1
|
Caprari C, Ferri E, Vandelli MA, Citti C, Cannazza G. An emerging trend in Novel Psychoactive Substances (NPSs): designer THC. J Cannabis Res 2024; 6:21. [PMID: 38702834 PMCID: PMC11067227 DOI: 10.1186/s42238-024-00226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 05/06/2024] Open
Abstract
Since its discovery as one of the main components of cannabis and its affinity towards the cannabinoid receptor CB1, serving as a means to exert its psychoactivity, Δ9-tetrahydrocannabinol (Δ9-THC) has inspired medicinal chemists throughout history to create more potent derivatives. Initially, the goal was to synthesize chemical probes for investigating the molecular mechanisms behind the pharmacology of Δ9-THC and finding potential medical applications. The unintended consequence of this noble intent has been the proliferation of these compounds for recreational use. This review comprehensively covers the most exhaustive number of THC-like cannabinoids circulating on the recreational market. It provides information on the chemistry, synthesis, pharmacology, analytical assessment, and experiences related to the psychoactive effects reported by recreational users on online forums. Some of these compounds can be found in natural cannabis, albeit in trace amounts, while others are entirely artificial. Moreover, to circumvent legal issues, many manufacturers resort to semi-synthetic processes starting from legal products extracted from hemp, such as cannabidiol (CBD). Despite the aim to encompass all known THC-like molecules, new species emerge on the drug users' pipeline each month. Beyond posing a significantly high public health risk due to unpredictable and unknown side effects, scientific research consistently lags behind the rapidly evolving recreational market.
Collapse
Affiliation(s)
- Cristian Caprari
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, 41125, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena, 41125, Italy
| | - Elena Ferri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena, 41125, Italy
| | - Maria Angela Vandelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena, 41125, Italy
| | - Cinzia Citti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena, 41125, Italy.
- Institute of Nanotechnology of the National Council of Research - CNR NANOTEC, Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy.
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena, 41125, Italy.
- Institute of Nanotechnology of the National Council of Research - CNR NANOTEC, Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy.
| |
Collapse
|
2
|
Helander A, Johansson M, Villén T, Andersson A. Appearance of hexahydrocannabinols as recreational drugs and implications for cannabis drug testing - focus on HHC, HHC-P, HHC-O and HHC-H. Scand J Clin Lab Invest 2024; 84:125-132. [PMID: 38619215 DOI: 10.1080/00365513.2024.2340039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/16/2024] [Accepted: 02/13/2024] [Indexed: 04/16/2024]
Abstract
This study investigated the effects of hexahydrocannabinol (HHC) and other unclassified cannabinoids, which were recently introduced to the recreational drug market, on cannabis drug testing in urine and oral fluid samples. After the appearance of HHC in Sweden in 2022, the number of posts about HHC on an online drug discussion forum increased significantly in the spring of 2023, indicating increased interest and use. In parallel, the frequency of false positive screening tests for tetrahydrocannabinol (THC) in oral fluid, and for its carboxy metabolite (THC-COOH) in urine, rose from <2% to >10%. This suggested that HHC cross-reacted with the antibodies in the immunoassay screening, which was confirmed in spiking experiments with HHC, HHC-COOH, HHC acetate (HHC-O), hexahydrocannabihexol (HHC-H), hexahydrocannabiphorol (HHC-P), and THC-P. When HHC and HHC-P were classified as narcotics in Sweden on 11 July 2023, they disappeared from the online and street shops market and were replaced by other unregulated variants (e.g. HHC-O and THC-P). In urine samples submitted for routine cannabis drug testing, HHC-COOH concentrations up to 205 (mean 60, median 27) µg/L were observed. To conclude, cannabis drug testing cannot rely on results from immunoassay screening, as it cannot distinguish between different tetra- and hexahydrocannabinols, some being classified but others unregulated. The current trend for increased use of unregulated cannabinols will likely increase the proportion of positive cannabis screening results that need to be confirmed with mass spectrometric methods. However, the observed cross-reactivity also means a way to pick up use of new cannabinoids that otherwise risk going undetected.
Collapse
Affiliation(s)
- Anders Helander
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Johansson
- Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Villén
- Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Andersson
- Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Ujváry I. Hexahydrocannabinol and closely related semi-synthetic cannabinoids: A comprehensive review. Drug Test Anal 2024; 16:127-161. [PMID: 37269160 DOI: 10.1002/dta.3519] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Since the early 2000s, there has been a turmoil on the global illicit cannabinoid market. Parallel to legislative changes in some jurisdictions regarding herbal cannabis, unregulated and cheap synthetic cannabinoids with astonishing structural diversity have emerged. Recently, semi-synthetic cannabinoids manufactured from hemp extracts by simple chemical transformations have also appeared as recreational drugs. The burst of these semi-synthetic cannabinoids into the market was sparked by legislative changes in the United States, where cultivation of industrial hemp restarted. By now, hemp-derived cannabidiol (CBD), initially a blockbuster product on its own, became a "precursor" to semi-synthetic cannabinoids such as hexahydrocannabinol (HHC), which appeared on the drug market in 2021. The synthesis and cannabimimetic activity of HHC were first reported eight decades ago in quest for the psychoactive principles of marijuana and hashish. Current large-scale manufacture of HHC is based on hemp-derived CBD extract, which is converted first by cyclization into a Δ8 /Δ9 -THC mixture, followed by catalytic hydrogenation to afford a mixture of (9R)-HHC and (9S)-HHC epimers. Preclinical studies indicate that (9R)-HHC has THC-like pharmacological properties. The animal metabolism of HHC is partially clarified. The human pharmacology including metabolism of HHC is yet to be investigated, and (immuno)analytical methods for the rapid detection of HHC or its metabolites in urine are lacking. Herein, the legal background for the revitalization of hemp cultivation, and available information on the chemistry, analysis, and pharmacology of HHC and related analogs, including HHC acetate (HHC-O) is reviewed.
Collapse
|
4
|
Harvey DJ, Vouros P. MASS SPECTROMETRIC FRAGMENTATION OF TRIMETHYLSILYL AND RELATED ALKYLSILYL DERIVATIVES. MASS SPECTROMETRY REVIEWS 2020; 39:105-211. [PMID: 31808199 DOI: 10.1002/mas.21590] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/13/2019] [Indexed: 05/11/2023]
Abstract
This review describes the mass spectral fragmentation of trimethylsilyl (TMS) and related alkylsilyl derivatives used for preparing samples for analysis, mainly by combined gas chromatography and mass spectrometry (GC/MS). The review is divided into three sections. The first section is concerned with the TMS derivatives themselves and describes fragmentation of derivatized alcohols, thiols, amines, ketones, carboxylic acids and bifunctional compounds such as hydroxy- and amino-acids, halo acids and hydroxy ethers. More complex compounds such as glycerides, sphingolipids, carbohydrates, organic phosphates, phosphonates, steroids, vitamin D, cannabinoids, and prostaglandins are discussed next. The second section describes intermolecular reactions of siliconium ions such as the TMS cation and the third section discusses other alkylsilyl derivatives. Among these latter compounds are di- and trialkyl-silyl derivatives, various substituted-alkyldimethylsilyl derivatives such as the tert-butyldimethylsilyl ethers, cyclic silyl derivatives, alkoxysilyl derivatives, and 3-pyridylmethyldimethylsilyl esters used for double bond location in fatty acid spectra. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 0000:1-107, 2019.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Paul Vouros
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, Massachusetts, 02115
| |
Collapse
|
5
|
|
6
|
Abstract
The metabolism of delta-9-tetrahydrocannabinol (delta-9-THC), delta-8-THC, delta-11-THC, cannabidiol (CBD), cannabinol (CBN), cannabichromene (CBC), cannabigerol (CBG) and the equatorial-isomer of hexahydrocannabinol (HHC) was studied in microsomal preparations obtained from rats, mice, guinea pigs, rabbits, hamsters, gerbils and a cat. Identification of metabolites was by GC/MS and quantification by gas chromatography. Major metabolites were monohydroxylated compounds but the pattern of hydroxylation varied considerably between the species, no doubt reflecting the variable nature of the cytochrome P-450 mixed-function oxidases. Although the primary carbon allylic to the endocyclic double bond of tricyclic cannabinoids was usually the major site of attack, the 4' (side-chain, omega-1 position) and the terpene ring were usually favoured by the cat and hamster respectively. The guinea pig generally produced more metabolites hydroxylated in the side-chain (all positions) than did the other species. The results from HHC were very similar to those from THC, namely hydroxylation at C-11 in most species, and the production of high concentrations of 8 alpha-hydroxy-HHC in the mouse and 8 beta-hydroxy-HHC in the hamster. As this molecule lacks the double bond of the THCs and, hence, the allylic nature of C-11 and C-8, the results suggest that it is the orientation of the molecule to the active site of the cytochrome P-450 mixed-function oxidase rather than the reactivity of the C-H bond that governs the position of hydroxylation.
Collapse
Affiliation(s)
- D J Harvey
- University Department of Pharmacology, Oxford, UK
| | | |
Collapse
|
7
|
Harvey DJ, Brown NK. Electron impact-induced fragmentation of the trimethylsilyl derivatives of monohydroxy-hexahydrocannabinols. BIOLOGICAL MASS SPECTROMETRY 1991; 20:292-302. [PMID: 1653027 DOI: 10.1002/bms.1200200510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monohydroxylated derivatives of hexahydrocannabinols were synthesized by catalytic hydrogenation of hydroxytetrahydrocannabinols over a rhodium/alumina catalyst, reduction of tetrahydrocannabinol epoxides with lithium aluminium hydride, or by reaction of tetrahydrocannabinols with hydrogen peroxide. The electron impact-induced fragmentation of their trimethylsilyl ethers was investigated with the aid of deuterium labelling. Most of the compounds gave characteristically different mass spectra with abundant, diagnostically useful fragment ions. As hexahydrocannabinols containing hydroxy groups in all metabolically sensitive positions were readily prepared by the above methods, these provided reference samples for identification of new hydroxylated metabolites of isomeric tetrahydrocannabinols following hydrogenation. The method was validated by application to metabolites of delta-9(11)-tetrahydrocannabinol.
Collapse
Affiliation(s)
- D J Harvey
- University Department of Pharmacology, Oxford, UK
| | | |
Collapse
|
8
|
Wiederhold MD, Shen ML, Ou DW. Hydroxylation of delta-9-tetrahydrocannabinol by human peripheral blood monocytes in tissue culture. J Pharm Biomed Anal 1990; 8:293-5. [PMID: 1965573 DOI: 10.1016/0731-7085(90)80040-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- M D Wiederhold
- Department of Pathology, University of Illinois, Chicago
| | | | | |
Collapse
|
9
|
Brown NK, Harvey DJ. Metabolism of n-hexyl-homologues of delta-8-tetrahydrocannabinol and delta-9-tetrahydrocannabinol in the mouse. Eur J Drug Metab Pharmacokinet 1988; 13:165-76. [PMID: 2853671 DOI: 10.1007/bf03189936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
n-Hexyl-delta-8-tetrahydrocannabinol (n-hexyl-delta-8-THC) and n-hexyl-delta-9-THC were synthesized by condensation of (1S)-cis-verbenol with 5-n-hexyl-1,3-dihydroxybenzene and administered intraperitoneally to male Charles-River CD-1 mice. Hepatic metabolites were isolated by solvent extraction and chromatography on Sephadex LH-20 and identified by GC/MS. Eleven metabolites were identified from n-hexyl-delta-8-THC and sixteen from n-hexyl-delta-9-THC. The pattern of metabolites was intermediate between that previously observed from the pentyl homologues and that from n-heptyl-delta-9-THC with the major biotransformation pathway being hydroxylation and oxidation at C-11. Other metabolites were mainly hydroxylated derivatives of these compounds. Metabolites containing two hydroxy groups in the side-chain were present in low concentration. These have not been observed from lower homologues but are major metabolites of n-heptyl-delta-9-THC. Compared with the metabolism of the n-pentyl homologue, there was a trend towards the production of more hydroxy metabolites at the expense of carboxylic acids, in keeping with the general reduction of oxidation observed with other homologous cannabinoids as the chain length increases.
Collapse
Affiliation(s)
- N K Brown
- University Department of Pharmacology, Oxford, UK
| | | |
Collapse
|