1
|
Briki M, Murisier A, Guidi M, Seydoux C, Buclin T, Marzolini C, Girardin FR, Thoma Y, Carrara S, Choong E, Decosterd LA. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) methods for the therapeutic drug monitoring of cytotoxic anticancer drugs: An update. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124039. [PMID: 38490042 DOI: 10.1016/j.jchromb.2024.124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/17/2024]
Abstract
In the era of precision medicine, there is increasing evidence that conventional cytotoxic agents may be suitable candidates for therapeutic drug monitoring (TDM)- guided drug dosage adjustments and patient's tailored personalization of non-selective chemotherapies. To that end, many liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) assays have been developed for the quantification of conventional cytotoxic anticancer chemotherapies, that have been comprehensively and critically reviewed. The use of stable isotopically labelled internal standards (IS) of cytotoxic drugs was strikingly uncommon, accounting for only 48 % of the methods found, although their use could possible to suitably circumvent patients' samples matrix effects variability. Furthermore, this approach would increase the reliability of cytotoxic drug quantification in highly multi-mediated cancer patients with complex fluctuating pathophysiological and clinical conditions. LC-MS/MS assays can accommodate multiplexed analyses of cytotoxic drugs with optimal selectivity and specificity as well as short analytical times and, when using stable-isotopically labelled IS for quantification, provide concentrations measurements with a high degree of certainty. However, there are still organisational, pharmacological, and medical constraints to tackle before TDM of cytotoxic drugs can be more largely adopted in the clinics for contributing to our ever-lasting quest to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- M Briki
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| | - A Murisier
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - M Guidi
- Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland; Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - C Seydoux
- Internal Medicine Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - T Buclin
- Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - C Marzolini
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - F R Girardin
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Y Thoma
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
| | - S Carrara
- Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| | - E Choong
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - L A Decosterd
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
2
|
Kagan AB, Garrison DA, Anders NM, Webster J, Baker SD, Yegnasubramanian S, Rudek MA. DNA methyltransferase inhibitor exposure-response: Challenges and opportunities. Clin Transl Sci 2023; 16:1309-1322. [PMID: 37345219 PMCID: PMC10432879 DOI: 10.1111/cts.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Although DNA methyltransferase inhibitors (DNMTis), such as azacitidine and decitabine, are used extensively in the treatment of myelodysplastic syndromes and acute myeloid leukemia, there remain unanswered questions about DNMTi's mechanism of action and predictors of clinical response. Because patients often remain on single-agent DNMTis or DNMTi-containing regimens for several months before knowing whether clinical benefit can be achieved, the development and clinical validation of response-predictive biomarkers represents an important unmet need in oncology. In this review, we will summarize the clinical studies that led to the approval of azacitidine and decitabine, as well as the real-world experience with these drugs. We will then focus on biomarker development for DNMTis-specifically, efforts at determining exposure-response relationships and challenges that remain impacting the broader clinical translation of these methods. We will highlight recent progress in liquid-chromatography tandem mass spectrometry technology that has allowed for the simultaneous measurement of decitabine genomic incorporation and global DNA methylation, which has significant potential as a mechanism-of-action based biomarker in patients on DNMTis. Last, we will cover important research questions that need to be addressed in order to optimize this potential biomarker for clinical use.
Collapse
Affiliation(s)
- Amanda B. Kagan
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dominique A. Garrison
- Department of Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Nicole M. Anders
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Jonathan A. Webster
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Michelle A. Rudek
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
3
|
Donnette M, Osanno L, Giocanti M, Venton G, Farnault L, Berda-Haddad Y, Costello R, Caroline S, Ouafik L'H, Ciccolini J, Fanciullino R. Determination of 5-azacitidine in human plasma by LC-MS/MS: application to pharmacokinetics pilot study in MDS/AML patients. Cancer Chemother Pharmacol 2023; 91:231-238. [PMID: 36859512 DOI: 10.1007/s00280-023-04505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/17/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE Azacitidine (Vidaza®, AZA) is a mainstay for treating acute myeloid leukemia (AML) in patients unfit for standard induction and other myelodysplastic syndromes (MDS). However, only half of the patients usually respond to this drug and almost all patients will eventually relapse. Predictive markers for response to AZA are yet to be identified. AZA is metabolized in the liver by a single enzyme, cytidine deaminase (CDA). CDA is a ubiquitous enzyme coded by a highly polymorphic gene, with subsequent great variability in resulting activities in the liver. The quantitative determination of AZA in plasma is challenging due the required sensitivity and because of the instability in the biological matrix upon sampling, possibly resulting in erratic values. METHODS We have developed and validated following EMA standards a simple, rapid, and cost-effective liquid chromatography-tandem mass spectrometry method for the determination of azacitidine in human plasma. RESULTS After a simple and rapid precipitation step, analytes were successfully separated and quantitated over a 5-500 ng/mL range. The performance and reliability of this method were tested as part of an investigational study in MDS/AML patients treated with standard azacitidine (75 mg/m2 for 7 days a week every 28 days). CONCLUSION Overall, this new method meets the requirements of current bioanalytical guidelines and could be used to monitor drug levels in MDS/AML patients.
Collapse
Affiliation(s)
- Melanie Donnette
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie de Marseille, SMARTc, Simulation and Modeling Adaptative Response for Therapeutics in Cancer, 27 Bd Jean Moulin, 13385, Marseille, France
- Faculté de Pharmacie de Marseille, COMPO, CRCM Inserm UMR 1068 & INRIA Sophia Antipolis, 27 Boulevard Jean-Moulin, 13385, Marseille, France
| | - Loic Osanno
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie de Marseille, SMARTc, Simulation and Modeling Adaptative Response for Therapeutics in Cancer, 27 Bd Jean Moulin, 13385, Marseille, France
- Faculté de Pharmacie de Marseille, COMPO, CRCM Inserm UMR 1068 & INRIA Sophia Antipolis, 27 Boulevard Jean-Moulin, 13385, Marseille, France
| | - Madeleine Giocanti
- Laboratoire de Pharmacocinétique et Toxicologie, La Timone University Hospital of Marseille, 264 Rue Saint-Pierre, 13385, Marseille Cedex 5, France
| | - Geoffroy Venton
- Department of Hematology and Cellular Therapy, La Conception University Hospital of Marseille, 147 Boulevard Baille, 13005, Marseille, France
| | - Laure Farnault
- Department of Hematology and Cellular Therapy, La Conception University Hospital of Marseille, 147 Boulevard Baille, 13005, Marseille, France
| | - Yael Berda-Haddad
- Laboratoire de Biologie Medicale, La Conception University Hospital of Marseille, 147 Boulevard Baille, 13005, Marseille, France
| | - Régis Costello
- Department of Hematology and Cellular Therapy, La Conception University Hospital of Marseille, 147 Boulevard Baille, 13005, Marseille, France
| | - Solas Caroline
- Laboratoire de Pharmacocinétique et Toxicologie, La Timone University Hospital of Marseille, 264 Rue Saint-Pierre, 13385, Marseille Cedex 5, France
| | - L 'Houcine Ouafik
- Laboratoire de Transfert en Oncologie Biologie, Nord University Hispoital of Marseille, Chemin des Bourrely, 13915, Marseille cedex 20, France
| | - Joseph Ciccolini
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie de Marseille, SMARTc, Simulation and Modeling Adaptative Response for Therapeutics in Cancer, 27 Bd Jean Moulin, 13385, Marseille, France
- Faculté de Pharmacie de Marseille, COMPO, CRCM Inserm UMR 1068 & INRIA Sophia Antipolis, 27 Boulevard Jean-Moulin, 13385, Marseille, France
- Laboratoire de Pharmacocinétique et Toxicologie, La Timone University Hospital of Marseille, 264 Rue Saint-Pierre, 13385, Marseille Cedex 5, France
| | - Raphaëlle Fanciullino
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie de Marseille, SMARTc, Simulation and Modeling Adaptative Response for Therapeutics in Cancer, 27 Bd Jean Moulin, 13385, Marseille, France.
- Faculté de Pharmacie de Marseille, COMPO, CRCM Inserm UMR 1068 & INRIA Sophia Antipolis, 27 Boulevard Jean-Moulin, 13385, Marseille, France.
- Unit Pharmacy Hospital of Conception, University Hospital of Marseille, 147 Boulevard Baille, 13005, Marseille, France.
| |
Collapse
|
4
|
Zenkevich IG, Nikitina DA, Kushakova AS. Processing and Interpretation of Analytical Data with a High Degree of Uncertainty. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822090143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Kuehl PJ, Tellez CS, Grimes MJ, March TH, Tessema M, Revelli DA, Mallis LM, Dye WW, Sniegowski T, Badenoch A, Burke M, Dubose D, Vodak DT, Picchi MA, Belinsky SA. 5-Azacytidine inhaled dry powder formulation profoundly improves pharmacokinetics and efficacy for lung cancer therapy through genome reprogramming. Br J Cancer 2020; 122:1194-1204. [PMID: 32103148 PMCID: PMC7156464 DOI: 10.1038/s41416-020-0765-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/06/2020] [Indexed: 12/31/2022] Open
Abstract
Background Epigenetic therapy through demethylation of 5-methylcytosine has been largely ineffective in treating lung cancer, most likely due to poor tissue distribution with oral or subcutaneous delivery of drugs such as 5-azacytidine (5AZA). An inhalable, stable dry powder formulation of 5AZA was developed. Methods Pharmacokinetics of inhaled dry powder and aqueous formulations of 5AZA were compared to an injected formulation. Efficacy studies and effect of therapy on the epigenome were conducted in an orthotopic rat lung cancer model for inhaled formulations. Results Inhaled dry powder 5AZA showed superior pharmacokinetic properties in lung, liver, brain and blood compared to the injected formulation and for all tissues except lung compared to an inhaled aqueous formulation. Only dry powder 5AZA was detected in brain (~4-h half-life). Inhaled dry powder was superior to inhaled aqueous 5AZA in reducing tumour burden 70–95%. Superiority of inhaled 5AZA dry powder was linked to effectively reprogramming the cancer genome through demethylation and gene expression changes in cancer signalling and immune pathways. Conclusions These findings could lead to widespread use of this drug as the first inhaled dry powder therapeutic for treating local and metastatic lung cancer, for adjuvant therapy, and in combination with immunotherapy to improve patient survival.
Collapse
Affiliation(s)
- Philip J Kuehl
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Carmen S Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Marcie J Grimes
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Thomas H March
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Mathewos Tessema
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - David A Revelli
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Larry M Mallis
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Wendy W Dye
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Tyler Sniegowski
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | | | | | | | | | - Maria A Picchi
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
6
|
Gaillard SL, Zahurak M, Sharma A, Reiss KA, Sartorius-Mergenthaler S, Downs M, Anders NM, Ahuja N, Rudek MA, Azad N. A phase 1 trial of the oral DNA methyltransferase inhibitor CC-486 and the histone deacetylase inhibitor romidepsin in advanced solid tumors. Cancer 2019; 125:2837-2845. [PMID: 31012962 PMCID: PMC6663621 DOI: 10.1002/cncr.32138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Epigenetic abnormalities are manifold in all solid tumors and include changes in chromatin configuration and DNA methylation. The authors designed a phase 1 study to evaluate the oral DNA methyltransferase inhibitor CC-486 combined with the histone deacetylase inhibitor romidepsin in advanced solid tumors with dose expansion to further evaluate pharmacodynamics and possible clinical benefit of the recommended phase 2 dose (RP2D). METHODS This was a phase 1 study with a 3 + 3 dose-escalation design and an expansion phase for patients with virally mediated cancers. The disease control rate (DCR) was the primary outcome for the expansion cohort. Correlative studies included long interspersed nucleotide element 1 (LINE-1) methylation and drug exposure in blood samples (clinicaltrials.gov identifier NCT01537744). RESULTS Fourteen patients were enrolled in the dose-escalation portion at 3 dose levels. Three patients experienced dose-limiting toxicities; the RP2D was oral CC-486 300 mg daily on days 1 through 14 and romidepsin 8 mg/m2 on days 8 and 15. Because of slow accrual into the expansion phase, the trial was closed after 4 patients enrolled. Common toxicities of the combination included nausea (83.3%), anorexia (72.2%), fatigue (61.1%), and constipation (55.6%). There were 12 patients evaluable for response, 5 with stable disease, of whom 2 received >4 cycles; there were no responses. Exposure to CC-486 and romidepsin was consistent with prior data. LINE-1 methylation on C1D8 was significantly reduced (mean, -6.23; 95% CI, -12.23, -0.24; P = .04). CONCLUSIONS Although, at the RP2D, the combination of CC-486 and romidepsin was tolerable, no significant anticancer activity was observed. Significant demethylation in post-treatment circulating tumor DNA and biopsies provided proof of target acquisition.
Collapse
Affiliation(s)
- Stéphanie L. Gaillard
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Gynecology and Obstetrics Division of Gynecologic Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Marianna Zahurak
- Department of Oncology Division of Biostatistics and Bioinformatics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Anup Sharma
- Department of Surgery Division of Surgical Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Kim A. Reiss
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Melinda Downs
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Nicole M. Anders
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Nita Ahuja
- Department of Surgery Division of Surgical Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Michelle A. Rudek
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Medicine Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Nilofer Azad
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
7
|
Wong ALA, Xiang X, Ong PS, Mitchell EQY, Syn N, Wee I, Kumar AP, Yong WP, Sethi G, Goh BC, Ho PCL, Wang L. A Review on Liquid Chromatography-Tandem Mass Spectrometry Methods for Rapid Quantification of Oncology Drugs. Pharmaceutics 2018; 10:pharmaceutics10040221. [PMID: 30413076 PMCID: PMC6321130 DOI: 10.3390/pharmaceutics10040221] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
In the last decade, the tremendous improvement in the sensitivity and also affordability of liquid chromatography-tandem mass spectrometry (LC-MS/MS) has revolutionized its application in pharmaceutical analysis, resulting in widespread employment of LC-MS/MS in determining pharmaceutical compounds, including anticancer drugs in pharmaceutical research and also industries. Currently, LC-MS/MS has been widely used to quantify small molecule oncology drugs in various biological matrices to support preclinical and clinical pharmacokinetic studies in R&D of oncology drugs. This mini-review article will describe the state-of-the-art LC-MS/MS and its application in rapid quantification of small molecule anticancer drugs. In addition, efforts have also been made in this review to address several key aspects in the development of rapid LC-MS/MS methods, including sample preparation, chromatographic separation, and matrix effect evaluation.
Collapse
Affiliation(s)
- Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore.
| | - Xiaoqiang Xiang
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Pei Shi Ong
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore.
| | - Ee Qin Ying Mitchell
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore.
| | - Nicholas Syn
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore.
| | - Ian Wee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore.
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore.
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore.
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore.
| | - Paul Chi-Lui Ho
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore.
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore.
| |
Collapse
|
8
|
Unnikrishnan A, Vo ANQ, Pickford R, Raftery MJ, Nunez AC, Verma A, Hesson LB, Pimanda JE. AZA-MS: a novel multiparameter mass spectrometry method to determine the intracellular dynamics of azacitidine therapy in vivo. Leukemia 2017; 32:900-910. [PMID: 29249821 PMCID: PMC5886051 DOI: 10.1038/leu.2017.340] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 01/19/2023]
Abstract
The cytidine analogue, 5-azacytidine (AZA; 5-AZA-cR), is the primary treatment for myelodysplastic syndrome and chronic myelomonocytic leukaemia. However, only ~50% of treated patients will respond to AZA and the drivers of AZA resistance in vivo are poorly understood. To better understand the intracellular dynamics of AZA upon therapy and decipher the molecular basis for AZA resistance, we have developed a novel, multiparameter, quantitative mass spectrometry method (AZA-MS). Using AZA-MS, we have accurately quantified the abundance of the ribonucleoside (5-AZA-cR) and deoxyribonucleoside (5-AZA-CdR) forms of AZA in RNA, DNA and the cytoplasm within the same sample using nanogram quantities of input material. We report that although AZA induces DNA demethylation in a dose-dependent manner, it has no corresponding effect on RNA methylation. By applying AZA-MS to primary bone marrow samples from patients undergoing AZA therapy, we have identified that responders accumulate more 5-AZA-CdR in their DNA compared with nonresponders. AZA resistance was not a result of impaired AZA metabolism or intracellular accumulation. Furthermore, AZA-MS has helped to uncover different modes of AZA resistance. Whereas some nonresponders fail to incorporate sufficient 5-AZA-CdR into DNA, others incorporate 5-AZA-CdR and effect DNA demethylation like AZA responders, but show no clinical benefit.
Collapse
Affiliation(s)
- A Unnikrishnan
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - A N Q Vo
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - R Pickford
- Bioanalytical Mass Spectrometry Facility, UNSW Sydney, Sydney, New South Wales, Australia
| | - M J Raftery
- Bioanalytical Mass Spectrometry Facility, UNSW Sydney, Sydney, New South Wales, Australia
| | - A C Nunez
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - A Verma
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia
| | - L B Hesson
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - J E Pimanda
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia.,Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.,Haematology Department, Prince of Wales Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
9
|
Guichard N, Guillarme D, Bonnabry P, Fleury-Souverain S. Antineoplastic drugs and their analysis: a state of the art review. Analyst 2017; 142:2273-2321. [DOI: 10.1039/c7an00367f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We provide an overview of the analytical methods available for the quantification of antineoplastic drugs in pharmaceutical formulations, biological and environmental samples.
Collapse
Affiliation(s)
- Nicolas Guichard
- Pharmacy
- Geneva University Hospitals (HUG)
- Geneva
- Switzerland
- School of Pharmaceutical Sciences
| | - Davy Guillarme
- School of Pharmaceutical Sciences
- University of Geneva
- University of Lausanne
- Geneva
- Switzerland
| | - Pascal Bonnabry
- Pharmacy
- Geneva University Hospitals (HUG)
- Geneva
- Switzerland
- School of Pharmaceutical Sciences
| | | |
Collapse
|
10
|
Anders NM, Liu J, Wanjiku T, Giovinazzo H, Zhou J, Vaghasia A, Nelson WG, Yegnasubramanian S, Rudek MA. Simultaneous quantitative determination of 5-aza-2'-deoxycytidine genomic incorporation and DNA demethylation by liquid chromatography tandem mass spectrometry as exposure-response measures of nucleoside analog DNA methyltransferase inhibitors. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1022:38-45. [PMID: 27082761 DOI: 10.1016/j.jchromb.2016.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/10/2016] [Accepted: 03/19/2016] [Indexed: 01/08/2023]
Abstract
The epigenetic and anti-cancer activities of the nucleoside analog DNA methyltransferase (DNMT) inhibitors decitabine (5-aza-2'-deoxycytidine, DAC), azacitidine, and guadecitabine are thought to require cellular uptake, metabolism to 5-aza-2'-deoxycytidine triphosphate, and incorporation into DNA. This genomic incorporation can then lead to trapping and degradation of DNMT enzymes, and ultimately, passive loss of DNA methylation. To facilitate measurement of critical exposure-response relationships of nucleoside analog DNMT inhibitors, a sensitive and reliable method was developed to simultaneously quantitate 5-aza-2'-deoxycytidine genomic incorporation and genomic 5-methylcytosine content using LC-MS/MS. Genomic DNA was extracted and digested into single nucleosides. Chromatographic separation was achieved with a Thermo Hyperpcarb porous graphite column (100mm×2.1mm, 5μm) and isocratic elution with a 10mM ammonium acetate:acetonitrile with 0.1% formic acid (70:30, v/v) mobile phase over a 5min total analytical run time. An AB Sciex 5500 triple quadrupole mass spectrometer operated in positive electrospray ionization mode was used for the detection of 5-aza-2'-deoxycytidine, 2'-deoxycytidine, and 5-methyl-2'-deoxycytidine. The assay range was 2-400ng/mL for 5-aza-2'-deoxycytidine, 50-10,000ng/mL for 2'-deoxycytidine, and was 5-1000ng/mL for 5-methyl-2'-deoxycytidine. The assay proved to be accurate (93.0-102.2%) and precise (CV≤6.3%) across all analytes. All analytes exhibited long-term frozen digest matrix stability at -70°C for at least 117 days. The method was applied for the measurement of genomic 5-aza-2'-deoxycytidine and 5-methyl-2'-deoxycytidine content following exposure of in vitro cell culture and in vivo animal models to decitabine.
Collapse
Affiliation(s)
- Nicole M Anders
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, School of Medicine, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231 USA
| | - Jianyong Liu
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, School of Medicine, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231 USA
| | - Teresia Wanjiku
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, School of Medicine, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231 USA
| | - Hugh Giovinazzo
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231 USA
| | - Jianya Zhou
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, School of Medicine, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231 USA; Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Ajay Vaghasia
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, School of Medicine, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231 USA
| | - William G Nelson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, School of Medicine, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231 USA; Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231 USA; Department of Pathology, School of Medicine, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231 USA; Brady Urological Institute, School of Medicine, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231 USA
| | - Srinivasan Yegnasubramanian
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, School of Medicine, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231 USA; Brady Urological Institute, School of Medicine, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231 USA.
| | - Michelle A Rudek
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, School of Medicine, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231 USA; Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231 USA.
| |
Collapse
|