1
|
Yang J, Sun Y, Cao F, Yang B, Kuang H. Natural Products from Physalis alkekengi L. var. franchetii (Mast.) Makino: A Review on Their Structural Analysis, Quality Control, Pharmacology, and Pharmacokinetics. Molecules 2022; 27:molecules27030695. [PMID: 35163960 PMCID: PMC8840080 DOI: 10.3390/molecules27030695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
The calyxes and fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino (P. alkekengi), a medicinal and edible plant, are frequently used as heat-clearing and detoxifying agents in thousands of Chinese medicine prescriptions. For thousands of years in China, they have been widely used in clinical practice to treat throat disease, hepatitis, and bacillary dysentery. This systematic review summarizes their structural analysis, quality control, pharmacology, and pharmacokinetics. Furthermore, the possible development trends and perspectives for future research studies on this medicinal plant are discussed. Relevant information on the calyxes and fruits of P. alkekengi was collected from electronic databases, Chinese herbal classics, and Chinese Pharmacopoeia. Moreover, information was collected from ancient documents in China. The components isolated and identified in P. alkekengi include steroids, flavonoids, phenylpropanoids, alkaloids, nucleosides, terpenoids, megastigmane, aliphatic derivatives, organic acids, coumarins, and sucrose esters. Steroids, particularly physalins and flavonoids, are the major characteristic and bioactive ingredients in P. alkekengi. According to the literature, physalins are synthesized by the mevalonate and 2-C-methyl-d-erythritol-4-phosphate pathways, and flavonoids are synthesized by the phenylpropanoid pathway. Since the chemical components and pharmacological effects of P. alkekengi are complex and varied, there are different standards for the evaluation of its quality and efficacy. In most cases, the analysis was performed using high-performance liquid chromatography coupled with ultraviolet detection. A pharmacological study showed that the crude extracts and isolated compounds from P. alkekengi had extensive in vitro and in vivo biological activities (e.g., anti-inflammatory, anti-tumor, immunosuppressive, antibacterial, anti-leishmanial, anti-asthmatic, anti-diabetic, anti-oxidative, anti-malarial, anti-Alzheimer's disease, and vasodilatory). Moreover, the relevant anti-inflammatory and anti-tumor mechanisms were elucidated. The reported activities indicate the great pharmacological potential of P. alkekengi. Similarly, studies on the pharmacokinetics of specific compounds will also contribute to the progress of clinical research in this setting.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
| | - Feng Cao
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
- Correspondence: ; Tel.: +86-0451-82197188
| |
Collapse
|
2
|
Abstract
Covering: March 2010 to December 2020. Previous review: Nat. Prod. Rep., 2011, 28, 705This review summarizes the latest progress and perspectives on the structural classification, biological activities and mechanisms, metabolism and pharmacokinetic investigations, biosynthesis, chemical synthesis and structural modifications, as well as future research directions of the promising natural withanolides. The literature from March 2010 to December 2020 is reviewed, and 287 references are cited.
Collapse
Affiliation(s)
- Gui-Yang Xia
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shi-Jie Cao
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
3
|
Qiu L, Hu L, Liu X, Li W, Zhang X, Xia H, Zhang C. Physalin B inhibits PDGF-BB-induced VSMC proliferation, migration and phenotypic transformation by activating the Nrf2 pathway. Food Funct 2021; 12:10950-10966. [PMID: 34647944 DOI: 10.1039/d1fo01926k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vascular intimal hyperplasia is a hallmark event in vascular restenosis. The excessive proliferation, migration and phenotypic transformation of vascular smooth muscle cells (VSMCs) play important roles in the pathological mechanism of vascular intimal hyperplasia. Physalin B is an alcoholate isolated from Physalis (Solanaceae) that has a wide range of biological activities. However, the effect of physalin B on VSMCs is currently unclear. In this study, we demonstrated that physalin B significantly inhibited the proliferation, migration and phenotypic transformation of VSMCs induced by PDGF-BB. Physalin B also reduced inflammation and oxidative stress in VSMCs induced by PDGF-BB. Mechanistic studies showed that physalin B plays a role mainly by activating Nrf2. After Nrf2 activation, physalin B mitigates oxidative stress by enhancing the expression of the antioxidant gene HO-1; on the other hand, physalin B inhibits the NF-κB pathway to alleviate the inflammatory response. These two effects ultimately reduce the proliferation, migration and phenotypic transformation of VSMCs induced by PDGF-BB. In addition, in the mouse carotid artery ligation model, physalin B prevented intimal hyperplasia and inhibited the proliferation, migration and phenotypic transformation of cells in the hyperplastic intima. In conclusion, we provided significant evidence that physalin B abrogates PDGF-BB-induced VSMC proliferation, migration, phenotypic transformation and intimal hyperplasia by activating Nrf2-mediated signal transduction. Therefore, physalin B may be a potential therapeutic agent for preventing or treating restenosis.
Collapse
Affiliation(s)
- Liqiang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China. .,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Lingli Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China.
| | - Xiaoxiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China. .,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Wenjing Li
- Department of Integrated Traditional Chinese and Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430064, P.R. China
| | - Xutao Zhang
- Jianshi Hospital of Traditional Chinese Medicine, Jianshi, Hubei 445300, P.R. China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China. .,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Changjiang Zhang
- Department of Cardiology, Minda Hospital of Hubei Minzu University, Enshi 445000, P.R. China.
| |
Collapse
|
4
|
Wu J, Zhao J, Zhang T, Gu Y, Khan IA, Zou Z, Xu Q. Naturally occurring physalins from the genus Physalis: A review. PHYTOCHEMISTRY 2021; 191:112925. [PMID: 34487922 DOI: 10.1016/j.phytochem.2021.112925] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/30/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Physalins, including physalins and neophysalins, are a class of highly oxygenated ergostane-type steroids. They are commonly known by the name of 16,24-cyclo-13,14-seco steroids, in which the disconnection of C-13 and C-14 produces an eight or nine-membered ring and the carbocyclization of C-16 and C-24 generates a new six-membered ring. Meanwhile, the oxidation of C-18 methyl to carboxyl group forms a 18,20-lactone, and the oxidation of C-14 and C-17 gets a heterocyclic oxygen acrossing rings C and D. Additionly, physalins frequently form an oxygen bridge to connect C-14 to C-27. Physalins are a kind of characteristic constituents from the species of the genus Physalis (Solanaceae), which are reported with a wide array of pharmacological activities, including anticancer, anti-inflammatory, immunoregulatory, antimicrobial, trypanocidal and leishmanicidal, antinociceptive, antidiabetic and some other activities. Herein,the research progress of physalins from the genus Physalis during the decade from 1970 to 2021 on phytochemistry, pharmacology, pharmacokinetics and application in China are systematically presented and discussed for the first time.
Collapse
Affiliation(s)
- Jiangping Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jianping Zhao
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS, 38677, USA
| | - Tao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire, RE42 6EY, UK
| | - Ikhlas A Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS, 38677, USA
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Qiongming Xu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
5
|
The Cape Gooseberry Constituent Physalin B Ameliorates Nonalcoholic Steatohepatitis and Attenuates Liver Fibrosis. LIVERS 2021. [DOI: 10.3390/livers1020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Physalin B belongs to a family of Physalins that can be isolated from the genus Physalis (Solanaceae). In traditional Chinese Medicine, Physalis angulata L. is frequently used to treat a variety of illnesses such as dermatitis, trachitis, rheumatism, and hepatitis. Physalin B promotes cellular apoptosis and has antitumor, antimalarial, and antimycobacterial activities. Two recent studies evaluated the therapeutic activities of Physalin B in pre-clinical hepatic disease models. In this comment, a brief summary of the most important findings of these two studies is given and discussed.
Collapse
|
6
|
Zhu X, Ye S, Yu D, Zhang Y, Li J, Zhang M, Leng Y, Yang T, Luo J, Chen X, Zhang H, Kong L. Physalin B attenuates liver fibrosis via suppressing LAP2α-HDAC1-mediated deacetylation of the transcription factor GLI1 and hepatic stellate cell activation. Br J Pharmacol 2021; 178:3428-3447. [PMID: 33864382 DOI: 10.1111/bph.15490] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/20/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Liver fibrosis is one of the leading causes of morbidity and mortality worldwide but lacks any acceptable therapy. The transcription factor glioma-associated oncogene homologue 1 (GLI1) is a potentially important therapeutic target in liver fibrosis. This study investigates the anti-fibrotic activities and potential mechanisms of the phytochemical, physalin B. EXPERIMENTAL APPROACH Two mouse models (CCl4 challenge and bile duct ligation) were used to assess antifibrotic effects of physalin B in vivo. Mouse primary hepatic stellate cells (pHSCs) and human HSC line LX-2 also served as in vitro liver fibrosis models. Liver fibrogenic genes, GLI1 and GLI1 downstream genes were examined using Western blot and quantitative real-time PCR (qRT-PCR). GLI1 acetylation and LAP2α-HDAC1 interaction were analysed by co-immunoprecipitation. KEY RESULTS In vivo, physalin B administration attenuated hepatic histopathological injury and collagen accumulation and decreased expression of fibrogenic genes. Physalin B dose-dependently suppressed fibrotic marker expression in LX-2 cells and mouse pHSCs. Mechanistic studies showed that physalin B inhibited GLI activity by non-canonical Hedgehog signalling. Physalin B blocked formation of lamina-associated polypeptide 2α (LAP2α)/histone deacetylase 1 (HDAC1) complexes, thus inhibiting HDAC1-mediated GLI1 deacetylation. Physalin B up-regulated acetylation of GLI1, down-regulated expression of GLI1 and subsequently inhibited HSC activation. CONCLUSION AND IMPLICATIONS Physalin B exerted potent antifibrotic effects in vitro and in vivo by disrupting LAP2α/HDAC1 complexes, increasing GLI1 acetylation and inactivating GLI1. This indicates that the phytochemical physalin B may be a potential therapeutic candidate for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xiaoyun Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shengtao Ye
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dongke Yu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanqiu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jie Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meihui Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingrong Leng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jianguang Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinlin Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Ding N, Lu Y, Cui H, Ma Q, Qiu D, Wei X, Dou C, Cao N. Physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via regulating calcium signaling. BMB Rep 2020. [PMID: 31964464 PMCID: PMC7118355 DOI: 10.5483/bmbrep.2020.53.3.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the effects of physalin A, B, D, and F on osteoclastogenesis induced by receptor activator of nuclear factor kB ligand (RANKL). The biological functions of different physalins were first predicted using an in silico bioinformatic tool (BATMAN-TCM). Afterwards, we tested cell viability and cell apoptosis rate to analyze the cytotoxicity of different physalins. We analyzed the inhibitory effects of physalins on RANKL-induced osteoclastogenesis from mouse bone-marrow macrophages (BMMs) using a tartrate-resistant acid phosphatase (TRAP) stain. We found that physalin D has the best selectivity index (SI) among all analyzed physalins. We then confirmed the inhibitory effects of physalin D on osteoclast maturation and function by immunostaining of F-actin and a pit-formation assay. On the molecular level, physalin D attenuated RANKL- evoked intracellular calcium ([Ca(2+)](i)) oscillation by inhibiting phosphorylation of phospholipase Cγ2 (PLCγ2) and thus blocked the downstream activation of Ca2+/calmodulin- dependent protein kinases (CaMK)IV and cAMP-responsive element-binding protein (CREB). An animal study showed that physalin D treatment rescues bone microarchitecture, prevents bone loss, and restores bone strength in a model of rapid bone loss induced by soluble RANKL. Taken together, these results suggest that physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via suppressing the PLCγ2-CaMK-CREB pathway.
Collapse
Affiliation(s)
- Ning Ding
- Department of Blood Purification, General Hospital of Shenyang Military Area Command, Shenyang 110000, China
| | - Yanzhu Lu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hanmin Cui
- Department of Blood Purification, General Hospital of Shenyang Military Area Command, Shenyang 110000, China
| | - Qinyu Ma
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Dongxia Qiu
- Department of Blood Purification, General Hospital of Shenyang Military Area Command, Shenyang 110000, China
| | - Xueting Wei
- Department of Blood Purification, General Hospital of Shenyang Military Area Command, Shenyang 110000, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ning Cao
- Department of Blood Purification, General Hospital of Shenyang Military Area Command, Shenyang 110000, China
| |
Collapse
|
8
|
Zhang Q, Xu N, Hu X, Zheng Y. Anti-colitic effects of Physalin B on dextran sodium sulfate-induced BALB/c mice by suppressing multiple inflammatory signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112956. [PMID: 32442587 DOI: 10.1016/j.jep.2020.112956] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Physalin B is one of the main active withanolide existed in Physalis alkekengi L. var. franchetii (Mast.) Makino, a famous traditional Chinese food and herbal medicine, which has been widely used as heat-clearing and toxin-resolving medicine for the treatment of various inflammatory disease, such as cough, excessive phlegm, pharyngitis, sore throat, pemphigus, eczema, and jaundice. AIM OF THE STUDY We aimed to confirm the therapeutic effects of Physalin B on ulcerative colitis (UC) and enrich the further application of its traditional anti-inflammatory effect. MATERIALS AND METHODS The anti-UC effects of Physalin B were evaluated in Balb/c mice with dextran sulfate sodium (DSS) induction. The body weight, colon length, disease activity index (DAI) and pathological changes of colon tissue were measured. Cytokine levels were detected by ELISA. NF-κB pathway and protein levels of related pathways, such as signal transducer and activator of transcription 3 (STAT3), β-arrestin1 and NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome were detected by western blot. RESULTS The dose of Physalin B that is not cytotoxic could dramatically reduce the levels of TNF-α, IL-6 and IL-1β on LPS-stimulated RAW 264.7 cells. Meanwhile, Physalin B dramatically improved clinical signs and symptoms, alleviated body weight loss and colon length shortening in DSS-induced UC mice. Meanwhile, Physalin B also dramatically relieved the pathological damage, reduced in the activity of myeloperoxidase (MPO) and reestablished the balance of pro-inflammatory cytokines. Physalin B could suppress DSS-induced activation of NF-κB. Moreover, Physalin B also markedly suppressed the activation of STAT3, β-arrestin1 and NLRP3 inflammasome. CONCLUSION This study preliminary confirmed the therapeutic effect of Physalin B on experimental acute UC mice and provided robust evidence support for the anti-inflammatory effect of Physalin B, suggesting that Physalin B might be a potential agent for the therapeutic efficacy on UC.
Collapse
Affiliation(s)
- Qiao Zhang
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Research Center for Clinical Pharmacy, First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, PR China
| | - NaNa Xu
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Research Center for Clinical Pharmacy, First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, PR China
| | - Xingjiang Hu
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Research Center for Clinical Pharmacy, First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, PR China
| | - Yunliang Zheng
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Research Center for Clinical Pharmacy, First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, PR China.
| |
Collapse
|
9
|
Physalin B induces G2/M cell cycle arrest and apoptosis in A549 human non-small-cell lung cancer cells by altering mitochondrial function. Anticancer Drugs 2020; 30:128-137. [PMID: 30335624 DOI: 10.1097/cad.0000000000000701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Physalin B (PB) is one of the major constituents of Physalis alkekengi var. franchetii, a well-known Chinese traditional herb. In this study, we demonstrated for the first time that PB exhibits significant antiproliferative and apoptotic activity in A549 human lung cancer cells in a concentration-dependent and time-dependent manner. Flow cytometric analyses indicated that PB-induced G2/M arrest through down-regulation of cyclin B1 and cell division control protein cyclin-dependent kinase 1, and up-regulation of p21. The reduction in the level of cyclin B1/cyclin-dependent kinase 1 complex down-regulated oxidative phosphorylation multisubunit activity to reduce mitochondrial energetic homeostasis. Moreover, defects in mitochondrial ATP synthesis and mitochondrial membrane potential were found in PB-treated cell lines. These abnormalities led to an increase in intracellular superoxide and apoptosis. Thus, as an inhibitor of mitochondrial energetic homeostasis, PB demonstrates potent antitumor activities and may be developed as an alternative therapeutic agent against non-small-cell lung cancer.
Collapse
|
10
|
Ding N, Wang Y, Dou C, Liu F, Guan G, Wei K, Yang J, Yang M, Tan J, Zeng W, Zhu C. Physalin D regulates macrophage M1/M2 polarization via the STAT1/6 pathway. J Cell Physiol 2018; 234:8788-8796. [PMID: 30317606 DOI: 10.1002/jcp.27537] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
The in vitro and in vivo effects of physalin D on macrophage M1/M2 polarization were investigated. In silico analysis was first performed for biological function prediction of different physalins. The results suggest physalins have similar predicted biological functions due to their similarities in chemical structures. The cytotoxicity of physalins was then analyzed based on cell apoptosis rate and cell viability evaluation. Physalin D was chosen for further study due to its minimal cytotoxicity. Bone marrow macrophages were isolated and induced with lipopolysaccharide/interferon (IFN)-γ for M1 polarization and interleukin (IL)-4/IL-13 for M2 polarization. The results showed that physalin D can repolarize M1 phenotype cells toward M2 phenotype. In addition, physalin D is protective in M2 macrophages to maintain the M2 phenotype in the presence of IFN-γ. On the molecular level, we found that physalin D suppressed the signal transducers and activators of transcription (STAT)1 activation and blocked STAT1 nuclear translocation. Conversely, physalin D can also activate STAT6 and enhance STAT6 nuclear translocation for M2 polarization. Taken together, these results suggested that physalin D regulates macrophage M1/M2 polarization via the STAT1/6 pathway.
Collapse
Affiliation(s)
- Ning Ding
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Yuxing Wang
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Feila Liu
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Ge Guan
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Keyu Wei
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Jingyuan Yang
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Mingcan Yang
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Ju Tan
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Wen Zeng
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Chuhong Zhu
- Department of Anatomy, Third Military Medical University, Chongqing, China
| |
Collapse
|
11
|
Kranjc E, Albreht A, Vovk I, Glavnik V. High performance thin-layer chromatography–mass spectrometry enables reliable analysis of physalins in different plant parts of Physalis alkekengi L. J Chromatogr A 2017; 1526:137-150. [DOI: 10.1016/j.chroma.2017.09.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
|
12
|
Guo Y, Liu H, Ding L, Oppong M, Pan G, Qiu F. LC-MS/MS method for simultaneous determination of flavonoids and physalins in rat plasma: Application to pharmacokinetic study after oral administration of Physalis alkekengi
var. franchetii
(Chinese lantern) extract. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/22/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Yaqing Guo
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
- Tianjin International Joint Academy of Biomedicine; Tianjin 300457 China
| | - Hongxia Liu
- Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Liqin Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Mahmood Oppong
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Guixiang Pan
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Feng Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
- Shenyang Pharmaceutical University; Shenyang 110016 China
| |
Collapse
|
13
|
Wang S, Jin X, Xu Y, Hu X, Lv Z, Wang YS. Studies on pharmacokinetics, body distribution, plasma protein binding rate, and excretion of 1-methyl hydantoin in rats in vivo. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1287725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shihan Wang
- Department of Pharmaceutics, College of Pharmacy, Jilin University, Changchun, China
| | - Xiangqun Jin
- Department of Pharmaceutics, College of Pharmacy, Jilin University, Changchun, China
| | - Yang Xu
- Department of Pharmaceutics, Changchun Medical College, Changchun, China
| | - Xinyu Hu
- Department of Pharmaceutics, College of Pharmacy, Jilin University, Changchun, China
| | - Zuying Lv
- Department of Pharmaceutics, College of Pharmacy, Jilin University, Changchun, China
| | - Yong-Sheng Wang
- Department of Pharmaceutics, College of Pharmacy, Jilin University, Changchun, China
| |
Collapse
|