1
|
Elaine Mankge M, Penistacia Maela M, Mark Abrahams A, Hope Serepa-Dlamini M. Screening of Bacillus spp. bacterial endophytes for protease production, and application in feather degradation and bio-detergent additive. Heliyon 2024; 10:e30736. [PMID: 38765083 PMCID: PMC11098850 DOI: 10.1016/j.heliyon.2024.e30736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Research on proteases and secondary metabolites from endophytes is an area that requires attention from researchers. In this study, proteases from Bacillus sp. strain MHSD16 and Bacillus sp. strain MHSD17 endophytes were characterised, and their potential biotechnological applications were investigated. Optimum protease production was achieved when isolates were grown in media containing (g/L): glucose 10g, casein 5g, yeast extract 5g, KH2PO4 2g, Na2CO3 10g at pH 9. The crude protease extracts were active in alkaline environments, thus referred to as alkaline proteases with optimal pH of 10. Additionally, Bacillus sp. strain MHSD 16 and Bacillus sp. strain MHSD17 proteases were active at high temperatures, with optimum enzyme activity at 50 °C. Thermostability profiles of these proteases showed that the enzymes were highly stable between (40-60 °C), maintaining over 85 % stability after 120 min incubation at 60 °C. Furthermore, the enzymes were stable and compatible with various household and laundry detergents. In the presence of commercial laundry detergent, OMO® 68 % and 72 % activity was retained for Bacillus sp. strain MHSD16 and Bacillus sp. strain MHSD17, respectively, while 67 % and 68 % activity were retained in the presence of Sunlight®. The potential application for use in detergents was investigated through the removal of blood stains with the crude alkaline extracts displaying efficient stain removal abilities. Feather degradation was also investigated and Bacillus sp. MHSD17 exhibited feather keratin degrading properties more effectively than Bacillus sp. MHSD16.
Collapse
Affiliation(s)
- Malese Elaine Mankge
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, PO Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Mehabo Penistacia Maela
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, PO Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Adrian Mark Abrahams
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, PO Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, PO Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
2
|
Khadka DB, Pahadi T, Aryal S, Karki DB. Partial purification and characterization of protease extracted from kinema. Heliyon 2024; 10:e27173. [PMID: 38463843 PMCID: PMC10923713 DOI: 10.1016/j.heliyon.2024.e27173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Proteases are large group of highly demanded enzymes having huge application in food and pharmaceutical industries. Numerous sources, including plants, microorganisms, and animals, can be used to obtain protease. Due to its affordability and safety consideration, fermented foods have recently attracted more attention as a source of microbial protease. The present study aimed to extract protease from kinema, partially purify the extracted protease following dialysis after precipitation with ammonium sulfate, and determine general characteristics of protease. The kinema having highest proteolysis activity after three days of control fermentation (Temperature 30±2 °C, RH 66 ± 2%) was taken for the study. About 2.45 fold of purification with overall recovery of 63.21% was achieved after precipitation with ammonium sulfate at 30-70% saturation level followed by dialysis of crude extracted protease. The dialysed kinema protease had specific activity of 7.90 U/mg. The enzyme remained actively functional across a wider pH (5-9) and temperature (40-60 °C) range. SDS-PAGE and Zymogram confirmed the presence of three major active bands respectively of 29.04 kDa, 36.09 kDa and 46.35 kDa in the kinema protease extract. The enzyme kinetics data on casein, fitted to Mechaelis Mentens' plots showed the protease had Vmax of 1.001 U/ml with corresponding Km value of 0.825 mg/ml. Metal ions such as iron, mercury and aluminium showed the inhibition effect whereas presence of sodium, zinc, and calcium shows the activation effect on protease performance. The enzyme was active over various natural substrates; showing maximal activity on casein, and subsequent to bovine serum albumin, gelatin, hemoglobin and whey protein respectively. Furthermore, molecular weight distribution of the protease extract and activity inhibition with ethylenediaminetetraacetic acid and phenylmethylsulfonyl fluoride, suggesting the protease from kinema could be a metal dependent serine protease or mixture of them.
Collapse
Affiliation(s)
- Dambar Bahadur Khadka
- Central Department of Food Technology, Tribhuvan University, Dharan, Nepal
- Central Campus of Technology, Tribhuvan University, Dharan, Nepal
| | - Tikaram Pahadi
- Central Campus of Technology, Tribhuvan University, Dharan, Nepal
| | - Sunil Aryal
- Central Department of Food Technology, Tribhuvan University, Dharan, Nepal
| | - Dhan Bahadur Karki
- Central Department of Food Technology, Tribhuvan University, Dharan, Nepal
| |
Collapse
|
3
|
Allison SD, AdeelaYasid N, Shariff FM, Abdul Rahman N. Molecular Cloning, Characterization, and Application of Organic Solvent-Stable and Detergent-Compatible Thermostable Alkaline Protease from Geobacillus thermoglucosidasius SKF4. J Microbiol Biotechnol 2024; 34:436-456. [PMID: 38044750 PMCID: PMC10940756 DOI: 10.4014/jmb.2306.06050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80°C. In addition, the enzyme showed a half-life of 15 h at 80°C, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.
Collapse
Affiliation(s)
- Suleiman D Allison
- Department of Food Science and Technology, Faculty of Agriculture and Agricultural Technology, Moddibo Adama University, Yola 640230, Nigeria
| | - Nur AdeelaYasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra, Malaysia, 43400 Serdang Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia
| | - Nor'Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra, Malaysia, 43400 Serdang Selangor, Malaysia
| |
Collapse
|
4
|
Elhamdi M, Ghorbel S, Hmidet N. Bacillus Swezeyi B2 Strain: A Novel Alkaliphilic Bacterium Producer of Alkaline-, Thermal, Oxidant-, and Surfactant-Stable Protease, Extremely Efficient in Detergency. Curr Microbiol 2023; 80:95. [PMID: 36737528 DOI: 10.1007/s00284-022-03156-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/13/2022] [Indexed: 02/05/2023]
Abstract
Proteolytic enzymes that are currently used to meet industrial demand are usually derived from Bacillus species. They find multiple technical applications, particularly they have been increasingly used as a key bio-additive in detergents. In this study, a novel alkalophilic bacterium was isolated from contaminated soil, exhibiting 1400 U/ml proteolytic activity, and identified as Bacillus swezeyi B2. The crude enzyme likely contained a single extracellular protease. This enzyme revealed optimum activity at pH 10 and 70 °C and was highly alkaline thermostable (7-12.5) and up to 70 °C. The protease activity was completely inhibited by Phenylmethylsulfonyl fluoride (PMSF) suggesting that it belongs to the serine protease group. It was highly stable in the presence of the strong anionic surfactant (SDS) and oxidizing agents (H2O2). The supernatant was lyophilized and showed high storage stability retaining 100% of its original activity after one year of conservation at 4 °C. The lyophilized product was evaluated for its detergent efficacy, it revealed excellent compatibility with various laundry detergents keeping its full original activity after incubation for 1 h with seven solid and liquid commercial detergents and it effectively removed chocolate stains at low washing temperature (40 °C) and low supplementation level (125 U/ml). The features of this single alkaline and thermotolerant protease, stable toward surfactants, oxidizing agents, and commercial detergents with stain removal efficacy support its ideal choice for supplementation in detergent formulations.
Collapse
Affiliation(s)
- Marwa Elhamdi
- Enzyme Engineering and Microbiology Laboratory, National Engineering School of Sfax-University of Sfax, Sfax, Tunisia
| | - Sofiane Ghorbel
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Noomen Hmidet
- Enzyme Engineering and Microbiology Laboratory, National Engineering School of Sfax-University of Sfax, Sfax, Tunisia.
| |
Collapse
|
5
|
Chen H, Wu J, Huang X, Feng X, Ji H, Zhao L, Wang J. Overexpression of Bacillus circulans alkaline protease in Bacillus subtilis and its potential application for recovery of protein from soybean dregs. Front Microbiol 2022; 13:968439. [PMID: 36090104 PMCID: PMC9459226 DOI: 10.3389/fmicb.2022.968439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Proteases are important for decomposition of proteins to generate peptides or amino acids and have a broad range of applications in different industries. Herein, a gene encoding an alkaline protease (AprBcp) from Bacillus circulans R1 was cloned and bioinformatics analyzed. In addition, a series of strategies were applied to achieve high-level expression of AprBcp in Bacillus subtilis. The maximum activity of AprBcp reached 165,870 U/ml after 60 h fed-batch cultivation in 50 l bioreactor. The purified recombinant AprBcp exhibited maximum activity at 60°C and pH 10.0, and remained stable in the range from pH 8.0 to 11.0 and 30 to 45°C. Metal ions Ca2+, Mn2+, and Mg2+ could improve the stability of AprBcp. Furthermore, the recombinant AprBcp displayed great potential application on the recovery of protein from soybean dregs. The results of this study will provide an effective method to prepare AprBcp in B. subtilis and its potential application on utilization of soybean dregs.
Collapse
Affiliation(s)
- Hao Chen
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Jie Wu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Xiaodan Huang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Xuzhong Feng
- Shenzhen Shanggutang Food Development Co., Ltd.,Shenzhen, China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- *Correspondence: Liangzhong Zhao,
| | - Jianrong Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- Shenzhen Raink Ecology and Environment Co., Ltd.,Shenzhen, China
- Jianrong Wang,
| |
Collapse
|
6
|
Chauhan JV, Mathukiya RP, Singh SP, Gohel SD. Two steps purification, biochemical characterization, thermodynamics and structure elucidation of thermostable alkaline serine protease from Nocardiopsis alba strain OM-5. Int J Biol Macromol 2020; 169:39-50. [PMID: 33316342 DOI: 10.1016/j.ijbiomac.2020.12.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
The Nocardiopsis alba strain OM-5 showed maximum protease production in submerged culture. The OM-5 protease was purified by hydrophobic interaction chromatography. The purified protease of 68 kDa showed maximum activity (3312 ± 1.64 U/mL) at 70 °C and was quite stable at 80 °C up to 4 M NaCl (w/v) at pH 9. The purified protease showed significant activity and stability in different cations, denaturing agents, metal ions, and osmolytes. The thermodynamic parameters including deactivation rate constant (Kd) and half lives (t1/2) at 50-80 °C were in the range of 2.50 × 10-3 to 5.50 × 10-3 and 277.25-111.25 min respectively at 0-4 M NaCl. The structural stability of the OM-5 protease under various harsh conditions was elucidated by circular dichroism (CD) spectroscopy followed by K2D3 analysis revealed that the native structure of OM-5 protease was stable even in sodium dodecyl sulfate and Tween 20 indicated by increased α-helices content assisted with decreased β-sheets content.
Collapse
Affiliation(s)
- Jagruti V Chauhan
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Riddhi P Mathukiya
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Sangeeta D Gohel
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India.
| |
Collapse
|
7
|
Zhou C, Zhang H, Fang H, Sun Y, Zhou H, Yang G, Lu F. Transcriptome based functional identification and application of regulator AbrB on alkaline protease synthesis in Bacillus licheniformis 2709. Int J Biol Macromol 2020; 166:1491-1498. [PMID: 33166558 DOI: 10.1016/j.ijbiomac.2020.11.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022]
Abstract
Bacillus licheniformis 2709 is the major alkaline protease producer, which has great potential value of industrial application, but how the high-producer can be regulated rationally is still not completely understood. It's meaningful to understand the metabolic processes during alkaline protease production in industrial fermentation medium. Here, we collected the transcription database at various enzyme-producing stages (preliminary stage, stable phase and decline phase) to specifically research the synthesized and regulatory mechanism of alkaline protease in B. licheniformis. The RNA-sequencing analysis showed differential expression of numerous genes related to several processes, among which genes correlated with regulators were concerned, especially the major differential gene abrB on enzyme (AprE) synthesis was investigated. It was further verified that AbrB is a repressor of AprE by plasmid-mediated over-expression due to the severely descending enzyme activity (11,300 U/mL to 2695 U/mL), but interestingly it is indispensable for alkaline protease production because the enzyme activity of the null abrB mutant was just about 2279 U/mL. Thus, we investigated the aprE transcription by eliminating the theoretical binding site (TGGAA) of AbrB protein predicated by computational strategy, which significantly improved the enzyme activity by 1.21-fold and gene transcription level by 1.77-fold in the mid-log phase at a cultivation time of 18 h. Taken together, it is of great significance to improve the production strategy, control the metabolic process and oriented engineering by rational molecular modification of regulatory network based on the high throughput sequencing and computational prediction.
Collapse
Affiliation(s)
- Cuixia Zhou
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Honglei Fang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Yanqing Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Huiying Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Guangcheng Yang
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| |
Collapse
|
8
|
Sharma C, Salem GEM, Sharma N, Gautam P, Singh R. Thrombolytic Potential of Novel Thiol-Dependent Fibrinolytic Protease from Bacillus cereus RSA1. Biomolecules 2019; 10:E3. [PMID: 31861284 PMCID: PMC7022875 DOI: 10.3390/biom10010003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 01/12/2023] Open
Abstract
The present study demonstrates the production and thrombolytic potential of a novel thermostable thiol-dependent fibrinolytic protease by Bacillus cereus RSA1. Statistical optimization of different parameters was accomplished with Plackett-Burman design and validated further by central composite design with 30.75 U/mL protease production. Precipitation and chromatographic approaches resulted in 33.11% recovery with 2.32-fold purification. The molecular weight of fibrinolytic protease was 40 KDa and it exhibited a broad temperature and pH stability range of 20-80 °C and pH 5-10 with utmost activity at 50 °C and pH 8, respectively. The protease retained its fibrinolytic activity in organic solvents and enhanced the activity in solutions with divalent cations (Mn2+, Zn2+, and Cu2+). The enzyme kinetics revealed Km and Vmax values of 1.093 mg/mL and 52.39 µg/mL/min, respectively, indicating higher affinity of fibrinolytic activity towards fibrin. Also, complete inhibition of fibrinolytic activity with DFP and a 2-fold increase with DTT and β-mercaptoethanol indicates its thiol-dependent serine protease nature. MALDI-TOF analysis showed 56% amino acid sequence homology with Subtilisin NAT OS = Bacillus subtilis subsp. natto. The fibrinolysis activity was compared with a commercial thrombolytic agent for its therapeutic applicability, and fibrinolytic protease was found highly significant with absolute blood clot dissolution within 4 h in in vitro conditions. The isolated fibrinolytic protease of Bacillus cereus RSA1 is novel and different from other known fibrinolytic proteases with high stability and efficacy, which might have wide medicinal and industrial application as a thrombolytic agent and in blood stain removal, respectively.
Collapse
Affiliation(s)
- Chhavi Sharma
- Amity Institute of Microbial Biotechnology, Amity University Uttar Pradesh, Noida 201313, India; (C.S.)
| | - Gad Elsayed Mohamed Salem
- Amity Institute of Microbial Biotechnology, Amity University Uttar Pradesh, Noida 201313, India; (C.S.)
- National Organization for Drug Control and Research, 51 Wezaret El-Zeraa st., Giza 12618, Egypt
| | - Neha Sharma
- Amity Institute of Microbial Biotechnology, Amity University Uttar Pradesh, Noida 201313, India; (C.S.)
| | - Prerna Gautam
- Amity Institute of Microbial Biotechnology, Amity University Uttar Pradesh, Noida 201313, India; (C.S.)
| | - Rajni Singh
- Amity Institute of Microbial Biotechnology, Amity University Uttar Pradesh, Noida 201313, India; (C.S.)
| |
Collapse
|
9
|
A novel thiol-dependent serine protease from Neocosmospora sp. N1. Heliyon 2019; 5:e02246. [PMID: 31440596 PMCID: PMC6699422 DOI: 10.1016/j.heliyon.2019.e02246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/06/2019] [Accepted: 08/05/2019] [Indexed: 12/29/2022] Open
Abstract
Alkaline proteases have several industrial applications. In the present study, newly isolated Neocosmospora sp. N1 was screened as hyper producer of serine protease. A multimeric protease of the fungus was purified to homogeneity till 96.78 fold purification with 22.51% recovery. The homogeneity of purified enzyme was checked by native PAGE and its molecular weight was found to be 198.03 kDa by MALDI-TOF. On SDS-PAGE analysis, enzyme was found to be a hetero oligomer of 17.66 kDa and 20.89 kDa subunits. The purified enzyme showed maximum activity with casein as substrate at 60 °C and pH 8.5. The Km and Vmax values were found to be 0.015 mg/ml and 454.45 U/ml, respectively. The enzyme was completely inhibited by PMSF, while the activity was 40% enhanced using β-mercaptoethanol, suggesting that it is a thiol-dependent serine protease. The purified protease was active over an alkaline pH range from 7 to 12 and temperatures from 20 °C to 60 °C. The enzyme exhibited excellent stability, almost 100% towards organic solvents such as toluene, benzene and hexane, surfactants such as Triton X-100, Tween-20, Tween-80 and SDS, as well as commercial detergents. The significant properties of purified enzyme assure that it could be a potential candidate for commercial purposes.
Collapse
|
10
|
Nazari L, Mehrabi M. Purification and characterization of an extracellular thermotolerant alkaliphilic serine protease secreted from newly isolated Bacillus sp. DEM07 from a hot spring in Dehloran, Iran. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
A novel alkaline protease from alkaliphilic Idiomarina sp. C9-1 with potential application for eco-friendly enzymatic dehairing in the leather industry. Sci Rep 2018; 8:16467. [PMID: 30405184 PMCID: PMC6220337 DOI: 10.1038/s41598-018-34416-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022] Open
Abstract
Alkaline proteases have a myriad of potential applications in many industrial processes such as detergent, food and feed production, waste management and the leather industry. In this study, we isolated several alkaline protease producing bacteria from soda lake soil samples. A novel serine alkaline protease (AprA) gene from alkaliphilic Idiomarina sp. C9-1 was cloned and expressed in Escherichia coli. The purified AprA and its pre-peptidase C-terminal (PPC) domain-truncated enzyme (AprA-PPC) showed maximum activity at pH 10.5 and 60 °C, and were active and stable in a wide range of pH and temperature. Ca2+ significantly improved the thermostability and increased the optimal temperature to 70 °C. Furthermore, both AprA and AprA-PPC showed good tolerance to surfactants and oxidizing and reducing agents. We found that the PPC domain contributed to AprA activity, thermostability and surfactant tolerance. With casein as substrate, AprA and AprA-PPC showed the highest specific activity of 42567.1 U mg−1 and 99511.9 U mg−1, the Km values of 3.76 mg ml−1 and 3.98 mg ml−1, and the Vmax values of 57538.5 U mg−1 and 108722.1 U mg−1, respectively. Secreted expression of AprA-PPC in Bacillus subtilis after 48 h cultivation resulted in yield of 4935.5 U ml−1 with productivity of 102.8 U ml−1 h−1, which is the highest reported in literature to date. Without adding any lime or sodium sulfide, both of which are harmful pollutants, AprA-PPC was effective in dehairing cattle hide and skins of goat, pig and rabbit in 8–12 h without causing significant damage to hairs and grain surface. Our results suggest that AprA-PPC may have great potentials for ecofriendly dehairing of animal skins in the leather industry.
Collapse
|
12
|
Yildirim V, Baltaci MO, Ozgencli I, Sisecioglu M, Adiguzel A, Adiguzel G. Purification and biochemical characterization of a novel thermostable serine alkaline protease from Aeribacillus pallidus C10: a potential additive for detergents. J Enzyme Inhib Med Chem 2017; 32:468-477. [PMID: 28097910 PMCID: PMC6010106 DOI: 10.1080/14756366.2016.1261131] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 11/16/2022] Open
Abstract
An extracellular thermostable alkaline serine protease enzyme from Aeribacillus pallidus C10 (GenBank No: KC333049), was purified 4.85 and 17. 32-fold with a yield of 26.9 and 19.56%, respectively, through DE52 anion exchange and Probond affinity chromatography. The molecular mass of the enzyme was determined through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), with approximately 38.35 kDa. The enzyme exhibited optimum activity at pH 9 and at temperature 60 °C. It was determined that the enzyme had remained stable at the range of pH 7.0-10.0, and that it had preserved more than 80% of its activity at a broad temperature range (20-80 °C). The enzyme activity was found to retain more than 70% and 55% in the presence of organic solvents and commercial detergents, respectively. In addition, it was observed that the enzyme activity had increased in the presence of 5% SDS. KM and Vmax values were calculated as 0.197 mg/mL and 7.29 μmol.mL-1.min-1, respectively.
Collapse
Affiliation(s)
- Vildan Yildirim
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Ilknur Ozgencli
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Melda Sisecioglu
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Ahmet Adiguzel
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Gulsah Adiguzel
- Department of Food Hygiene and Technology, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| |
Collapse
|
13
|
Zhang J, Wang PC, Fang L, Zhang QA, Yan CS, Chen JY. Isolation and Characterization of Phosphate-Solubilizing Bacteria from Mushroom Residues and their Effect on Tomato Plant Growth Promotion. Pol J Microbiol 2017; 66:57-65. [DOI: 10.5604/17331331.1234993] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.
Collapse
|
14
|
Embaby AM, Saeed H, Hussein A. SHG10 keratinolytic alkaline protease fromBacillus licheniformisSHG10 DSM 28096: Robust stability and unusual non-cumbersome purification. J Basic Microbiol 2016; 56:1317-1330. [DOI: 10.1002/jobm.201600073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/29/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Amira M. Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research; Alexandria University; Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research; Alexandria University; Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research; Alexandria University; Egypt
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock Texas USA
| |
Collapse
|
15
|
Purification and characterization of a novel extracellular alkaline protease from Cellulomonas bogoriensis. Protein Expr Purif 2016; 121:125-32. [DOI: 10.1016/j.pep.2016.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/14/2015] [Accepted: 01/29/2016] [Indexed: 11/16/2022]
|
16
|
Esakkiraj P, Meleppat B, Lakra AK, Ayyanna R, Arul V. Cloning, expression, characterization and application of protease produced by Bacillus cereus PMW8. RSC Adv 2016. [DOI: 10.1039/c5ra27671c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protease enzyme of Bacillus cereus PMW8 possessing antibiofilm activity was cloned and expressed in E.coli BL21(DE3) PLysS.
Collapse
Affiliation(s)
- Palanichamy Esakkiraj
- Department of Biotechnology
- School of Life Sciences
- Pondicherry University
- Puducherry
- India
| | - Balraj Meleppat
- Department of Biotechnology
- School of Life Sciences
- Pondicherry University
- Puducherry
- India
| | - Avinash Kant Lakra
- Department of Biotechnology
- School of Life Sciences
- Pondicherry University
- Puducherry
- India
| | - Repally Ayyanna
- Department of Biotechnology
- School of Life Sciences
- Pondicherry University
- Puducherry
- India
| | - Venkatesan Arul
- Department of Biotechnology
- School of Life Sciences
- Pondicherry University
- Puducherry
- India
| |
Collapse
|