1
|
Ribeiro VP, Bajsa-Hirschel J, Bastos JK, Reichley A, Duke SO, Meepagala KM. Characterization of the Phytotoxic Potential of Seven Copaifera spp. Essential Oils: Analyzing Active Compounds through Gas Chromatography-Mass Spectrometry Molecular Networking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18528-18536. [PMID: 39105735 DOI: 10.1021/acs.jafc.4c04586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In recent years, there has been a need for environmentally friendly compounds for weed management in agriculture. This study is aimed to assess the phytotoxic constituents of oils obtained from oleoresins of seven Copaifera species (known as copaiba oils). Copaiba oils were separated from the resins by hydro-distillation, and the distillates were analyzed using gas chromatography-mass spectrometry (GC-MS) to characterize their chemical compositions. Multivariate analyses and molecular networking of GC-MS data were conducted to discern patterns in the chemical composition and phytotoxic activity of the oils, with the aim of identifying key compounds associated with phytotoxic activity. Seed germination bioassay revealed strong or complete germination inhibition against the monocot, Agrostis stolonifera but not the dicot Lactuca sativa. GC-MS analysis showed variations in composition among Copaifera species with some common compounds identified across multiple species. Caryophyllene oxide and junenol were associated with the observed phytotoxic effects. Automated flash chromatography was used to isolate the major compounds of the oils. Isolated compounds exhibited differing levels of phytotoxicity compared to the oils, suggesting the importance of interactions or synergism among oil components. These findings highlight the potential of copaiba oils as natural herbicidal agents and underscore the importance of considering species-specific responses in weed management strategies.
Collapse
Affiliation(s)
- Victor Pena Ribeiro
- Agricultural Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Joanna Bajsa-Hirschel
- Agricultural Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP 14440-903,Brazil
| | - Amber Reichley
- Agricultural Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 39677, United States
| | - Kumudini M Meepagala
- Agricultural Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| |
Collapse
|
2
|
Gushiken LFS, Beserra FP, Hussni MF, Gonzaga MT, Ribeiro VP, de Souza PF, Campos JCL, Massaro TNC, Hussni CA, Takahira RK, Marcato PD, Bastos JK, Pellizzon CH. Copaifera langsdorffii Oleoresin-Loaded Nanostructured Lipid Carrier Emulgel Improves Cutaneous Healing by Anti-Inflammatory and Re-Epithelialization Mechanisms. Int J Mol Sci 2023; 24:15882. [PMID: 37958867 PMCID: PMC10648863 DOI: 10.3390/ijms242115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The skin is essential to the integrity of the organism. The disruption of this organ promotes a wound, and the organism starts the healing to reconstruct the skin. Copaifera langsdorffii is a tree used in folk medicine to treat skin affections, with antioxidant and anti-inflammatory properties. In our study, the oleoresin of the plant was associated with nanostructured lipid carriers, aiming to evaluate the healing potential of this formulation and compare the treatment with reference drugs used in wound healing. Male Wistar rats were used to perform the excision wound model, with the macroscopic analysis of wound retraction. Skin samples were used in histological, immunohistochemical, and biochemical analyses. The results showed the wound retraction in the oleoresin-treated group, mediated by α-smooth muscle actin (α-SMA). Biochemical assays revealed the anti-inflammatory mechanism of the oleoresin-treated group, increasing interleukin-10 (IL-10) concentration and decreasing pro-inflammatory cytokines. Histopathological and immunohistochemical results showed the improvement of re-epithelialization and tissue remodeling in the Copaifera langsdorffii group, with an increase in laminin-γ2, a decrease in desmoglein-3 and an increase in collagen remodeling. These findings indicate the wound healing potential of nanostructured lipid carriers associated with Copaifera langsdorffii oleoresin in skin wounds, which can be helpful as a future alternative treatment for skin wounds.
Collapse
Affiliation(s)
- Lucas F. S. Gushiken
- Hematology and Transfusion Center, University of Campinas—UNICAMP, Campinas 13083-878, SP, Brazil
| | - Fernando P. Beserra
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil (J.K.B.)
| | - Maria F. Hussni
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Murilo T. Gonzaga
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Victor P. Ribeiro
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil (J.K.B.)
| | - Patrícia F. de Souza
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil (J.K.B.)
| | - Jacqueline C. L. Campos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil (J.K.B.)
| | - Tais N. C. Massaro
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil (J.K.B.)
| | - Carlos A. Hussni
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Zootechnics, São Paulo State University—UNESP, Botucatu 18618-681, SP, Brazil
| | - Regina K. Takahira
- Department of Veterinary Clinics, School of Veterinary Medicine and Zootechnics, São Paulo State University—UNESP, Botucatu 18618-681, SP, Brazil
| | - Priscyla D. Marcato
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil (J.K.B.)
| | - Jairo K. Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil (J.K.B.)
| | - Cláudia H. Pellizzon
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
3
|
Bernardes CTV, Ribeiro VP, de Carvalho TC, Furtado RA, Jacometti Cardoso Furtado NA, Bastos JK. Disinfectant activities of extracts and metabolites from Baccharis dracunculifolia DC. Lett Appl Microbiol 2022; 75:261-270. [PMID: 35441723 DOI: 10.1111/lam.13725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022]
Abstract
The concern regarding the harm caused by biocides to human health has been increasing over the years, making the natural products an alternative to less toxic and more efficient biocides. Therefore, this paper reports the investigation of the disinfectant potential of extracts and isolated compounds from Baccharis dracunculifolia. For this purpose, extracts of aerial parts (BD-C), tricomial wash (BD-L) and roots (BD-R) of B. dracunculifolia were obtained by maceration. The extracts were submitted to different chromatographic techniques, including high-speedy countercurrent chromatography (HSCCC) furnishing nine isolated compounds. The extracts and isolated compounds were evaluated regarding their antimicrobial activity by the broth microdilution method, according to the Clinical and Laboratory Standards Institute, and regarding their sanitizing activity according to Standard Operating Procedure No. 65.3210.007 (INCQS, 2011), developed by the National Institute for Quality Control in Health (INCQS) - Oswaldo Cruz Foundation (FIOCRUZ). In the antimicrobial evaluation the BD-C extract showed minimum inhibitory concentration (MIC) values of 200 and 100 µg/mL against S. aureus and T. mentagrophytes, respectively. BD-L extract showed MIC value of 200 µg/mL against S. aureus. The isolated compounds caffeic acid (MBC 2.22 µM), ferulic acid (MBC 2.06 µM) and baccharin (MBC 0.27 µM) showed significant inhibitory activity against S. aureus. All B. dracunculifolia isolated compounds were active with exception of aromadrendin-4´-O-methyl-ether for T. mentagrophytes. Additionally, isosakuranetin was active against S. choleraesuis (MIC 1.4 µM). Regarding the sanitizing activity, the hydroalcoholic solution containing 0.2% of B. dracunculifolia extract in 40 ºGL ethanol was effective in eliminating the microbial contamination on all carrier cylinders and against all microorganisms evaluated in the recommended exposure time of 10 min. Therefore, B. dracunculifolia has potential for the development of sanitizing agents to be used in hospitals, food manufactures and homes.
Collapse
Affiliation(s)
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Tatiane Cruz de Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Ricardo Andrade Furtado
- Research Center in Exact and Technological Sciences, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, 14404-600, Franca-SP, Brazil
| | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Beta-caryophyllene as an antioxidant, anti-inflammatory and re-epithelialization activities in a rat skin wound excision model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9004014. [PMID: 35154574 PMCID: PMC8831077 DOI: 10.1155/2022/9004014] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
The skin is a critical organ for the maintenance of the integrity and protection of the organism. When a wound occurs, a sequence of healing mechanisms is triggered to reconstruct the wounded area. β-caryophyllene is a sesquiterpene in Copaifera langsdorffii oleoresin with antioxidant and anti-inflammatory potential. On the basis of previous studies with C. langsdorffii, β-caryophyllene was selected to evaluate its wound healing potential and pharmacological mechanisms. The excision wound model was used with male Wistar rats and macroscopic, histological, immunohistochemical and biochemical analyses were performed with skin samples, comparing the β-caryophyllene-treated group with reference drugs. The results showed macroscopic retraction of the wounds treated with β-caryophyllene. Biochemical assays revealed the antioxidant and anti-inflammatory mechanisms of the β-caryophyllene-treated group with increasing levels of IL-10 and GPx and decreasing levels of pro-inflammatory molecules, including TNF-α, IFN-γ, IL-1β and IL-6. After β-caryophyllene treatment, immunohistochemical assays showed enhanced re-epithelialization, through the increase in laminin-γ2 and desmoglein-3 immunolabeling. β-caryophyllene also act in the remodeling mechanism, increasing the collagen content in the Masson’s trichrome staining. These findings indicated the wound-healing potential of β-caryophyllene topical formulation in rat skin wounds, mediated by antioxidant, anti-inflammatory and re-epithelialization mechanisms.
Collapse
|
5
|
Símaro GV, Lemos M, Mangabeira da Silva JJ, Ribeiro VP, Arruda C, Schneider AH, Wagner de Souza Wanderley C, Carneiro LJ, Mariano RL, Ambrósio SR, Faloni de Andrade S, Banderó-Filho VC, Sasse A, Sheridan H, Andrade E Silva ML, Bastos JK. Antinociceptive and anti-inflammatory activities of Copaifera pubiflora Benth oleoresin and its major metabolite ent-hardwickiic acid. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113883. [PMID: 33508366 DOI: 10.1016/j.jep.2021.113883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Copaifera species folkloric names are "copaíbas, copaibeiras, copaívas or oil stick", which are widely used in Brazilian folk medicine. Among all ethnopharmacological applications described for Copaifera spp oleoresins, their anti-inflammatory effect stands out. However, the knowledge of anti-inflammatory and antinociceptive properties of Copaifera pubiflora Benth is scarce. AIM OF THE STUDY To investigate the cytotoxic, anti-inflammatory, and antinociceptive activities of C. pubiflora oleoresin (CPO), and its major compound ent-hardwickiic acid (HA). MATERIAL AND METHODS The phosphatase assay was used to evaluate the cytotoxicity of CPO and HA in three different cell lines. CPO and HA doses of 1, 3, and 10 mg/kg were employed in the biological assays. The assessment of motor activity was performed using open-field and rotarod tests. Anti-inflammatory activity of CPO and HA was assessed through luciferase assay, measurement of INF-γ, IL-1β, IL-6, IL-10, and TNF-α in a multi-spot system with the immortalized cell line THP-1, zymosan-induced arthritis, and carrageenan-induced paw edema. Acetic acid-induced abdominal writhing and formalin tests were undertaken to evaluate the antinociceptive potential of CPO and HA. In addition, the evaluation using carrageenan was performed to investigate the effect of CPO in pain intensity to a mechanical stimulus (mechanical hyperalgesia), using the von Frey filaments. A tail-flick test was used to evaluate possible central CPO and HA actions. RESULTS In the cytotoxicity evaluation, CPO and HA were not cytotoxic to the cell lines tested. CPO and HA (10 mg/kg) did not affect animals' locomotor capacity in both open-field and rotarod tests. In the luciferase assay, CPO and HA significantly reduced luciferase activity (p < 0.05). This reduction indicates a decrease in NF-κB activity. HA and CPO decreased INF-γ, IL-1β, IL-6, IL-10, and TNF-α at 24 and 72 h in the multi-spot system. In zymosan-induced arthritis, CPO and HA decreased the number of neutrophils in the joint of arthritic mice and the number of total leukocytes (p < 0.05). In experimental arthritis HA significantly decreased joint swelling (p < 0.05). CPO and HA also increased the mechanical threshold during experimental arthritis. HA and CPO significantly inhibited the carrageenan-induced paw edema, being the doses of 10 mg/kg the most effective, registering maximum inhibitions of 58 ± 8% and 76 ± 6% respectively, p < 0.05. CPO and HA reduced the nociceptive behavior in both phases of formalin at all tested doses. The highest doses tested displayed inhibitions of 87 ± 1% and 72 ± 4%, respectively, p < 0.001, in the first phase, and 87 ± 1% and 81 ± 2%, respectively, p < 0.001, in the second phase. Oral treatment of CPO and HA (1, 3, 10 mg/kg) significantly reduced the nociceptive response in acetic acid-induced abdominal writhings, and the 10 mg/kg dose was the most effective with maximum inhibitions of 86 ± 2% and 82 ± 1%, respectively, p < 0.001. Both HA and CPO significantly decreased the intensity of mechanical inflammatory hyper-nociception on carrageenan-induced hyperalgesia at all tested doses, and 10 mg/kg was the most effective dose with maximum inhibitions of 73 ± 5% and 74 ± 7%, respectively, p < 0.05.CPO increased the tail-flick latencies in mice, and concomitant administration of naloxone partially reduced its effect. CONCLUSIONS CPO and HA may inhibit the production of inflammatory cytokines by suppressing the NF-κB signaling pathway, resulting in anti-inflammatory and antinociceptive activities.
Collapse
Affiliation(s)
- Guilherme Venâncio Símaro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Marivane Lemos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Jonas Joaquim Mangabeira da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Ayda Henriques Schneider
- Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes S/N, 14049-900, Ribeirão Preto, SP, Brazil
| | | | - Luiza Junqueira Carneiro
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Roberta Lopes Mariano
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Sérgio Ricardo Ambrósio
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Sérgio Faloni de Andrade
- Universidade Lusófona, CBIOS, Research Center for Biosciences and Health Technologies, Av. Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Vilmar C Banderó-Filho
- Universidade Lusófona, CBIOS, Research Center for Biosciences and Health Technologies, Av. Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Astrid Sasse
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Helen Sheridan
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Márcio Luis Andrade E Silva
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Ribeiro VP, Arruda C, Mejía JAA, Candido ACBB, Dos Santos RA, Magalhães LG, Bastos JK. Brazilian southeast brown propolis: gas chromatography method development for its volatile oil analysis, its antimicrobial and leishmanicidal activities evaluation. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:404-411. [PMID: 32901989 DOI: 10.1002/pca.2988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Propolis is widely used in folk medicine, and many factors can affect its chemical composition, including abiotic factors that can influence plants and bees. Therefore, analytical methods are powerful techniques in the quality control of such products. OBJECTIVE Develop and validate an analytical method for quantifying volatile compounds in Brazilian brown propolis, and evaluate its biological activities. METHODS A gas chromatography flame ionisation detector (GC-FID) analytical method was validated, attending the parameters of international validation guidelines as ANVISA 2017 and ICH 2005, for quantification of compounds present in volatile oils from propolis. Evaluation of cytotoxic, antimicrobial, and leishmanicidal activities of the oil. RESULTS The compounds 1,8-cineole, terpinen-4-ol, α-copaene, β-caryophyllene, γ-muurolene, nerolidol, spathulenol, and γ-palmitolactone were isolated from the volatile fraction of a Brazilian brown propolis and used in the method validation. All the validation parameters of the method were satisfactory. The volatile fraction displayed a significant leishmanicidal activity, with half maximal inhibition concentration (IC50 ) = 21.3 μg/mL against amastigote forms and IC50 = 25.1 μg/mL against promastigote forms of Leishmania amazonensis. The oil also displayed an antibacterial effect by inhibiting the growth of Streptococcus mutans and Staphylococcus aureus at 25 μg/mL and 50 μg/mL, respectively, but it was not cytotoxic against AGP-01, He-La and CHO-K1cell lines, with IC50 > 100 μg/mL. CONCLUSION The GC-FID method can be a useful tool in the quality control of propolis material. The southeast brown propolis showed a high chemical complexity in its volatile fraction, which displayed leishmanicidal activity and bactericidal activity.
Collapse
Affiliation(s)
- Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Raquel Alves Dos Santos
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, SP, Brazil
| | - Lizandra Guidi Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Beserra FP, Gushiken LFS, Hussni MF, Ribeiro VP, Bonamin F, Jackson CJ, Pellizzon CH, Bastos JK. Artepillin C as an outstanding phenolic compound of Brazilian green propolis for disease treatment: A review on pharmacological aspects. Phytother Res 2021; 35:2274-2286. [PMID: 32935428 DOI: 10.1002/ptr.6875] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/20/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Propolis is a viscous resin consisting of plant material (shoots, flowers, and plant exudates), salivary secretions and waxes produced by Apis mellifera bees. Its popular use aroused the interests of scientific research, which proved to be a potential source of various bioactive substances. The chemical composition of propolis depends on several factors, such as the different types of plant sources collected by bees, geographic origin, and the time of year in which they are produced, but it is known that phenolic represent the main bioactive constituents of propolis. Baccharis dracunculifolia DC (Asteraceae) is the most important botanical source of propolis and a native to southeastern Brazil. It is widely known as the green propolis because of its deep green color. One of its major phenolic acids is artepillin C (Art-C), a diprenyl-p-hydroxycinnamic acid derivative. This review aims to provide a comprehensive summary of the pharmacological effects of Art-C. The limited number of publications on this topic over the past two decades have been collected from databases and summarized. Numerous biological activities have been described for the Art-C, such as gastroprotective, anti-inflammatory, antimicrobial, antioxidant, antitumor. This article describes aspects of occurrence, synthesis, biological activities and pharmacokinetic approaches.
Collapse
Affiliation(s)
- Fernando Pereira Beserra
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Maria Fernanda Hussni
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Victor Pena Ribeiro
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | - Christopher John Jackson
- Kolling Institute of Medical Research, The University of Sydney (USYD) at Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Cláudia Helena Pellizzon
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Jairo Kenupp Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Antimicrobials from Medicinal Plants: An Emergent Strategy to Control Oral Biofilms. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oral microbial biofilms, directly related to oral diseases, particularly caries and periodontitis, exhibit virulence factors that include acidification of the oral microenvironment and the formation of biofilm enriched with exopolysaccharides, characteristics and common mechanisms that, ultimately, justify the increase in antibiotics resistance. In this line, the search for natural products, mainly obtained through plants, and derived compounds with bioactive potential, endorse unique biological properties in the prevention of colonization, adhesion, and growth of oral bacteria. The present review aims to provide a critical and comprehensive view of the in vitro antibiofilm activity of various medicinal plants, revealing numerous species with antimicrobial properties, among which, twenty-four with biofilm inhibition/reduction percentages greater than 95%. In particular, the essential oils of Cymbopogon citratus (DC.) Stapf and Lippia alba (Mill.) seem to be the most promising in fighting microbial biofilm in Streptococcus mutans, given their high capacity to reduce biofilm at low concentrations.
Collapse
|
9
|
Ribeiro VP, Símaro GV, Mejia JAA, Arruda C, Bastos JK. Anti-inflammatory and Antinociceptive Activities of the Hydroalcoholic Extract and the Volatile Fraction of Southeastern Brazilian Brown Propolis. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s43450-020-00122-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Mangabeira da Silva JJ, Pena Ribeiro V, Lemos M, Miller Crotti AE, Rogez H, Kenupp Bastos J. Reliable Methods for Analyses of Volatile Compounds of
Copaifera
Oleoresins Combining Headspace and Gas Chromatography. Chem Biodivers 2019; 17:e1900440. [DOI: 10.1002/cbdv.201900440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/29/2019] [Indexed: 11/06/2022]
Affiliation(s)
| | - Victor Pena Ribeiro
- School of Pharmaceutical SciencesUniversity of São Paulo Av. do Café s/n, Monte Alegre CEP 14.040-903 Ribeirão Preto-SP Brazil
| | - Marivane Lemos
- School of Pharmaceutical SciencesUniversity of São Paulo Av. do Café s/n, Monte Alegre CEP 14.040-903 Ribeirão Preto-SP Brazil
| | - Antônio Eduardo Miller Crotti
- Chemistry DepartmentSchool of PhilosophySciences and LanguagesUniversity of São Paulo Av. Bandeirantes No. 3900, Monte Alegre CEP 14.040-903 Ribeirão Preto-SP Brazil
| | - Hervé Rogez
- Center for Valorization of Amazonian Bioactive Compounds (CVACBA)Federal University of Pará Av. Perimetral No. 01, Guamá CEP 66.075-110 Belém-PA Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical SciencesUniversity of São Paulo Av. do Café s/n, Monte Alegre CEP 14.040-903 Ribeirão Preto-SP Brazil
| |
Collapse
|