesh seeds (54.53%). This is the first study to report detailed compositional analysis and comparison of Nigella sativa L. seeds from Bangladesh and India.
Collapse
Affiliation(s)
- Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | | | - Kikue Kubota
- Department of Nutrition and Food Science, Ochanomizu University, Tokyo, Japan
| | - Michio Komai
- Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Rahman MT. Potential benefits of combination of Nigella sativa and Zn supplements to treat COVID-19. J Herb Med 2020; 23:100382. [PMID: 32834942 PMCID: PMC7313527 DOI: 10.1016/j.hermed.2020.100382] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/23/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
The COVID-19 has been declared a pandemic while there is no specific medicine against its causative agent SARS-CoV-2. As an complementary medicine Nigella sativa (black seed) could be considered for its bioactive components such as thymoquinone which was proven to have anti-viral activity. Further benefits to use N. sativa could be augmented by Zn supplement. Notably, Zn has been proven to improve innate and adaptive immunity in course of microbial infection. The effectiveness of the Zn salt supplement can be enhanced with N. sativa as its major bioactive component might work as ionophore to allow Zn2+ to enter pneumocytes and inhibit SARS-CoV-2 replication by stopping its replicase enzyme system.
An effective vaccine to prevent the SARS-CoV-2 causing COVID-19 is yet to be approved. Further there is no drug that is specific to treat COVID-19. A number of antiviral drugs such as Ribavirin, Remdesivir, Lopinavir/ritonavir, Azithromycin and Doxycycline have been recommended or are being used to treat COVID-19 patients. In addition to these drugs, rationale and evidence have been presented to use chloroquine to treat COVID-19, arguably with certain precautions and criticism. In line with the proposed use of chloroquine, Nigella sativa (black seed) could be considered as a natural substitute that contains a number of bioactive components such as thymoquinone, dithymoquinone, thymohydroquinone, and nigellimine. Further benefits to use N. sativa could be augmented by Zn supplement. Notably, Zn has been proven to improve innate and adaptive immunity in the course of any infection, be it by pathogenic virus or bacteria. The effectiveness of the Zn salt supplement could also be enhanced with N. sativa as its major bioactive component might work as ionophore to allow Zn2+ to enter pneumocytes – the target cell for SARSCoV-2. Given those benefits, this review paper describes how N. sativa in combination with Zn could be useful as a complement to COVID-19 treatment.
Collapse
|
5
|
Ahmad R, Ahmad N, Shehzad A. Solvent and temperature effects of accelerated solvent extraction (ASE) coupled with ultra-high pressure liquid chromatography (UHPLC-DAD) technique for determination of thymoquinone in commercial food samples of black seeds (Nigella sativa). Food Chem 2020; 309:125740. [DOI: 10.1016/j.foodchem.2019.125740] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 08/27/2019] [Accepted: 10/17/2019] [Indexed: 01/11/2023]
|
6
|
Kesen S, Amanpour A, Tsouli Sarhir S, Sevindik O, Guclu G, Kelebek H, Selli S. Characterization of Aroma-Active Compounds in Seed Extract of Black Cumin ( Nigella sativa L.) by Aroma Extract Dilution Analysis. Foods 2018; 7:E98. [PMID: 29954052 PMCID: PMC6068864 DOI: 10.3390/foods7070098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 01/19/2023] Open
Abstract
Turkish Nigella sativa L. seed extracts were used to detect the aroma and key odorant compounds of the spice using gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Volatile compounds were extracted by the purge and trap extraction (PTE) method. A total of 32 volatile compounds consisting of different chemical classes acids (13), alcohols (7), phenols (3), terpene (1), esters (2), ketones (2), aldehyde (1), lactone (1) and hydrocarbons (2) were determined. The amounts of volatile compounds were found to be 21,544 µg kg−1. The application of aroma extract dilution analysis (AEDA) revealed the presence of 13 odor-active compounds alcohols (2), carboxylic acids (4), phenols (2), terpene (1), ketone (1), hydrocarbon (1) and unknown compounds (2) in Nigella sativa L. extract. Flavor dilution (FD) factors of key odorants ranged between 4 and 1024, while odor activity values (OAV) were in the range of 1.0 to 170.8. Acetoin was the only aroma-active ketone detected in Nigella sativa L. seed extracts. It had the strongest aroma (FD = 1024) and provided a buttery odor. This compound represented the most abundant compound of overall aroma profile with a concentration of 9394 µg kg−1, followed by isobutanoic acid (FD = 512 with a concentration of 218 µg kg−1) and contributed a powerful aroma and a cheesy characteristic odor.
Collapse
Affiliation(s)
- Songul Kesen
- Department of Food Processing, Naci Topcuoglu Vocational High School, Gaziantep University, 27600 Gaziantep, Turkey.
| | - Armin Amanpour
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, 01330 Adana, Turkey.
| | - Salwa Tsouli Sarhir
- Agri-Food Laboratory and Food Safety, Faculty of Sciences Dhar El Mahraz University Sidi Mohamed Ben Abdellah, B.P. 1796 Atlas, Fez, Morocco.
| | - Onur Sevindik
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, 01330 Adana, Turkey.
| | - Gamze Guclu
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, 01330 Adana, Turkey.
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana Science and Technology University, 01250 Adana, Turkey.
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, 01330 Adana, Turkey.
| |
Collapse
|
7
|
Johnson-Ajinwo OR, Li WW. Stable isotope dilution gas chromatography-mass spectrometry for quantification of thymoquinone in black cumin seed oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5466-5471. [PMID: 24871868 DOI: 10.1021/jf500357x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Black cumin seed (Nigella sativa L.) is a widely used spice and herb, where thymoquinone (2-isopropyl-5-methyl-1,4-benzoquinone) is the major bioactive compound. Here, a stable isotope dilution (SID) gas chromatography-mass spectrometry (GC-MS) technique was developed for the quantification of thymoquinone. A doubly deuterated thymoquinone ([(2)H2]-thymoquinone) was synthesized for the first time with more than 93% deuteration degree shown by mass spectrometry and proton nuclear magnetic resonance ((1)H NMR). This compound was used as an internal standard for the quantification of thymoquinone using a SID GC-MS method. The validation experiment showed a recovery rate of 99.1 ± 1.1% relative standard deviation (RSD). Standard addition and external calibration methods have also been used to quantify thymoquinone, which cross-validated the developed stable isotope dilution assay (SIDA). In comparison to external calibration and standard addition methods, the SIDA method is robust and accurate. The concentration of thymoquinone in five marketed black cumin seed oils ranged between 3.34 and 10.8 mg/mL by use of SID GC-MS.
Collapse
Affiliation(s)
- Okiemute Rosa Johnson-Ajinwo
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University , Thornburrow Drive, ST4 7QB Stoke-on-Trent, United Kingdom
| | | |
Collapse
|
8
|
Chen C, Zuckerman DM, Brantley S, Sharpe M, Childress K, Hoiczyk E, Pendleton AR. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Vet Res 2014; 10:24. [PMID: 24433341 PMCID: PMC3899428 DOI: 10.1186/1746-6148-10-24] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/10/2014] [Indexed: 11/25/2022] Open
Abstract
Background Infectious bronchitis virus (IBV) is a pathogenic chicken coronavirus. Currently, vaccination against IBV is only partially protective; therefore, better preventions and treatments are needed. Plants produce antimicrobial secondary compounds, which may be a source for novel anti-viral drugs. Non-cytotoxic, crude ethanol extracts of Rhodiola rosea roots, Nigella sativa seeds, and Sambucus nigra fruit were tested for anti-IBV activity, since these safe, widely used plant tissues contain polyphenol derivatives that inhibit other viruses. Results Dose–response cytotoxicity curves on Vero cells using trypan blue staining determined the highest non-cytotoxic concentrations of each plant extract. To screen for IBV inhibition, cells and virus were pretreated with extracts, followed by infection in the presence of extract. Viral cytopathic effect was assessed visually following an additional 24 h incubation with extract. Cells and supernatants were harvested separately and virus titers were quantified by plaque assay. Variations of this screening protocol determined the effects of a number of shortened S. nigra extract treatments. Finally, S. nigra extract-treated virions were visualized by transmission electron microscopy with negative staining. Virus titers from infected cells treated with R. rosea and N. sativa extracts were not substantially different from infected cells treated with solvent alone. However, treatment with S. nigra extracts reduced virus titers by four orders of magnitude at a multiplicity of infection (MOI) of 1 in a dose-responsive manner. Infection at a low MOI reduced viral titers by six orders of magnitude and pretreatment of virus was necessary, but not sufficient, for full virus inhibition. Electron microscopy of virions treated with S. nigra extract showed compromised envelopes and the presence of membrane vesicles, which suggested a mechanism of action. Conclusions These results demonstrate that S. nigra extract can inhibit IBV at an early point in infection, probably by rendering the virus non-infectious. They also suggest that future studies using S. nigra extract to treat or prevent IBV or other coronaviruses are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda R Pendleton
- Division of Natural Science and Mathematics, Oxford College of Emory University, Oxford, GA 30054, USA.
| |
Collapse
|
9
|
Liu X, Park JH, Abd El-Aty AM, Assayed ME, Shimoda M, Shim JH. Isolation of volatiles fromNigella sativaseeds using microwave-assisted extraction: effect of whole extracts on canine and murine CYP1A. Biomed Chromatogr 2013; 27:938-45. [DOI: 10.1002/bmc.2887] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/14/2013] [Accepted: 01/28/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Xue Liu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; 1800 Lihu Avenue Wuxi 214122 China
- Natural Products Chemistry Laboratory, Biotechnology Research Institute; Chonnam National University; 77 Yongbong-ro, Buk-gu Gwangju 500-757 Republic of Korea
| | - Jong-Hyouk Park
- Natural Products Chemistry Laboratory, Biotechnology Research Institute; Chonnam National University; 77 Yongbong-ro, Buk-gu Gwangju 500-757 Republic of Korea
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine; Cairo University; 12211 Giza Egypt
| | - M. E. Assayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine; Menoufiya University; Sadat City Branch Egypt
| | - Minoru Shimoda
- Department of Veterinary Medicine, Faculty of Agriculture; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho Fuchu Tokyo 183-0054 Japan
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Biotechnology Research Institute; Chonnam National University; 77 Yongbong-ro, Buk-gu Gwangju 500-757 Republic of Korea
| |
Collapse
|