1
|
Kong S, Liao Q, Liu Y, Luo Y, Fu S, Lin L, Li H. Prenylated Flavonoids in Sophora flavescens: A Systematic Review of Their Phytochemistry and Pharmacology. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1087-1135. [PMID: 38864547 DOI: 10.1142/s0192415x24500447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Sophora flavescens has been widely used in traditional Chinese medicine for over 1700 years. This plant is known for its heat-clearing, damp-drying, insecticidal, and diuretic properties. Phytochemical research has identified prenylated flavonoids as a unique class of bioactive compounds in S. flavescens. Recent pharmacological studies reveal that the prenylated flavonoids from S. flavescens (PFS) exhibit potent antitumor, anti-inflammatory, and glycolipid metabolism-regulating activities, offering significant therapeutic benefits for various diseases. However, the pharmacokinetics and toxicological profiles of PFS have not been systematically studied. Despite the diverse biological effects of prenylated flavonoid compounds against similar diseases, their structure-activity relationship is not yet fully understood. This review aims to summarize the latest findings regarding the chemical composition, drug metabolism, pharmacological properties, toxicity, and structure-activity relationship of prenylated flavonoids from S. flavescens. It seeks to highlight their potential for clinical use and suggest directions for future related studies.
Collapse
Affiliation(s)
- Shasha Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Sai Fu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, 330006 Jiangxi, P. R. China
| |
Collapse
|
2
|
Wang C, Gong B, Wu Y, Bai C, Yang M, Zhao X, Wei J. Pharmacokinetics and molecular docking of the cardioprotective flavonoids in Dalbergia odorifera. J Sep Sci 2024; 47:e2300614. [PMID: 38066409 DOI: 10.1002/jssc.202300614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024]
Abstract
The purpose of this research was to investigate the cardioprotective effects and pharmacokinetics of Dalbergia odorifera flavonoids. The cardioprotective effects were detected by hematoxylin-eosin staining histopathological observations and the detection of myocardial enzymes by kits in serum, peroxidation and antioxidant levels and ATPase activities by kits in the homogenate supernatant, and antioxidant and apoptosis-related protein expression in heart tissue by immunohistochemistry. The pharmacokinetics parameters of the flavonoids in rat plasma were investigated by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. Molecular docking of the compounds absorbed by the blood with specific proteins was carried out. D. odorifera flavonoids significantly reduced the levels of creatinine kinase, alanine transaminase, nitric oxide, and Hydrogen peroxide, elevated the levels of glutathione, superoxide dismutase, and ATPase, significantly reduced the pathological degree of heart tissue and had obvious anti-myocardial ischemia efficacy. Nine out of the 17 flavonoids were detected in rat plasma. The peak concentration and the area under the plasma concentration-time curve values of 3'-O-methylviolanone and sativanone were significantly higher than those of other ingredients. The peak time of most flavonoids (except for Genistein and Pruneion) was lower than 2 h, while the half-life of elimination of the nine flavonoids ranged from 3.32 to 21.5 h. The molecular docking results showed that daidzein, dalbergin, formononetin, and genistein had the potential to bind to the target proteins. The results of the study provide an important basis for understanding the cardioprotective effects and clinical application of D. odorifera.
Collapse
Affiliation(s)
- Canhong Wang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Bao Gong
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yulan Wu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Congwen Bai
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Meihua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Li Z, Lin M, Li Y, Shao J, Huang R, Qiu Y, Liu Y, Chen L. Total flavonoids of Sophora flavescens and kurarinone ameliorated ulcerative colitis by regulating Th17/Treg cell homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115500. [PMID: 35863614 DOI: 10.1016/j.jep.2022.115500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is relevant to dysregulation of inflammation and immune processes. Sophora flavescens Aiton is a classic medicine widely used in the treatment of UC in ancient and modern China, alkaloids and flavonoids are the main components. Previous studies reveal that Sophora flavescens Aiton total flavonoids extracts (SFE) exert an anti-UC effect by regulating the intestinal microbe structure and restoring the balance of the "host-microbe" co-metabolic network in UC mice. However, whether SFE influences immune inflammation remains unclear, which is the core link to UC disease. It also remains to be verified flavonoids are the material basis that plays a role in SFE. AIM OF THE STUDY To identify the action mechanism of the immune-inflammatory regulation of SFE and its main active component Kurarinone against UC. METHODS This study constructed UC mice and abnormal immune RAW 264.7 cell models, and subsequently used western blotting and flow cytometry (FCM) to evaluate the effects of SFE on the NF-κB pathway and the regulation of immunity in UC mice. Kurarinone was screened from flavonoid compounds of SFE by lipopolysaccharide (LPS)-induced RAW 264.7 cells, and its effect was subsequently investigated in UC mice. Western blotting, ELISA, FCM, and RT-PCR were used to determine the regulation of Kurarinone on the Th17/Treg differentiation and the JAK2/STAT3 signaling pathway. RESULTS SFE regulated the differentiation of Th17/Treg in peripheral blood and inhibited immune-inflammatory response to treat UC. Various flavonoid components in SFE inhibited the synthesis of IL-6 and TNF-α in RAW 264.7 cells, among which Kurarinone had better effect. This study revealed the therapeutic effects of Kurarinone in UC mice for the first time. Kurarinone promoted the secretion of SIgA to improve the regulation of the intestinal mucosal barrier and resistance to pathogens. It also regulated the transcription level of RORγt and Foxp3 in colon, decreased the expression of pro-inflammatory factor IL-17A and up-regulated the expression of immunosuppressive factors TGF-β1 and IL-10 in colon. Furthermore, Kurarinone restored intestinal immune system homeostasis by down-regulating the JAK2/STAT3 signaling pathway and regulating the balance of Th17/Treg cell differentiation in UC. CONCLUSIONS SFE, especially the flavonoid ingredients represented by Kurarinone, has significant effects on immunoregulation against UC. And their mechanism of effect is related to inhibiting the activation of JAK2/STAT3 signaling pathway and regulating differentiation of Th17/Treg cells. KEYWORK Immunoregulatory; Kurarinone; Th17 cells; Treg cells; Ulcerative colitis.
Collapse
Affiliation(s)
- Zhaocheng Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minling Lin
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yadi Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Shao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ruiting Huang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongyi Qiu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Liu
- School of Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Lei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
4
|
Effect of the ethyl acetate extract of Sophora flavescens Aiton on diabetic retinopathy based on untargeted retinal metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1198:123233. [DOI: 10.1016/j.jchromb.2022.123233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/15/2022] [Accepted: 03/26/2022] [Indexed: 12/22/2022]
|
5
|
Shao J, Li Z, Gao Y, Zhao K, Lin M, Li Y, Wang S, Liu Y, Chen L. Construction of a "Bacteria-Metabolites" Co-Expression Network to Clarify the Anti-Ulcerative Colitis Effect of Flavonoids of Sophora flavescens Aiton by Regulating the "Host-Microbe" Interaction. Front Pharmacol 2021; 12:710052. [PMID: 34721011 PMCID: PMC8553221 DOI: 10.3389/fphar.2021.710052] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
Ulcerative colitis (UC) is considered an immune disease, which is related to the dysbiosis of intestinal microbiota and disorders of the host immune system and metabolism. Sophora flavescens Aiton has been used for the clinical treatment of UC in China and East Asia for thousands of years. It has many traditional prescriptions and modern preparations, and its curative effects are definite. We are the first to report that the flavonoids in Sophora flavescens (S. flavescens) Aiton EtOAc extract (SFE) could potentially attenuate the dextran sodium sulfate–induced UC in mice, which changed the current understanding of considering alkaloids as the only anti-UC pharmacological substances of S. flavescens Aiton. Based on the 16S rRNA gene sequencing and metabolomic analysis, it was found that the anti-UC effects of SFE were due to the regulation of gut microbiota, reversing the abnormal metabolisms, and regulation of the short-chain fatty acids synthesis. Notably, according to the interaction networks of specific bacteria and “bacteria and metabolites” co-expression network, the SFE could enrich the abundance of the commensal bacterium Lactobacillus, Roseburia, norank_f__Muribaculaceae, Anaerotruncus, Candidatus_Saccharimona, and Parasutterella, which are proposed as potentially beneficial bacteria, thereby playing vital roles in the treatment of UC.
Collapse
Affiliation(s)
- Jing Shao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhaocheng Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanping Gao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kairui Zhao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minling Lin
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yadi Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Liu
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China.,School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Kim B, Kim YS, Hwang YH, Yang HJ, Li W, Kwon EB, Kim TI, Go Y, Choi JG. Quercus acuta Thunb. (Fagaceae) and Its Component, Isoquercitrin, Inhibit HSV-1 Replication by Suppressing Virus-Induced ROS Production and NF-κB Activation. Antioxidants (Basel) 2021; 10:antiox10101638. [PMID: 34679772 PMCID: PMC8533069 DOI: 10.3390/antiox10101638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
HSV-1 is a neurotropic virus that replicates lytically during acute infection and establishes latency in peripheral neurons. Currently, the clinically approved compounds for the prevention of HSV-1 infection include acyclovir and penciclovir; however, long-term use of the drug is associated with serious side effects, and drug-resistant strains often appear. Therefore, it is important to find a safe and novel antiviral agent for HSV-1 infection. Quercus acuta Thunb. (Fagaceae) (QA) is widely distributed as an ornamental and dietary plant in Korea, Taiwan, China, and Japan. Thus far, the effects of QA extract and its active ingredients are known to have antioxidant, antibacterial, and anti-inflammatory activity, but studies of possible antiviral effects have not been reported. We studied the antiviral effects and molecular mechanism of QA after HSV-1 infection at the cellular level. We confirmed that QA suppresses ROS expression after HSV-1 infection and also suppresses inflammatory cytokine expression through inhibition of NF-кB activity. In addition, we found that QA increases the phosphorylation activity of IRF3 through induction of TBK1 activity during HSV-1 infection. QA exhibits an antiviral effect, and we confirmed through UPLC-DAD-mass spectrometer (MS)/MS analysis that it contains five main components: catechin, chlorogenic acid, fraxin, isoquercitrin, and taxifolin. Of these, isoquercitrin was confirmed to exhibit an antiviral effect on SK-N-SH cells through ICP27 inhibition. Overall, our results suggest that QA is a novel inhibitor with antiviral effects against HSV-1 infection and may be used specifically to prevent and treat of herpes simplex virus encephalitis infection.
Collapse
|
7
|
Hassan M, Zhu G, Yang Z, Lu Y. Simultaneous removal of sulfamethoxazole and enhanced denitrification process from simulated municipal wastewater by a novel 3D-BER system. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:23-38. [PMID: 34150216 PMCID: PMC8172732 DOI: 10.1007/s40201-020-00562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
In this study, at an electric current intensity at 60 mA, more than 90.50 ± 4.76% of Sulfamethoxazole (SMX) was degraded. The strengthening of bacterial metabolisms and the sustainment of electrical stimulation contributed to the rapid removal of SMX and nitrates from simulated wastewater by a novel 3D-BER system. From the literature, very few studies have been performed to investigate the high risk of nitrates and antibiotics SMX found in wastewater treatment. The highest antibiotic SMX and nitrogen removal efficiency was 96.45 ± 2.4% (nitrate-N), 99.5 ± 1.5% (nitrite-N), 88.45 ± 1.4% (ammonia-N), 78.6 ± 1.0% (total nitrogen), and SMX (90.50 ± 4.76%), respectively. These results were significantly higher as compared to control system (p < 0.05). The highest denitrification efficiency was achieved at the pH level of 7.0 ± 0.20 - 7.5 ± 0.31. Lower or higher pH value can effect on an approach of heterotrophic-autotrophic denitrification. Moreover, low current intensity did not show any significant effect on the degradation, however, enhanced the removal rate of nitrate or nitrite as well as antibiotic SMX. Based on the results of HPLC and LC-MS/MS analysis, the intermediate products were proposed after efficient biodegradation of SMX. Finally, these results is expected to provide some new insights towards the high electric currents, changes the bacterial community structure, and the activated sludge which played an important role in the biodegradation of SMX and nitrates removal more efficiently.
Collapse
Affiliation(s)
- Mahdi Hassan
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
| | - Guangcan Zhu
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
- School of Information Engineering, Xizang Minzu University, Xianyang, 712082 China
| | - Zhonglian Yang
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
| | - Yongze Lu
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
| |
Collapse
|
8
|
Wang Y, Zhang L, Gu S, Yin Z, Shi Z, Wang P, Xu C. The Current Application of LC-MS/MS in Pharmacokinetics of Traditional Chinese Medicines (Recent Three Years): A Systematic Review. Curr Drug Metab 2020; 21:969-978. [PMID: 33038908 DOI: 10.2174/1389200221666201009142418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND With significant clinical effects, traditional Chinese medicine (TCM) has been attracting increasing interest of the world's scientific community. However, TCM contains immense amounts of chemical components. It is a great challenge to objectively evaluate the correlation between the in vivo process and the therapeutic effect of TCM. The purpose of this systematic review was to summarize the recent investigation (from 2017 to 2019) on preclinical pharmacokinetics (PK) of TCM via liquid chromatography coupled with mass spectrometry (LC-MS/MS). METHODS We reviewed the published articles regarding the PK of TCM by LC-MS/MS. In addition, we summarized information on PK parameter of bioactive components, single herb and traditional Chinese medicine prescriptions. RESULTS The vast majority of literature on preclinical PK of TCM uses single oral administration, the biological matrix is mostly rat plasma, and the main PK parameters include AUC, Cmax, Tmax and T1/2, etc. Conclusion: Although LC-MS/MS can be used for high-throughput analysis, the characterization of in vivo processes of TCM still has a long way. With the advantages of high sensitivity, high specificity and simple operation, the increasingly mature LC-MS/MS technology will play an important role in the PK study of TCM.
Collapse
Affiliation(s)
- Yang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Lu Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Gu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Zhaorui Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Zhe Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Ping Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Changhua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
9
|
Wang H, Liu Y, Shao J, Luo Y, Cai W, Chen L. Rapid and Accurate Simultaneous Determination of Seven Short-Chain Fatty Acids in Feces by Gas Chromatography – Mass Spectrometry (GC-MS): Application in Type 2 Diabetic Rats and Drug Therapy. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1740928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Huan Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China; Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Liu
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jing Shao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China; Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yun Luo
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China; Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Cai
- Department of Pharmacy, Hunan University of Medicine, Huaihua, China
| | - Lei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China; Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
10
|
Shao J, Liu Y, Wang H, Luo Y, Chen L. An Integrated Fecal Microbiome and Metabolomics in T2DM Rats Reveal Antidiabetes Effects from Host-Microbial Metabolic Axis of EtOAc Extract from Sophora flavescens. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1805418. [PMID: 32566075 PMCID: PMC7273480 DOI: 10.1155/2020/1805418] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease. Sophora flavescens (S. flavescens), also named Kushen, is a famous Chinese herbal medicine that has been used to prevent and cure T2DM both in folk medicine and in medical institution. However, its mechanism of action remains unclear. In this study, the pharmacodynamic effects of S. flavescens EtOAc extract (SFE) on high-fat diet and low-dose streptozotocin-induced T2DM rats were examined. Fecal metabolomics analysis and 16S rRNA gene sequencing were applied to determine the influence of T2DM and SFE treatment on gut microbiota and host metabolism. Based on the consistency of the results of metabolic pathways in metabolomics analysis and phylogenetic investigation of communities by reconstruction of unobserved state (PICRUSt) analysis of 16S rRNA gene sequencing, the level of metabolites and the operational taxonomic units of gut bacteria were combined, and Spearman's analysis was implemented. Our data showed that SFE significantly decreased fasted blood glucose levels and improved lipid profile, glycosylated serum protein, glycosylated hemoglobin index, and pancreas damage. Metabolomics and 16S rRNA gene sequencing analysis indicated gut bacteria disorder, disturbed lipid metabolism, carbohydrate metabolism, and especially amino acid metabolism in T2DM and that SFE can regulated these metabolic pathways through the influence on gut bacteria. Spearman's analysis indicated that the amino acid metabolism that included tryptophan, branched chain amino acid, aromatic amino acid, beta-alanine, and glycine, serine and threonine metabolism, lipid metabolism, including lysophosphatidylcholines and lysophosphatidylethanolamines, primary bile acid and linoleic acid metabolism, carbohydrate metabolism, and nucleotide metabolism positively correlated with Faecalibacterium, Flexispira, Phascolarctobacterium, Prevotella, Roseburia, and [Prevotella]. In addition, arginine and proline metabolism, steroid hormone, steroid biosynthesis, and sphingolipid metabolism positively correlated with Lactobacillus, Oscillospira, Parabacteroides, Ruminococcus, and Streptococcus. Taken together, we speculated that SFE may have an effect on T2DM by mediating host-microbial metabolic axis. Exploration of SFE treatment for T2DM by multiomics is expected to provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Jing Shao
- 1Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China
- 2Engineering & Technology Research Centre for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Liu
- 3School of Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huan Wang
- 1Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China
- 2Engineering & Technology Research Centre for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yun Luo
- 1Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China
- 2Engineering & Technology Research Centre for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lei Chen
- 1Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China
- 2Engineering & Technology Research Centre for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|