1
|
Shang J, Wen Y, Zhang X, Huang G, Chen W, Wang B, Wu K, Xiang Q, Liu X. Naoxintong capsule accelerates mitophagy in cerebral ischemia-reperfusion injury via TP53/PINK1/PRKN pathway based on network pharmacology analysis and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118721. [PMID: 39173723 DOI: 10.1016/j.jep.2024.118721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence and mortality of cerebrovascular diseases are increasing year by year. Cerebral ischemia-reperfusion injury (CIRI) is common in patients with ischemic stroke. Naoxintong (NXT) is composed of a variety of Chinese medicines and has the ability to treat CIRI. AIM OF THE STUDY The aim of this study is to investigate whether NXT regulates mitophagy in CIRI based on network pharmacology analysis and experimental validation. MATERIALS AND METHODS Oxygen and glucose deprivation/re-oxygenation (OGD/R, 2/22 h) model of PC12 cells and transient middle cerebral artery occlusion (tMCAO, 2/22 h) model of rats were established. Pharmacodynamic indicators include neurological deficit score, 2,3,5-triphenyte-trazoliumchloride (TTC) staining, hematoxylin-eosin (HE) staining and cell viability. Network pharmacology was used to predict pharmacological mechanisms. Pharmacological mechanism indexes include transmission electron microscopy (TEM), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), immunohistochemistry (IHC), western blot (WB) and immunofluorescence (IF). Kevetrin (an agonists of p53) and pifithrin-α (an inhibitor of p53) used to detect the key role of p53 in mitophagy of NXT. RESULTS NXT (1% serum containing NXT and 110 mg/kg) improved the damage of OGD/R PC12 cells and tMCAO rats, and this protective effect was related to the anti-oxidation and ability to promote mitophagy of NXT. NXT and pifithrin-α increased the expression of promoting-mitophagy targets (PINK1, PRKN and LC3B) and inhibited the expression of inhibiting-mitophagy targets (p52) via restraining p53, and finally accelerated mitophagy caused by CIRI. CONCLUSION This study demonstrates that NXT promotes mitophagy in CIRI through restraining p53 and promoting PINK1/PRKN in vivo and in vitro.
Collapse
Affiliation(s)
- Jinfeng Shang
- Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yinlian Wen
- Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xiaolu Zhang
- Beijing University of Chinese Medicine, Beijing 102488, China.
| | | | - Wenbin Chen
- Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Bohong Wang
- Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Kai Wu
- Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Quan Xiang
- Gansu University of Chinese Medicine, Gansu 730101, China.
| | - Xin Liu
- Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
Liu X, Ren X, Li R, Deng Q, Li X, He Y, Yao J, Zhang F, Liu W, Sun M, Li M, Ma J, Zheng Y, She G. Integrated pharmacokinetic-pharmacodynamic modeling and metabolomic research on polyphenol-rich fraction of Thymus quinquecostatus Celak. Alleviating cerebral ischemia-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118229. [PMID: 38670403 DOI: 10.1016/j.jep.2024.118229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/24/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thymus quinquecostatus Celak., a member of thymus genus in Lamiaceae family, has been used as a folk medicine for relieving exterior syndrome and alleviating pain in China. The polyphenol-rich fraction (PRF) derived from Thymus quinquecostatus Celak. had been validated that it can protect cerebral ischemia-reperfusion injury (CIRI) by activating Keap1/Nrf2/HO-1 signaling pathway. AIM OF THIS STUDY To explore effective components and their pharmacokinetic and pharmacodynamic characteristics as well as possible mechanisms of PRF in treating CIRI. MATERIALS AND METHODS Normal treated group (NTG) and tMCAO model treated group (MTG) rats were administrated PRF intragastrically. The prototype components and metabolites of PRF in plasma and brain were analyzed by the UPLC-Q-Exactive Orbitrap MSn method. Subsequently, the pharmacokinetics properties of indicative components were performed based on HPLC-QQQ-MS/MS. SOD and LDH activities were determined to study the pharmacodynamic (PD) properties of PRF. The PK-PD relationship of PRF was constructed. In addition, the effect of PRF on endogenous metabolites in plasma and brain was investigated using metabolomic method. RESULTS Salvianic acid A, caffeic acid, rosmarinic acid, scutellarin, and apigenin-7-O-glucuronide were selected as indicative components based on metabolic analysis. The non-compartmental parameters were calculated for indicative components in plasma and brain of NTG and MTG rats. Furthermore, single-component and multi-component PK-PD modeling involved Emax, Imax PD models for effect indexes were fitted as well as ANN models were established, which indicated that these components can work together to regulate SOD and LDH activities in plasma and SOD activity in brain tissue to improve CIRI. Additionally, PRF may ameliorate CIRI by regulating the disorder of endogenous metabolites in lipid metabolism, amino acid metabolism, and purine metabolism pathways in vivo, among which lipid metabolism and purine metabolism are closely related to oxidative stress. CONCLUSION The PK-PD properties of effect substances and mechanisms of PRF anti-CIRI were further elaborated. The findings provide a convincing foundation for the application of T. quinquecostatus Celak. in the maintenance of human health disorders.
Collapse
Affiliation(s)
- Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Ruiwen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Qingyue Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Xianxian Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Yingyu He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Mengyu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Mingxia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Yuan Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
3
|
Qian HQ, Wu DC, Li CY, Liu XR, Han XK, Peng Y, Zhang H, Zhao BY, Zhao Y. A systematic review of traditional uses, phytochemistry, pharmacology and toxicity of Epimedium koreanum Nakai. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116957. [PMID: 37544344 DOI: 10.1016/j.jep.2023.116957] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/08/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium koreanum Nakai (E. koreanum), a member of the genus Epimedium in the family Berberidaceae, is a well-known and well-liked traditional herb used as a "kidney tonic". For thousands of years, it has been utilized for renal yang deficiency, impotence, spermatorrhea, impotence, weakness of tendons and bones, rheumatic paralysis and discomfort, numbness, and constriction. AIM OF THE STUDY The paper aims to comprehensively in-depth, and methodically review the most recent research on the traditional uses, phytochemistry, pharmacology, and toxicity of E. koreanum. MATERIALS AND METHODS Scientific databases including Web of Science, PubMed, Google Scholar, Elsevier, Springer, ScienceDirect, Baidu Scholar, and CNKI and medicine books in China were searched for relevant information on E. koreanum. RESULTS In traditional uses, E. koreanum is frequently used to treat various diseases like erectile dysfunction, infertility, rheumatoid arthritis, osteoporosis, asthma, kidney-yang deficiency syndrome, etc. To date, more than 379 compounds have been discovered from various parts of E. koreanum, including flavonoids, lignans, organic acids, terpenoids, hydrocarbons, dihydrophenanthrene derivatives, alkaloids, and others. Research has revealed that the compounds and crude extracts have a wide range of pharmacological effects on the reproductive, cardiovascular, and nervous systems, as well as anti-osteoporosis, anti-tumor, antioxidant, anti-inflammatory, immunomodulatory, hepatoprotective, and antiviral properties. Besides, the crude extracts show potential hepatotoxicity. CONCLUSION Based on recent domestic and international research investigations, E. koreanum contains a wealth of chemical components with pronounced pharmacological activities. Its traditional uses are numerous, and the majority of these traditional uses have been supported by contemporary pharmacological investigations. Crude extracts, on the other hand, can result in hepatotoxicity. Therefore, additional in vivo and in vitro experimental research on the pharmacology and toxicology of E. koreanum are required in the future to assess its safety and efficacy. This will give a firmer scientific foundation for its safe application and the development of new drugs in the future.
Collapse
Affiliation(s)
- Hui-Qin Qian
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Dou-Can Wu
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Chun-Yan Li
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Xin-Ran Liu
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Xin-Ke Han
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Yuan Peng
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Han Zhang
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Bing-Yan Zhao
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Yuan Zhao
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
4
|
Eto K, Ogata M, Toyooka Y, Hayashi T, Ishibashi H. Ketogenic Diet Alleviates Mechanical Allodynia in the Models of Inflammatory and Neuropathic Pain in Male Mice. Biol Pharm Bull 2024; 47:629-634. [PMID: 38494735 DOI: 10.1248/bpb.b23-00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Inflammation is involved in the induction of chronic inflammatory and neuropathic pain. Moreover, the ketogenic diet, a high-fat, low-carbohydrate, and adequate protein diet, has an anti-inflammatory effect. Thus, we hypothesized that a ketogenic diet has a therapeutic effect on both types of chronic pain. In the present study, we investigated the effect of a ketogenic diet on mechanical allodynia, a chronic pain symptom, in formalin-induced chronic inflammatory pain and nerve injury-induced neuropathic pain models using adult male mice. Formalin injection into the hind paw induced mechanical allodynia in both the injected and intact hind paws, and the ketogenic diet alleviated mechanical allodynia in both hind paws. In addition, the ketogenic diet prevented formalin-induced edema. Furthermore, the diet alleviated mechanical allodynia induced by peripheral nerve injury. Thus, these findings indicate that a ketogenic diet has a therapeutic effect on chronic pain induced by inflammation and nerve injury.
Collapse
Affiliation(s)
- Kei Eto
- Department of Physiology, School of Allied Health Sciences, Kitasato University
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences
| | - Masanori Ogata
- Department of Physiology, School of Allied Health Sciences, Kitasato University
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences
| | - Yoshitaka Toyooka
- Department of Physiology, School of Allied Health Sciences, Kitasato University
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences
| | - Toru Hayashi
- Department of Anatomical Science, School of Allied Health Sciences, Kitasato University
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences
| |
Collapse
|
5
|
Yang J, Fan S, Guo M, Xie Z, Cheng Q, Gao P, Cheng C. DNA barcoding and comparative RNA-Seq analysis provide new insights into leaf formation using a novel resource of high-yielding Epimedium koreanum. FRONTIERS IN PLANT SCIENCE 2023; 14:1290836. [PMID: 38170141 PMCID: PMC10760978 DOI: 10.3389/fpls.2023.1290836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Epimedium koreanum Nakai, a well-known traditional Chinese medicinal herb, has been widely used to treat osteoporosis and sexual dysfunction for thousands of years. However, due to the decreasing population of East Asian natural resources, yearly output of Epimedium crude herb has been in low supply year by year. In this study, an unusual variety of E. koreanum was discovered in Dunhua, Jilin Province, the northernmost area where this variety was found containing 6 individuals, with three branches that had 27 leaflets, which is much more than the typical leaflet number of 9. Firstly, the novel E. koreanum varety was identified using DNA barcodes. Then, 1171 differentially expressed genes (DEGs) were discovered through parallel RNA-seq analysis between the newly discovered variety and wild type (WT) E. koreanum plant. Furthermore, the results of bioinformatics investigation revealed that 914 positively and 619 negatively correlated genes associated with the number of leaflets. Additionally, based on RNA-Seq and qRT-PCR analysis, two homologous hub TCP genes, which were commonly implicated in plant leaf development, and shown to be up regulated and down regulated in the discovered newly variety, respectively. Thus, our study discovered a novel wild resource for leaf yield rewarding medicinal Epimedium plant breeding, provided insights into the relationship between plant compound leaf formation and gene expression of TCPs transcription factors and other gene candidates, providing bases for creating high yield cultivated Epimedium variety by using further molecular selection and breeding techniques in the future.
Collapse
Affiliation(s)
- Jiaxin Yang
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Siqing Fan
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Min Guo
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Zhaoqi Xie
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Qiqing Cheng
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Chunsong Cheng
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Lin X, Chen J, Tao C, Luo L, He J, Wang Q. Osthole regulates N6-methyladenosine-modified TGM2 to inhibit the progression of rheumatoid arthritis and associated interstitial lung disease. MedComm (Beijing) 2023; 4:e219. [PMID: 36845072 PMCID: PMC9945862 DOI: 10.1002/mco2.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, and RA interstitial lung disease (ILD) is a severe complication of RA. This investigation aims to determine the effect and underlying mechanism of osthole (OS), which could be extracted from Cnidium, Angelica, and Citrus plants and evaluate the role of transglutaminase 2 (TGM2) in RA and RA-ILD. In this work, OS downregulated TGM2 to exert its additive effect with methotrexate and suppress the proliferation, migration, and invasion of RA-fibroblast-like synoviocytes (FLS) by attenuating NF-κB signaling, resulting in the suppression of RA progression. Interestingly, WTAP-mediated N6-methyladenosine modification of TGM2 and Myc-mediated WTAP transcription cooperatively contributed to the formation of a TGM2/Myc/WTAP-positive feedback loop through upregulating NF-κB signaling. Moreover, OS could downregulate the activation of the TGM2/Myc/WTAP-positive feedback circuit. Furthermore, OS restrained the proliferation and polarization of M2 macrophages to inhibit the aggregation of lung interstitial CD11b+ macrophages, and the effectiveness and non-toxicity of OS in suppressing RA and RA-ILD progression were verified in vivo. Finally, bioinformatics analyses validated the importance and the clinical significance of the OS-regulated molecular network. Taken together, our work emphasized OS as an effective drug candidate and TGM2 as a promising target for RA and RA-ILD treatment.
Collapse
Affiliation(s)
- Xian Lin
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| | - Jian Chen
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| | - Cheng Tao
- School of PharmacyGuangdong Medical UniversityDongguanChina
| | - Lianxiang Luo
- The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
- The Marine Biomedical Research Institute of Guangdong ZhanjiangZhanjiangChina
| | - Juan He
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| | - Qingwen Wang
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| |
Collapse
|
7
|
Zhang LB, Yan Y, He J, Wang PP, Chen X, Lan TY, Guo YX, Wang JP, Luo J, Yan ZR, Xu Y, Tao QW. Epimedii Herba: An ancient Chinese herbal medicine in the prevention and treatment of rheumatoid arthritis. Front Chem 2022; 10:1023779. [PMID: 36465876 PMCID: PMC9712800 DOI: 10.3389/fchem.2022.1023779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/02/2022] [Indexed: 08/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive inflammatory and systemic autoimmune disease resulting in severe joint destruction, lifelong suffering and considerable disability. Diverse prescriptions of traditional Chinese medicine (TCM) containing Epimedii Herba (EH) achieve greatly curative effects against RA. The present review aims to systemically summarize the therapeutic effect, pharmacological mechanism, bioavailability and safety assessment of EH to provide a novel insight for subsequent studies. The search terms included were "Epimedii Herba", "yinyanghuo", "arthritis, rheumatoid" and "Rheumatoid Arthritis", and relevant literatures were collected on the database such as Google Scholar, Pubmed, Web of Science and CNKI. In this review, 15 compounds from EH for the treatment of RA were summarized from the aspects of anti-inflammatory, immunoregulatory, cartilage and bone protective, antiangiogenic and antioxidant activities. Although EH has been frequently used to treat RA in clinical practice, studies on mechanisms of these activities are still scarce. Various compounds of EH have the multifunctional traits in the treatment of RA, so EH may be a great complementary medicine option and it is necessary to pay more attention to further research and development.
Collapse
Affiliation(s)
- Liu-Bo Zhang
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Yan
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jun He
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Pei-Pei Wang
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Chen
- School of Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian-Yi Lan
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Xuan Guo
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Ping Wang
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jing Luo
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ze-Ran Yan
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Qing-Wen Tao
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
8
|
Liu J, Zhao M, Zhang S, Liu J, Zhao C, Wang M. Rapid characterization of the chemical constituents of Wangbi Capsule by UPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Xu Y, Yan H, Zhang X, Zhuo J, Han Y, Zhang H, Xie D, Lan X, Cai W, Wang X, Wang S, Li X. Roles of Altered Macrophages and Cytokines: Implications for Pathological Mechanisms of Postmenopausal Osteoporosis, Rheumatoid Arthritis, and Alzheimer's Disease. Front Endocrinol (Lausanne) 2022; 13:876269. [PMID: 35757427 PMCID: PMC9226340 DOI: 10.3389/fendo.2022.876269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is characterized by the uncoupling of bone resorption and bone formation induced by estrogen deficiency, which is a complex outcome related to estrogen and the immune system. The interaction between bone and immune cells is regarded as the context of PMOP. Macrophages act differently on bone cells, depending on their polarization profile and secreted paracrine factors, which may have implications for the development of PMOP. PMOP, rheumatoid arthritis (RA), and Alzheimer's disease (AD) might have pathophysiological links, and the similarity of their pathological mechanisms is partially visible in altered macrophages and cytokines in the immune system. This review focuses on exploring the pathological mechanisms of PMOP, RA, and AD through the roles of altered macrophages and cytokines secretion. First, the multiple effects on cytokines secretion by bone-bone marrow (BM) macrophages in the pathological mechanism of PMOP are reviewed. Then, based on the thought of "different tissue-same cell type-common pathological molecules-disease pathological links-drug targets" and the methodologies of "molecular network" in bioinformatics, highlight that multiple cytokines overlap in the pathological molecules associated with PMOP vs. RA and PMOP vs. AD, and propose that these overlaps may lead to a pathological synergy in PMOP, RA, and AD. It provides a novel strategy for understanding the pathogenesis of PMOP and potential drug targets for the treatment of PMOP.
Collapse
Affiliation(s)
- Yunteng Xu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Yan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Basic Discipline Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xin Zhang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Junkuan Zhuo
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yidan Han
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haifeng Zhang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dingbang Xie
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xin Lan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wanping Cai
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoning Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shanshan Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xihai Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Xihai Li,
| |
Collapse
|