1
|
Ulusoy S, Ulusoy Hİ, Locatelli M, Kabir A. Titania-based fabric phase sorptive extraction approach for the determination of antiepileptic drugs, levetiracetam and lamotrigine in urine samples using high-performance liquid chromatography-photo diode array detection. J Chromatogr A 2024; 1719:464737. [PMID: 38387152 DOI: 10.1016/j.chroma.2024.464737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
A new fabric phase sorptive extraction (FPSE) based separation and enrichment method was developed for sensitive determination of two antiepileptic drug molecules, Levetiracetam (LEV) and Lamotrigine (LTG). The analysis of these drug molecules was performed with high-performance liquid chromatography equipped with photodiode array detector (HPLC-PDA) after FPSE. HPLC analysis was carried out by using phenyl hexyl column, under isocratic conditions with the mobile phase composed of pH 3.0 buffer-acetonitrile (77:23 v: v). All parameters affecting the separation and enrichment process were studied and optimized step by step. The linear working range of the developed method was calculated in the range of 10.0-1000.0 ng mL-1 for both the drug molecules (LEV and LTG). The limits of detection of the method (LODs) were calculated as 2.72 and 3.64 ng mL-1, respectively. The relative standard deviation (%RSD) values of the developed method as an indicator of precision were varied between 4.0 and 7.3. The accuracy of the optimized FPSE method was determined by the recovery tests utilizing spiked samples and results were assessed in the range from 94.6 to 106.3%. This is the first application of sol-gel Titania polycaprolactone-polydimethylsiloxane-polycaprolactone (Ti-PCAP-PDMS-PCAP) based FPSE membrane in the determination of antiepileptic drug molecules.
Collapse
Affiliation(s)
- Songül Ulusoy
- Department of Pharmacy, Vocational School of Health Service, Sivas Cumhuriyet University, Sivas 58140, Turkiye.
| | - Halil İbrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas 58140, Turkiye
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States
| |
Collapse
|
2
|
Gösterişli TU, Kublay İZ, Keyf S, Bakırdere S. Development of A Liquid-Phase Microextraction Method for Simultaneous Determination of Parabens in Lipstick Samples at Trace Levels by High-Performance Liquid Chromatography. J Chromatogr Sci 2024; 62:295-300. [PMID: 37309217 DOI: 10.1093/chromsci/bmad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
The endocrine-disrupting potential of parabens, as well as their relation to cancer, has sparked significant discussions over their impact. Consequently, analyses of cosmetic products are an essential necessity, particularly in terms of human health and safety. In this study, a highly accurate and sensitive liquid-phase-based microextraction method was developed to determine the five parabens at trace levels by high-performance liquid chromatography. All prominent parameters of the method such as extraction solvent type and amount (1,2-dichloroethane/250 μL), and dispersive solvent type and amount (isopropyl alcohol/2.0 mL) were optimized to enhance the extraction efficiency of the analytes. The mobile phase consisting of 50 mM ammonium formate aqueous solution (pH 4.0) and acetonitrile (60:40, v/v) was used to elute the analytes at a flow rate of 1.2 mL min-1 in the isocratic mode. Analytical performance of the optimum method for methyl, ethyl, propyl, butyl and benzyl parabens were determined and the analytes recorded detection limit values of 0.78, 0.75, 0.34, 0.33 and 0.75 μg kg-1, respectively. Four different lipstick samples were analyzed under optimum conditions of the developed method, and the amount of parabens quantified in the samples using matrix matched calibration standards was in the range of 0.11-1.03%.
Collapse
Affiliation(s)
- Tuğçe U Gösterişli
- Science and Technology Application and Research Center, Yıldız Technical University, 34349 İstanbul, Türkiye
- Department of Chemical Engineering, Yıldız Technical University, 34349 İstanbul, Türkiye
| | - İrem Z Kublay
- Department of Chemistry, Yıldız Technical University, 34349 İstanbul, Türkiye
| | - Seyfullah Keyf
- Department of Chemical Engineering, Yıldız Technical University, 34349 İstanbul, Türkiye
| | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, 34349 İstanbul, Türkiye
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, Çankaya 06670, Ankara, Türkiye
| |
Collapse
|
3
|
Ulusoy HI, Polat U, Ulusoy S. Use of newly synthetized magnetic Fe 3O 4 nanoparticles modified with hexadecyl trimethyl ammonium bromide for the sensitive analysis of antidepressant drugs, duloxetine and vilazodone in wastewater and urine samples. RSC Adv 2023; 13:20125-20134. [PMID: 37416904 PMCID: PMC10321226 DOI: 10.1039/d3ra02442c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023] Open
Abstract
A new enrichment and determination method involving HPLC-DAD analysis following magnetic solid-phase extraction (MSPE) was developed to detect trace amounts of two antidepressant drugs, namely, duloxetine (DUL) and vilazodone (VIL). In this study, a solid-phase sorbent was newly synthesized for use in the MSPE and its characterization was carried out by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and X-ray diffraction (XRD) techniques. In this proposed method, DUL and VIL molecules were enriched using newly synthesized magnetic-based nanoparticles in the presence of pH 10.0 buffer and desorbed with acetonitrile to a smaller volume prior to chromatographic determinations. After experimental variables were optimized, the VIL and DUL molecules were analyzed at wavelengths of 228 nm for DUL and 238 nm for VIL with isocratic elution of methanol, trifluoroacetic acid (TFA) (0.1%), and acetonitrile (10 : 60 : 30). The detection limits obtained under optimized conditions were 1.48 ng mL-1 and 1.43 ng mL-1, respectively. The %RSD values were found to be lower than 3.50% with model solutions containing 100 ng mL-1 (N:5). Finally, the developed method was successfully applied to wastewater samples and simulated urine samples, and quantitative results were obtained in the recovery experiments.
Collapse
Affiliation(s)
- Halil Ibrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University Sivas 58140 Türkiye +90 346 219 16 34 +90 346 487 3905
| | - Ummugulsum Polat
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University Sivas 58140 Türkiye +90 346 219 16 34 +90 346 487 3905
| | - Songül Ulusoy
- Department of Pharmacy, Vocational School of Health Service, Cumhuriyet University Sivas 58140 Türkiye
| |
Collapse
|
4
|
Samanidou V, Alampanos V. Novel sorptive microextraction approaches in bioanalysis: the paradigm of endocrine disruptors. Bioanalysis 2023; 15:245-248. [PMID: 37067906 DOI: 10.4155/bio-2023-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Affiliation(s)
- Victoria Samanidou
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Vasileios Alampanos
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
5
|
Samanidou V, Kabir A. Novel Sorptive Sample Preparation Techniques for Separation Science. LCGC EUROPE 2023. [DOI: 10.56530/lcgc.eu.zq5279u1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The primary analytical challenge is to selectively extract the target analytes using a suitable sample preparation technique and introduce them into the downstream analytical instrument. The critical step in the chemical analysis is sample preparation. Sorptive sample preparation techniques are among the new generation of microextraction approaches, and are compliant with green analytical chemistry principles. A recent intercontinental collaboration between two academic research laboratories—the Aristotle University of Thessaloniki, Greece, and the Florida International University, USA—has yielded a significant number of analytical/bioanalytical methods using fabric phase sorptive extraction (FPSE), magnet integrated fabric phase sorptive extraction (MI-FPSE), and capsule phase microextraction (CPME) for the isolation of various analytes from different complex sample matrices. A brief description of these techniques with regards to principle, synthesis, applications, and advantages and disadvantages along with paradigms is presented.
Collapse
|
6
|
Akyol E, Ulusoy Hİ, Yilmaz E, Polat Ü, Soylak M. Application of magnetic solid-phase extraction for sensitive determination of anticancer drugs in urine by means of diamino benzidine tetrachlorohydrate modified magnetic nanoparticles. Pharmacol Rep 2023; 75:456-464. [PMID: 36840823 DOI: 10.1007/s43440-023-00465-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND The analysis of drug active molecules and residues in the treatment of cancer is important for the sustainability of human life and therapeutic effects. For this purpose, a new magnetic sorbent was developed to use in solid phase extraction prior to conventional high-performance liquid chromatography (HPLC) analysis of Paclitaxel (PAC) and Gemcitabine (GEM) molecules. METHODS In this study, a separation and pre-concentration approach based on magnetic solid phase extraction (MSPE) was proposed for PAC and GEM by means of using a newly synthesized magnetic sorbent. After the MSPE procedure, an HPLC system with a diode array detector (DAD) was used to analyze trace amounts of PAC and GEM anticarcinogenic drugs in urine samples. Surface modification of magnetic Fe3O4 nanoparticles was carried out by diaminobenzidinetetrachloro hydrate (DABTC) for the first time and a useful sorbent was obtained for MSPE experiments. RESULTS In the proposed method, PAC and GEM molecules were retained on the c in the presence of a pH 5.0 medium and desorbed to 300 μL of acetonitrile: methyl alcohol (1:1) eluent phase before HPLC-DAD analysis. Under the optimized conditions, the limit of detection (LOD) values for PAC and GEM were 1.38 and 1.44 ng mL-1 while the enhancement factor for PAC and GEM were 139.5 and 145.3, respectively. The relative standard deviations (RSD %) for PAC and GEM were below 3.50% in inter-day repeated experiments by means of model solutions containing 100 ng mL-1 drug active ingredients. CONCLUSIONS Synthesis and characterization of DABTC-Fe3O4 nanoparticles were performed using suitable methodologies. Optimization of MSPE was done step by step. And finally, the developed method was successfully applied to urine samples with quantitative recoveries in the range of 99.0% and 105.0%.
Collapse
Affiliation(s)
- Emin Akyol
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Halil İbrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Application and Research Center, Ernam Erciyes University, Kayseri, Turkey
| | - Ümmügülsüm Polat
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| |
Collapse
|
7
|
Xu XL, Wang B, Liu YW, Li WX, Wu JY, Yuan H, Xu X, Chen D. In-pipette-tip natural-feather-supported liquid microextraction for conveniently extracting hydrophobic compounds in aqueous samples: A proof-of-concept study. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Zhang Y, Wei K, Wang L, Gao G. A membrane solid-phase extraction method based on MIL-53-mixed-matrix membrane for the determination of estrogens and parabens: polyvinylidene difluoride membrane vs. polystyrene-block-polybutadiene membrane. Biomed Chromatogr 2022; 36:e5454. [PMID: 35853840 DOI: 10.1002/bmc.5454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022]
Abstract
In this work, MIL-53(Al), as an inorganic 'filler' component, was embedded in polyvinylidene difluoride (PVDF) and polystyrene-block-polybutadiene (SBS) matrices to prepare two mixed-matrix membranes (MMMs), using a simpler method than that previously reported. The PVDF and SBS membranes retained much of the properties of PVDF, SBS, and native MIL-53(Al). The prepared MMMs were then placed in a vortex-stirred sample solution to develop a membrane solid-phase extraction method to extract estrogens and parabens which were determined by high-performance liquid chromatography with fluorescence detection. The extraction efficiencies of the two membranes were compared, with the PVDF membrane exhibiting superior performance. In addition, the PVDF membrane was more free-standing and flexible, and its preparation method was also more facile and simple. The extraction conditions were optimized, and the analytical method showed low limits of detection (0.005-0.18 ng/mL), good linearity, and high accuracy, with recoveries ranging from 90.7 to 102.5%. As a result, this membrane solid-phase extraction method indicated its potential for application in aqueous sample pretreatment. For metal-organic framework based MMM used in this method, in addition to being durable, free-standing, mechanically stable, and possessing a large area, it should also exhibit high MOF incorporation, good flexibility, and appropriate thickness and weight.
Collapse
Affiliation(s)
- Yong Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong Province, P. R. China
| | - Kaifang Wei
- School of Pharmacy, Jining Medical University, Rizhao, Shandong Province, P. R. China
| | - Litao Wang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong Province, P. R. China
| | - Guihua Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong Province, P. R. China
| |
Collapse
|
9
|
Salt-Induced Homogeneous Liquid–Liquid Microextraction of Piroxicam and Meloxicam from Human Urine Prior to Their Determination by HPLC-DAD. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A salt-induced homogeneous liquid–liquid microextraction (SI-HLLME) protocol combined with high-performance liquid chromatography–diode array detection is presented for the first time for the determination of piroxicam and meloxicam in human urine. The main parameters affecting the performance of the sample preparation protocol were optimized by means of a two-step experimental design (i.e., 2-level fractional factorial design and Box–Behnken design). Following its optimization, the proposed method was thoroughly validated in terms of the total error concept in order to take into consideration the random and systematic errors. For the target analytes, accuracy profiles were constructed, and they were used as graphical decision-making tools. In all cases, the β-expectation tolerance intervals complied with the acceptance criteria of ±15%, proving that 95% of future results will fall within the defined bias limits. The limits of detection were 0.02 μg mL−1 and 0.03 μg mL−1 for piroxicam and meloxicam, respectively. The relative standard deviations were lower than 4.4% in all cases, and the mean relative biases ranged between −5.7 and 3.4% for both drugs. The proposed scheme is simple and rapid, while it is characterized by high sample throughput. Moreover, SI-HLLME requires reduced sample and reagent consumption, according to the requirements of Green Analytical Chemistry.
Collapse
|
10
|
Surana D, Gupta J, Sharma S, Kumar S, Ghosh P. A review on advances in removal of endocrine disrupting compounds from aquatic matrices: Future perspectives on utilization of agri-waste based adsorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154129. [PMID: 35219657 DOI: 10.1016/j.scitotenv.2022.154129] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
In the recent past, a class of emerging contaminants particularly endocrine disrupting compounds (EDCs) in the aquatic environment have gained a lot of attention. This is due to their toxic behaviour, affecting endocrine activities in humans as well as among aquatic animals. Presently, there are no regulations and discharge limits for EDCs to preclude their negative impact. Furthermore, the conventional treatment processes fail to remove EDCs efficiently. This necessitates the need for more research aimed at development of advanced alternative treatment methods which are economical, efficient, and sustainable. This paper focusses on the occurrence, fate, toxicity, and various treatment processes for removal of EDCs. The treatment processes (physical, chemical, biological and hybrid) have been comprehensively studied highlighting their advantages and disadvantages. Additionally, the use of agri-waste based adsorption technologies has been reviewed. The aim of this review article is to understand the prospect of application of agri-waste based adsorbents for efficient removal of EDCs. Interestingly, research findings have indicated that the use of these low-cost and abundantly available agri-waste based adsorbents can efficiently remove the EDCs. Furthermore, the challenges and future perspectives on the use of agri-waste based adsorbents have been discussed.
Collapse
Affiliation(s)
- Deepti Surana
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India; Applied Biology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Juhi Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Satyawati Sharma
- Applied Biology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Pooja Ghosh
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
11
|
Manousi N, Kabir A, Furton KG, Rosenberg E, Zachariadis GA. Fabric phase sorptive extraction combined with gas chromatography-mass spectrometry as an innovative analytical technique for the determination of selected polycyclic aromatic hydrocarbons in herbal infusions and tea samples. RSC Adv 2022; 12:7149-7156. [PMID: 35424701 PMCID: PMC8982215 DOI: 10.1039/d2ra00408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
This study presents a fabric phase sorptive extraction (FPSE) protocol for the isolation and preconcentration of four selected polycyclic aromatic hydrocarbons from tea samples and herbal infusions, followed by their separation and quantification by gas chromatography-mass spectrometry (GC-MS). In FPSE, extraction of the target analytes is performed utilizing a flexible fabric substrate that is coated with a highly efficient sol–gel sorbent. In this work, eighteen different FPSE membranes were examined, with the highest extraction recoveries being observed with the sol–gel C18 coated FPSE membrane. The main parameters that influence the adsorption and desorption of the PAHs were optimized and the proposed method was validated. The detection limits and the quantification limits were 0.08–0.17 ng mL−1 and 0.25–0.50 ng mL−1, respectively, for the different target compounds with a 10 mL sample. The relative standard deviations for intra-day and inter-day repeatability were less than 7.9% and 8.5%, respectively. The sol–gel C18 coated FPSE membrane could be used for at least 5 subsequent sample preparation cycles. Finally, the proposed protocol was successfully employed for the determination of PAHs in a wide range of tea and herbal infusion samples. A fabric phase sorptive extraction (FPSE) protocol for the isolation and preconcentration of four selected polycyclic aromatic hydrocarbons from tea samples and herbal infusions is presented, followed by their quantitative analysis by GC-MS.![]()
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki Thessaloniki 54124 Greece.,Institute of Chemical Technologies and Analytics, Vienna University of Technology Getreidemarkt 9/164 1060 Vienna Austria
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University Miami FL USA.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University Dhaka-1207 Bangladesh
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University Miami FL USA
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology Getreidemarkt 9/164 1060 Vienna Austria
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
| |
Collapse
|
12
|
Gouma V, Pournara AD, Manos MJ, Giokas DL. Fabric phase sorpitive extraction and passive sampling of ultraviolet filters from natural waters using a zirconium metal organic framework-cotton composite. J Chromatogr A 2022; 1670:462945. [DOI: 10.1016/j.chroma.2022.462945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
|
13
|
Manousi N, Alampanos V, Priovolos I, Kabir A, Furton KG, Rosenberg E, Zachariadis GA, Samanidou VF. Exploring sol-gel zwitterionic fabric phase sorptive extraction sorbent as a new multi-mode platform for the extraction and preconcentration of triazine herbicides from juice samples. Food Chem 2021; 373:131517. [PMID: 34772569 DOI: 10.1016/j.foodchem.2021.131517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/10/2021] [Accepted: 10/31/2021] [Indexed: 11/18/2022]
Abstract
Triazine herbicides are a class of common pesticides which are widely used to control the weeds in many agricultural crops. Although many studies have described methodologies for the determination of triazine herbicides in aqueous samples, the attention given to agricultural crops and their products is far more limited. In this study, a novel sol-gel zwitterionic multi-mode fabric phase sorptive extraction (FPSE) platform was developed for the matrix clean-up, extraction and preconcentration of five triazine herbicides from fruit juice samples prior to their determination by high performance liquid chromatography-diode array detection (HPLC-DAD). The novel zwitterionic multi-mode sorbent was characterized and its performance for fruit juice analysis was evaluated. Compared to other sol-gel sorbents, the novel zwitterionic sorbent helped cleaning all the acidic interferences from fruit juices. The herein reported FPSE protocol was optimized and validated. Under optimum conditions, the FPSE method showed good accuracy, precision and sensitivity. The limits of detection and limits of quantification for all analytes were 0.15 ng mL-1 and 0.50 ng mL-1, respectively. The enhancement factors of this method ranged between 36.7 and 51.8. The relative standard deviation for intra-day precision was below 5.6% and for inter-day precision was below 8.8%. Finally, the proposed FPSE-HPLC-DAD method was successfully employed for the analysis of various fruit juice samples.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Vasileios Alampanos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Ioannis Priovolos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
14
|
Alampanos V, Kabir A, Furton K, Samanidou V. Magnet integrated fabric phase sorptive extraction of selected endocrine disrupting chemicals from human urine followed by high-performance liquid chromatography - photodiode array analysis. J Chromatogr A 2021; 1654:462459. [PMID: 34407470 DOI: 10.1016/j.chroma.2021.462459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022]
Abstract
In current paper, a new advanced modification of fabric phase sorptive extraction is introduced for the first time. This advantageous configuration that integrates the stirring and extraction mechanism into a single sample preparation device was originated by equally considering the beneficial role of the increase of extraction kinetics and more specifically of diffusion on the extraction efficiency of the equilibrium based microextraction techniques and the need for integrating and unite processes for better promotion and implementation of the principles of Green Analytical Chemistry. The resulted magnet integrated fabric phase sorptive extraction (MI-FPSE) device was the spearhead to develop a new analytical methodology for the determination of selected very common endocrine disrupting chemicals as model analytes in human urine by high-performance liquid chromatography-photodiode array analysis. More specifically, the sol-gel Carbowax 20 M coated on hydrophilic cellulose fabric substrate, MI-FPSE device was efficiently employed for the establishment of a new extraction protocol before the chromatographic determination. The sample preparation workflow was methodically optimized in terms of the elution solvent mixture, the volume of the sample, the extraction and the elution time, the stirring speed during the extraction, the ionic strength, and the pH of the sample matrix. The chromatographic separation was performed on a Spherisorb C18 column and a gradient elution program within 14 minutes. Mobile phase consisted of 0.05 ammonium acetate aqueous solution and acetonitrile. The method was validated towards linearity, sensitivity, selectivity, precision, accuracy, and stability. LOD and LOQ ranged between 1.05-1.80 and 3.5-6.0 ng/mL, while %RSD values were found lower than 9.0% in all cases. The method was efficiently applied to the bioanalysis of real samples. All the chosen EDCs were measured at high detection levels. The new MI-FPSE device has demonstrated its performance superiority as a magnet integrated stand-alone extraction device and could be considered as a significant improvement in the field of analytical/bioanalytical sample preparation.
Collapse
Affiliation(s)
- Vasileios Alampanos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Kenneth Furton
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
15
|
Alampanos V, Kabir A, Furton KG, Samanidou V. Rapid exposure monitoring of six bisphenols and diethylstilbestrol in human urine using fabric phase sorptive extraction followed by high performance liquid chromatography - photodiode array analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1177:122760. [PMID: 34052754 DOI: 10.1016/j.jchromb.2021.122760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
A novel fabric phase sorptive extraction protocol is developed for rapid exposure monitoring of six bisphenol analogues, including bisphenol A, bisphenol S, bisphenol F, bisphenol E, bisphenol B, bisphenol C, and diethylstilbestrol (DES) from human urine prior to high-performance liquid chromatography-photodiode array analysis. FPSE sample pretreatment protocol ensures the harmonization of the proposed method with the principles of Green Analytical Chemistry (GAC). Among eighteen evaluated FPSE membranes, sol-gel poly (ethylene glycol) (PEG) coated cellulose FPSE membrane resulted in the most efficient extraction. This polar FPSE membrane effectively exploits a number of advantageous features inherent to FPSE including sponge-like porous architecture of the sol-gel sorbent coating, favorable surface chemistry, flexibility and built-in permeability of cellulose fabric substrate, high primary contact surface area for rapid sorbent-analyte interaction, expanded pH, solvent and thermal stability as well as reusability of the FPSE membrane. Optimization was centered on the evaluation of critical parameters, namely the size of the FPSE membrane, the elution solvent mixture, the volume of the sample, the extraction time, the elution time, the kind of the external agitation mechanical stimulus, the ionic strength and the pH of the sample. The chromatographic separation was achieved on a Spherisorb C18 column and a gradient elution program with mobile phase consisted of 0.05 ammonium acetate solution and acetonitrile. The total analysis time was 17.4 min. The developed method was validated in terms of linearity, sensitivity, selectivity, precision, accuracy, stability, and ruggedness. The limits of detection and quantification varied from 0.26-0.62 ng/mL and 0.8-1.9 ng/mL, respectively. The relative recoveries were calculated between 90.6 and 108.8%, while the RSD values were <10% in all cases. The effectiveness of the proposed method was confirmed by its successful implementation in the bioanalysis of real urine samples.
Collapse
Affiliation(s)
- V Alampanos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - A Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - K G Furton
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - V Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
16
|
Sarıkaya M, Ulusoy HI, Morgul U, Ulusoy S, Tartaglia A, Yılmaz E, Soylak M, Locatelli M, Kabir A. Sensitive determination of Fluoxetine and Citalopram antidepressants in urine and wastewater samples by liquid chromatography coupled with photodiode array detector. J Chromatogr A 2021; 1648:462215. [PMID: 34000593 DOI: 10.1016/j.chroma.2021.462215] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023]
Abstract
A new analyte separation and preconcentration method for the trace determination of antidepressant drugs, Fluoxetine (FLU) and Citalopram (CIT) in urine and wastewaters, was developed based on HPLC-DAD analysis after magnetic solid phase extraction (MSPE). In the proposed method, FLU and CIT were retained on the newly synthetized magnetic sorbent (Fe3O4@PPy-GO) in the presence of buffer (pH 10.0) and then were desorbed into a lower volume of acetonitrile prior to the chromatographic determinations. Before HPLC analysis, all samples were filtered through a 0.45 µm PTFE filter. Experimental parameters such as interaction time, desorption solvent and volume, and pH were studied and optimized in order to establish the detection limit, linearity, enrichment factor and other analytical figures of merit under optimum operation conditions. In the developed method, FLU and CIT were analyzed by diode array detector at the corresponding maximum wavelengths of 227 and 238 nm, respectively, by using an isocratic elution of 60% pH 3.0 buffer, 30% acetonitrile, and 10% methanol. By using the optimum conditions, limit of detections for FLU and CIT were 1.58 and 1.43 ng mL-1, respectively, while the limit of quantifications was 4.82 and 4.71 ng mL-1, respectively. Relative standard deviations (RSD%) for triplicate analyses of model solutions containing 100 ng mL-1 target molecules were found to be less than 5.0 %. Finally, the method was successfully applied to urine (both simulated and real healthy human) and wastewater samples, and quantitative results were obtained in recovery experiments.
Collapse
Affiliation(s)
- Merve Sarıkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Halil Ibrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| | - Ummugulsum Morgul
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Songül Ulusoy
- Department of Pharmacy, Vocational School of Health Service, Sivas Cumhuriyet University, 58140, Sivas , Turkey
| | - Angela Tartaglia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Erkan Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey; ERNAM Erciyes University, Nanotechnology Application and Research Center, 38039, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, 38039, Turkey; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| |
Collapse
|
17
|
Alampanos V, Samanidou V. An overview of sample preparation approaches prior to liquid chromatography methods for the determination of parabens in biological matrices. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Determination of Intact Parabens in the Human Plasma of Cancer and Non-Cancer Patients Using a Validated Fabric Phase Sorptive Extraction Reversed-Phase Liquid Chromatography Method with UV Detection. Molecules 2021; 26:molecules26061526. [PMID: 33799523 PMCID: PMC8002076 DOI: 10.3390/molecules26061526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
Parabens have been widely employed as preservatives since the 1920s for extending the shelf life of foodstuffs, medicines, and daily care products. Given the fact that there are some legitimate concerns related to their potential multiple endocrine-disrupting properties, the development of novel bioanalytical methods for their biomonitoring is crucial. In this study, a fabric phase sorptive extraction reversed-phase liquid chromatography method coupled with UV detection (FPSE-HPLC-UV) was developed and validated for the quantitation of seven parabens in human plasma samples. Chromatographic separation of the seven parabens and p-hydroxybenzoic acid was achieved on a semi-micro Spherisorb ODS1 analytical column under isocratic elution using a mobile phase containing 0.1% (v/v) formic acid and 66% 49 mM ammonium formate aqueous solution in acetonitrile at flow rate 0.25 mL min−1 with a 24-min run time for each sample. The method was linear at a concentration range of 20 to 500 ng mL−1 for the seven parabens under study in human plasma samples. The efficiency of the method was proven with the analysis of 20 human plasma samples collected from women subjected to breast cancer surgery and to reconstructive and aesthetic breast surgery. The highest quantitation rates in human plasma samples from cancerous cases were found for methylparaben and isobutylparaben with average plasma concentrations at 77 and 112.5 ng mL−1. The high concentration levels detected agree with previous findings for some of the parabens and emphasize the need for further epidemiological research on the possible health effects of the use of these compounds.
Collapse
|