1
|
Mei T, Chen Y, Gao Y, Zhao H, Lyu X, Lin J, Niu T, Han H, Tong Z. Formaldehyde initiates memory and motor impairments under weightlessness condition. NPJ Microgravity 2024; 10:100. [PMID: 39468074 PMCID: PMC11519943 DOI: 10.1038/s41526-024-00441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
During space flight, prolonged weightlessness stress exerts a range of detrimental impacts on the physiology and psychology of astronauts. These manifestations encompass depressive symptoms, anxiety, and impairments in both short-term memory and motor functions, albeit the precise underlying mechanisms remain elusive. Recent studies have revealed that hindlimb unloading (HU) animal models, which simulate space weightlessness, exhibited a disorder in memory and motor function associated with endogenous formaldehyde (FA) accumulation in the hippocampus and cerebellum, disruption of brain extracellular space (ECS), and blockage of interstitial fluid (ISF) drainage. Notably, the impairment of the blood-brain barrier (BBB) caused by space weightlessness elicits the infiltration of albumin and hemoglobin from the blood vessels into the brain ECS. However, excessive FA has the potential to form cross-links between these two proteins and amyloid-beta (Aβ), thereby obstructing ECS and inducing neuron death. Moreover, FA can inhibit N-methyl-D-aspartate (NMDA) currents by crosslinking NR1 and NR2B subunits, thus impairing memory. Additionally, FA has the ability to modulate the levels of certain microRNAs (miRNAs) such as miRNA-29b, which can affect the expression of aquaporin-4 (AQP4) so as to regulate ECS structure and ISF drainage. Especially, the accumulation of FA may inactivate the ataxia telangiectasia-mutated (ATM) protein kinase by forming cross-linking, a process that is associated with ataxia. Hence, this review presents that weightlessness stress-derived FA may potentially serve as a crucial catalyst in the deterioration of memory and motor abilities in the context of microgravity.
Collapse
Affiliation(s)
- Tianhao Mei
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hang Zhao
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingzhou Lyu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Lin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, China.
- University of Science and Technology of China, Anhui, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Tian Z, Huang K, Yang W, Chen Y, Lyv W, Zhu B, Yang X, Ma P, Tong Z. Exogenous and endogenous formaldehyde-induced DNA damage in the aging brain: mechanisms and implications for brain diseases. Cell Biol Toxicol 2024; 40:83. [PMID: 39367211 PMCID: PMC11452425 DOI: 10.1007/s10565-024-09926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
Exogenous gaseous formaldehyde (FA) is recognized as a significant indoor air pollutant due to its chemical reactivity and documented mutagenic and carcinogenic properties, particularly in its capacity to damage DNA and impact human health. Despite increasing attention on the adverse effects of exogenous FA on human health, the potential detrimental effects of endogenous FA in the brain have been largely neglected in current research. Endogenous FA have been observed to accumulate in the aging brain due to dysregulation in the expression and activity of enzymes involved in FA metabolism. Surprisingly, excessive FA have been implicated in the development of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and brain cancers. Notably, FA has the ability to not only initiate DNA double strand breaks but also induce the formation of crosslinks of DNA-DNA, DNA-RNA, and DNA-protein, which further exacerbate the progression of these brain diseases. However, recent research has identified that FA-resistant gene exonuclease-1 (EXO1) and FA scavengers can potentially mitigate FA toxicity, offering a promising strategy for mitigating or repairing FA-induced DNA damage. The present review offers novel insights into the impact of FA metabolism on brain ageing and the contribution of FA-damaged DNA to the progression of neurological disorders.
Collapse
Affiliation(s)
- Zixi Tian
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Kai Huang
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wanting Yang
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wanjia Lyv
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Beilei Zhu
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ping Ma
- Beijing Geriatric Hospital, Beijing, 100049, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, 100049, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Lentzas A, de Gooijer MC, Zuidema S, Meurs A, Çitirikkaya CH, Venekamp N, Beijnen JH, van Tellingen O. ATP-binding cassette transporter inhibitor potency and substrate drug affinity are critical determinants of successful drug delivery enhancement to the brain. Fluids Barriers CNS 2024; 21:62. [PMID: 39103921 DOI: 10.1186/s12987-024-00562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Pharmacotherapy for brain diseases is severely compromised by the blood-brain barrier (BBB). ABCB1 and ABCG2 are drug transporters that restrict drug entry into the brain and their inhibition can be used as a strategy to boost drug delivery and pharmacotherapy for brain diseases. METHODS We employed elacridar and tariquidar in mice to explore the conditions for effective inhibition at the BBB. Abcg2;Abcb1a/b knockout (KO), Abcb1a/b KO, Abcg2 KO and wild-type (WT) mice received a 3 h i.p. infusion of a cocktail of 8 typical substrate drugs in combination with elacridar or tariquidar at a range of doses. Abcg2;Abcb1a/b KO mice were used as the reference for complete inhibition, while single KO mice were used to assess the potency to inhibit the remaining transporter. Brain and plasma drug levels were measured by LC-MS/MS. RESULTS Complete inhibition of ABCB1 at the BBB is achieved when the elacridar plasma level reaches 1200 nM, whereas tariquidar requires at least 4000 nM. Inhibition of ABCG2 is more difficult. Elacridar inhibits ABCG2-mediated efflux of weak but not strong ABCG2 substrates. Strikingly, tariquidar does not enhance the brain uptake of any ABCG2-subtrate drug. Similarly, elacridar, but not tariquidar, was able to inhibit its own brain efflux in ABCG2-proficient mice. The plasma protein binding of elacridar and tariquidar was very high but similar in mouse and human plasma, facilitating the translation of mouse data to humans. CONCLUSIONS This work shows that elacridar is an effective pharmacokinetic-enhancer for the brain delivery of ABCB1 and weaker ABCG2 substrate drugs when a plasma concentration of 1200 nM is exceeded.
Collapse
Affiliation(s)
- Aristeidis Lentzas
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M1 3WE, UK
- The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Stefanie Zuidema
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Amber Meurs
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Ceren H Çitirikkaya
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Nikkie Venekamp
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
- Department of Pharmacy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.
- Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Pham VN, Bruemmer KJ, Toh JDW, Ge EJ, Tenney L, Ward CC, Dingler FA, Millington CL, Garcia-Prieto CA, Pulos-Holmes MC, Ingolia NT, Pontel LB, Esteller M, Patel KJ, Nomura DK, Chang CJ. Formaldehyde regulates S-adenosylmethionine biosynthesis and one-carbon metabolism. Science 2023; 382:eabp9201. [PMID: 37917677 PMCID: PMC11500418 DOI: 10.1126/science.abp9201] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/24/2023] [Indexed: 11/04/2023]
Abstract
One-carbon metabolism is an essential branch of cellular metabolism that intersects with epigenetic regulation. In this work, we show how formaldehyde (FA), a one-carbon unit derived from both endogenous sources and environmental exposure, regulates one-carbon metabolism by inhibiting the biosynthesis of S-adenosylmethionine (SAM), the major methyl donor in cells. FA reacts with privileged, hyperreactive cysteine sites in the proteome, including Cys120 in S-adenosylmethionine synthase isoform type-1 (MAT1A). FA exposure inhibited MAT1A activity and decreased SAM production with MAT-isoform specificity. A genetic mouse model of chronic FA overload showed a decrease n SAM and in methylation on selected histones and genes. Epigenetic and transcriptional regulation of Mat1a and related genes function as compensatory mechanisms for FA-dependent SAM depletion, revealing a biochemical feedback cycle between FA and SAM one-carbon units.
Collapse
Affiliation(s)
- Vanha N. Pham
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Kevin J. Bruemmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Joel D. W. Toh
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Eva J. Ge
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Logan Tenney
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Carl C. Ward
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Felix A. Dingler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Christopher L. Millington
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Carlos A. Garcia-Prieto
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Mia C. Pulos-Holmes
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Nicholas T. Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Lucas B. Pontel
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Calle Monforte de Lemos, Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Feixa Llarga, l’Hospitalet de Llobregat, Spain
| | - Ketan J. Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Daniel K. Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94704 USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
5
|
Lin NJ, Wu H, Peng J, Yang SH, Tan R, Peng Y, Wang YW. A ratiometric fluorescent probe for fast detection and bioimaging of formaldehyde. Org Biomol Chem 2023; 21:2167-2171. [PMID: 36799709 DOI: 10.1039/d2ob02314h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A novel ratiometric probe (SWJT-10) based on isophorone derivatives has been designed and synthesized for the detection of formaldehyde (FA). This probe displayed an obvious ratiometric fluorescence response to FA with a blue shift from the NIR (680 nm) to the yellow light region (600 nm) in aqueous solution. And it showed good selectivity, high sensitivity and a fast response to FA (less than 5 s) due to a new recognition mechanism. Moreover, SWJT-10 has been applied to monitor FA in living cells and zebrafish.
Collapse
Affiliation(s)
- Nai-Jie Lin
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Huan Wu
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Jing Peng
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Shu-Han Yang
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Rui Tan
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yu Peng
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Ya-Wen Wang
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
6
|
Lipskerov FA, Sheshukova EV, Komarova TV. Approaches to Formaldehyde Measurement: From Liquid Biological Samples to Cells and Organisms. Int J Mol Sci 2022; 23:6642. [PMID: 35743083 PMCID: PMC9224381 DOI: 10.3390/ijms23126642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 12/14/2022] Open
Abstract
Formaldehyde (FA) is the simplest aldehyde present both in the environment and in living organisms. FA is an extremely reactive compound capable of protein crosslinking and DNA damage. For a long time, FA was considered a "biochemical waste" and a by-product of normal cellular metabolism, but in recent decades the picture has changed. As a result, the need arose for novel instruments and approaches to monitor and measure not only environmental FA in water, cosmetics, and household products, but also in food, beverages and biological samples including cells and even organisms. Despite numerous protocols being developed for in vitro and in cellulo FA assessment, many of them have remained at the "proof-of-concept" stage. We analyze the suitability of different methods developed for non-biological objects, and present an overview of the recently developed approaches, including chemically-synthesized probes and genetically encoded FA-sensors for in cellulo and in vivo FA monitoring. We also discuss the prospects of classical methods such as chromatography and spectrophotometry, and how they have been adapted in response to the demand for precise, selective and highly sensitive evaluation of FA concentration fluctuations in biological samples. The main objectives of this review is to summarize data on the main approaches for FA content measurement in liquid biological samples, pointing out the advantages and disadvantages of each method; to report the progress in development of novel molecules suitable for application in living systems; and, finally, to discuss genetically encoded FA-sensors based on existing natural biological FA-responsive elements.
Collapse
Affiliation(s)
- Fedor A. Lipskerov
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (F.A.L.); (E.V.S.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ekaterina V. Sheshukova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (F.A.L.); (E.V.S.)
| | - Tatiana V. Komarova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (F.A.L.); (E.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
7
|
Ham YH, Pan G, Chan HW, Chan W. LC-MS/MS Quantitation of Formaldehyde-Glutathione Conjugates as Biomarkers of Formaldehyde Exposure and Exposure-Induced Antioxidants: A New Look on an Old Topic. Chem Res Toxicol 2022; 35:858-866. [PMID: 35471961 DOI: 10.1021/acs.chemrestox.2c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Humans are continuously exposed to formaldehyde via both endogenous and exogenous sources. Prolonged exposure to formaldehyde is associated with many human diseases, such as lung cancer and leukemia. The goal of this study is to develop biomarkers to measure formaldehyde exposure, which could be used to predict the risk of associated diseases. As glutathione (GSH) is well-known for its crucial role in the detoxification of a wide variety of xenobiotics, including formaldehyde, we rigorously quantitated in this study the conjugates formed when formaldehyde reacted with GSH using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) coupled with an isotope dilution method. The results showed for the first time that (S)-1-(((R)-2-amino-3-(carboxymethylamino)-3-oxopropylthio)methyl)-5-oxopyrrolidine-2-carboxylic acid (PGF) and thioproline-glycine (SPro-Gly) are major metabolites in both nonenzymatic reactions and formaldehyde-exposed human cells. In particular, over 35% of the formaldehyde from external sources was found to convert to SPro-Gly in the exposed cells. Interestingly, data showed that these exposure-induced adducts exhibited good antioxidative properties, which can protect cells from hydrogen peroxide mediated oxidative insult. It is anticipated that the findings of this study could shed light on developing PGF and SPro-Gly as dietary supplements and on the development of noninvasive methods to assess health risks associated with formaldehyde exposure.
Collapse
Affiliation(s)
- Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guanrui Pan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ho Wai Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
8
|
Kou Y, Zhao H, Cui D, Han H, Tong Z. Formaldehyde toxicity in age-related neurological dementia. Ageing Res Rev 2022; 73:101512. [PMID: 34798299 DOI: 10.1016/j.arr.2021.101512] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/02/2023]
Abstract
The primordial small gaseous molecules, such as: NO, CO, H2S and formaldehyde (FA) are present in the brains. Whether FA as well as the other molecules participates in brain functions is unclear. Recently, its pathophysiological functions have been investigated. Notably, under physiological conditions, learning activity induces a transient generation of hippocampal FA, which promotes memory formation by enhancing N-methyl-D-aspartate (NMDA)-currents. However, ageing leads to FA accumulation in brain for the dysregulation of FA metabolism; and excessive FA directly impairs memory by inhibiting NMDA-receptor. Especially, in Alzheimer's disease (AD), amyloid-beta (Aβ) accelerates FA accumulation by inactivating alcohol dehydrogenase-5; in turn, FA promotes Aβ oligomerization, fibrillation and tau hyperphosphorylation. Hence, there is a vicious circle encompassing Aβ assembly and FA generation. Even worse, FA induces Aβ deposition in the extracellular space (ECS), which blocks the medicines (dissolved in the interstitial fluid) flowing into the damaged neurons in the deep cortex. However, phototherapy destroys Aβ deposits in the ECS and restores ISF flow. Coenzyme Q10, which scavenges FA, was shown to ameliorate Aβ-induced AD pathological phenotypes, thus suggesting a causative relation between FA toxicity and AD. These findings suggest that the combination of these two methods is a promising strategy for treating AD.
Collapse
|
9
|
Naksen P, Jarujamrus P, Anutrasakda W, Promarak V, Zhang L, Shen W. Old silver mirror in qualitative analysis with new shoots in quantification: Nitrogen-doped carbon dots (N-CDs) as fluorescent probes for "off-on" sensing of formalin in food samples. Talanta 2022; 236:122862. [PMID: 34635244 DOI: 10.1016/j.talanta.2021.122862] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
A novel fluorometric assay for selective and sensitive determination of formalin (FA) was developed based on nitrogen-doped carbon dots (N-CDs) coupled with silver mirror reaction. N-CDs was synthesized using the hydrothermal method with the ethylene glycol and ammonia solution as carbon and nitrogen precursors, respectively. The detection principle was based on "off-on" fluorescence switching. Specifically, the fluorescence signal of N-CDs was first turned off after incorporating the Ag+ and Tollens' reagents. Then, in the presence of FA, the Ag+ species on the N-CDs surface were reduced to Ag0 species and the fluorescence signal of N-CDs was switched back on. The fluorescence intensity due to the N-CDs signal linearly increased with the increasing FA concentrations in the range of 5-100 mg L-1, with the detection limit of 1.5 mg L-1. The proposed approach provides rapid, simple, sensitive, and selective detection of FA in various food samples.
Collapse
Affiliation(s)
- Puttaraksa Naksen
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| | - Wipark Anutrasakda
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Payathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Liyuan Zhang
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Wei Shen
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| |
Collapse
|
10
|
Xu J, Jin X, Ye Z, Wang D, Zhao H, Tong Z. Opposite Roles of Co-enzyme Q10 and Formaldehyde in Neurodegenerative Diseases. Am J Alzheimers Dis Other Demen 2022; 37:15333175221143274. [PMID: 36455136 PMCID: PMC10624093 DOI: 10.1177/15333175221143274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Most of neurodegenerative diseases (NDD) have no cure. The common etiology of neurodegenerations is unclear. Air pollutant-gaseous formaldehyde is notoriously known to induce demyelination and cognitive impairments. Unexpectedly, an amount of formaldehyde has been detected in the brains. Multiple factors can induce the generation and accumulation of endogenous formaldehyde. Excessive formaldehyde can induce oxidative stress to generate H2O2; in turn, H2O2 promote formaldehyde production. Clinical investigations have shown that an abnormal high level of formaldehyde but low level of coenzyme Q10 (coQ10) was observed in patients with NDD. Further studies have proven that excessive formaldehyde directly inactivates coQ10, reduces the ATP generation, enhances oxidative stress, initiates inflammation storm, induces demyelination; subsequently, it results in neurodegeneration. Although the low water solubility of coQ10 limits its clinical application, nanomicellar water-soluble coQ10 exhibits positive therapeutical effects. Hence, nanopackage of coQ10 may be a promising strategy for treating NDD.
Collapse
Affiliation(s)
- Jinan Xu
- Institute of Ningbo, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xingjiang Jin
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Zuting Ye
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Dandan Wang
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Hang Zhao
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Zhiqian Tong
- Institute of Ningbo, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Campbell JL, Gentry PR, Clewell Iii HJ, Andersen ME. A Kinetic Analysis of DNA-Deoxy Guanine Adducts in the Nasal Epithelium Produced by Inhaled Formaldehyde in Rats-Assessing Contributions to Adduct Production From Both Endogenous and Exogenous Sources of Formaldehyde. Toxicol Sci 2021; 177:325-333. [PMID: 32735340 PMCID: PMC7548285 DOI: 10.1093/toxsci/kfaa122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although formaldehyde is a normal constituent of tissues, lifetime inhalation exposures at 6 h/day, 5 days/week at concentrations ≥6 ppm caused a nonlinear increase in nasal tumors in rats with incidence reaching close to 50% at 15 ppm. Studies with heavy isotope labeled [13CD2]-formaldehyde permit quantification of both the mass-labeled exogenous and endogenous DNA-formaldehyde reaction products. An existing pharmacokinetic model developed initially to describe 14C-DNA-protein crosslinks (DPX) provided a template for describing the time course of mass-labeled adducts. Published datasets included both DPX and N2-HO13CD2-dG adducts measured after a single 6-h exposure to 0.7, 2, 6, 9, 10, or 15 ppm formaldehyde, after multi-day exposures to 2 ppm for 6 h/day, 7 days/week with interim sacrifices up to 28 days, and after 28-day exposures for 6 h/day, 7 days/week to 0.3, 0.03, or 0.001 ppm. The existing kinetic model overpredicted endogenous adducts in the nasal epithelium after 1-day [13CD2]-formaldehyde exposure, requiring adjustment of parameters for rates of tissue metabolism and background formaldehyde. After refining tissue formaldehyde parameters, we fit the model to both forms of adducts by varying key parameters and optimizing against all 3 studies. Fitting to all these studies required 2 nonlinear pathways—one for high-exposure saturation of clearance in the nasal epithelial tissues and another for extracellular clearance that restricts uptake into the epithelial tissue for inhaled concentrations below 0.7 ppm. This refined pharmacokinetic model for endogenous and exogenous formaldehyde acetal adducts can assist in updating biologically based dose-response models for formaldehyde carcinogenicity.
Collapse
Affiliation(s)
- Jerry L Campbell
- Department of Health and Safety, Ramboll US Corporation, Raleigh, North Carolina 27612
| | - P Robinan Gentry
- Department of Health and Safety, Ramboll US Corporation, Monroe, Louisiana 71201
| | - Harvey J Clewell Iii
- Department of Health and Safety, Ramboll US Corporation, Raleigh, North Carolina 27612
| | | |
Collapse
|
12
|
Thompson CM, Gentry R, Fitch S, Lu K, Clewell HJ. An updated mode of action and human relevance framework evaluation for Formaldehyde-Related nasal tumors. Crit Rev Toxicol 2021; 50:919-952. [PMID: 33599198 DOI: 10.1080/10408444.2020.1854679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Formaldehyde is a reactive aldehyde naturally present in all plant and animal tissues and a critical component of the one-carbon metabolism pathway. It is also a high production volume chemical used in the manufacture of numerous products. Formaldehyde is also one of the most well-studied chemicals with respect to environmental fate, biology, and toxicology-including carcinogenic potential, and mode of action (MOA). In 2006, a published MOA for formaldehyde-induced nasal tumors in rats concluded that nasal tumors were most likely driven by cytotoxicity and regenerative cell proliferation, with possible contributions from direct genotoxicity. In the past 15 years, new research has better informed the MOA with the publication of in vivo genotoxicity assays, toxicogenomic analyses, and development of ultra-sensitive methods to measure endogenous and exogenous formaldehyde-induced DNA adducts. Herein, we review and update the MOA for nasal tumors, with particular emphasis on the numerous studies published since 2006. These new studies further underscore the involvement of cytotoxicity and regenerative cell proliferation, and further inform the genotoxic potential of inhaled formaldehyde. The data lend additional support for the use of mechanistic data for the derivation of toxicity criteria and/or scientifically supported approaches for low-dose extrapolation for the risk assessment of formaldehyde.
Collapse
Affiliation(s)
| | | | | | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
13
|
Gentry R, Thompson CM, Franzen A, Salley J, Albertini R, Lu K, Greene T. Using mechanistic information to support evidence integration and synthesis: a case study with inhaled formaldehyde and leukemia. Crit Rev Toxicol 2021; 50:885-918. [PMID: 33538218 DOI: 10.1080/10408444.2020.1854678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Formaldehyde is one of the most comprehensively studied chemicals, with over 30 years of research focused on understanding the development of cancer following inhalation. The causal conclusions regarding the potential for leukemia are largely based on the epidemiological literature, with little consideration of cancer bioassays, dosimetry studies, and mechanistic research, which challenge the biological plausibility of the disease. Recent reanalyzes of the epidemiological literature have also raised significant questions related to the purported associations between formaldehyde and leukemia. Because of this, considerable scientific debate and uncertainty remain on whether there is a causal association between formaldehyde inhalation exposure and leukemia. Further complexity in evaluating this association is related to the endogenous production of formaldehyde. Multiple modes of action (MOA) have been postulated for the development of leukemia following formaldehyde inhalation that includes unsupported hypotheses of direct or indirect toxicity to the target cell population. Herein, the available evidence relevant to evaluating the postulated MOAs for leukemia following formaldehyde inhalation exposure is organized in the IPCS MOA Framework. The integration of all the available evidence clearly highlights the limited amount of data that support any of the postulated MOAs and demonstrates a significant amount of research supporting the null hypothesis that there is no causal association between formaldehyde inhalation exposure and leukemia. These analyses result in a lack of confidence in any of the postulated MOAs, increasing confidence in the conclusion that there is a lack of biological plausibility for a causal association between formaldehyde inhalation exposure and leukemia.
Collapse
Affiliation(s)
| | | | | | | | - Richard Albertini
- Independent Consultant, Emeritus Professor, University of Vermont, Burlington, Vermont, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
14
|
Housh K, Jha JS, Haldar T, Amin SBM, Islam T, Wallace A, Gomina A, Guo X, Nel C, Wyatt JW, Gates KS. Formation and repair of unavoidable, endogenous interstrand cross-links in cellular DNA. DNA Repair (Amst) 2021; 98:103029. [PMID: 33385969 PMCID: PMC8882318 DOI: 10.1016/j.dnarep.2020.103029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Genome integrity is essential for life and, as a result, DNA repair systems evolved to remove unavoidable DNA lesions from cellular DNA. Many forms of life possess the capacity to remove interstrand DNA cross-links (ICLs) from their genome but the identity of the naturally-occurring, endogenous substrates that drove the evolution and retention of these DNA repair systems across a wide range of life forms remains uncertain. In this review, we describe more than a dozen chemical processes by which endogenous ICLs plausibly can be introduced into cellular DNA. The majority involve DNA degradation processes that introduce aldehyde residues into the double helix or reactions of DNA with endogenous low molecular weight aldehyde metabolites. A smaller number of the cross-linking processes involve reactions of DNA radicals generated by oxidation.
Collapse
Affiliation(s)
- Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jay S Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Saosan Binth Md Amin
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tanhaul Islam
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Amanda Wallace
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Anuoluwapo Gomina
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Xu Guo
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jesse W Wyatt
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Kent S Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States; University of Missouri, Department of Biochemistry, Columbia, MO 65211, United States.
| |
Collapse
|
15
|
Zhu R, Zhang G, Jing M, Han Y, Li J, Zhao J, Li Y, Chen PR. Genetically encoded formaldehyde sensors inspired by a protein intra-helical crosslinking reaction. Nat Commun 2021; 12:581. [PMID: 33495458 PMCID: PMC7835342 DOI: 10.1038/s41467-020-20754-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/30/2020] [Indexed: 12/22/2022] Open
Abstract
Formaldehyde (FA) has long been considered as a toxin and carcinogen due to its damaging effects to biological macromolecules, but its beneficial roles have been increasingly appreciated lately. Real-time monitoring of this reactive molecule in living systems is highly desired in order to decipher its physiological and/or pathological functions, but a genetically encoded FA sensor is currently lacking. We herein adopt a structure-based study of the underlying mechanism of the FA-responsive transcription factor HxlR from Bacillus subtilis, which shows that HxlR recognizes FA through an intra-helical cysteine-lysine crosslinking reaction at its N-terminal helix α1, leading to conformational change and transcriptional activation. By leveraging this FA-induced intra-helical crosslinking and gain-of-function reorganization, we develop the genetically encoded, reaction-based FA sensor-FAsor, allowing spatial-temporal visualization of FA in mammalian cells and mouse brain tissues.
Collapse
Affiliation(s)
- Rongfeng Zhu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361005, Xiamen, Fujian, China
| | - Gong Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 401331, Chongqing, China
| | - Miao Jing
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
- State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, 100871, Beijing, China
- Chinese Institute for Brain Research, 102206, Beijing, China
| | - Yu Han
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Jiaofeng Li
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Jingyi Zhao
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
- State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China.
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, 100871, Beijing, China.
| |
Collapse
|
16
|
A new highly selective fluorescence probe for the imaging of endogenous formaldehyde in living cells. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Nakamura J, Nakamura M. DNA-protein crosslink formation by endogenous aldehydes and AP sites. DNA Repair (Amst) 2020; 88:102806. [PMID: 32070903 DOI: 10.1016/j.dnarep.2020.102806] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
Covalent binding between proteins and a DNA strand produces DNA-protein crosslinks (DPC). DPC are one of the most deleterious types of DNA damage, leading to the blockage of DNA replication and transcription. Both DNA lesions and endogenous products with carbonyl functional groups can produce DPC in genomic DNA under normal physiological conditions. For example, formaldehyde, the most abundant endogenous human carcinogen, and apurinic/apyrimidinic (AP) sites, the most common type of endogenous DNA lesions, has been shown to crosslink proteins and/or DNA through their carbonyl functional groups. Unfortunately, compared to other types of DNA damage, DPC have been less studied and understood. However, a recent advancement has allowed researchers to determine accurate yields of various DNA lesions including formaldehyde-derived DPC with high sensitivity and specificity, paving the way for new developments in this field of research. Here, we review the current literature and remaining unanswered questions on DPC formation by endogenous formaldehyde and various aldehydic 2-deoxyribose lesions.
Collapse
Affiliation(s)
- Jun Nakamura
- Laboratory of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Osaka, Japan.
| | - Mai Nakamura
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Endogenous formaldehyde is a memory-related molecule in mice and humans. Commun Biol 2019; 2:446. [PMID: 31815201 PMCID: PMC6884489 DOI: 10.1038/s42003-019-0694-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
Gaseous formaldehyde is an organic small molecule formed in the early stages of earth’s evolution. Although toxic in high concentrations, formaldehyde plays an important role in cellular metabolism and, unexpectedly, is found even in the healthy brain. However, its pathophysiological functions in the brain are unknown. Here, we report that under physiological conditions, spatial learning activity elicits rapid formaldehyde generation from mitochondrial sarcosine dehydrogenase (SARDH). We find that elevated formaldehyde levels facilitate spatial memory formation by enhancing N-methyl-D-aspartate (NMDA) currents via the C232 residue of the NMDA receptor, but that high formaldehyde concentrations gradually inactivate the receptor by cross-linking NR1 subunits to NR2B. We also report that in mice with aldehyde dehydrogenase-2 (ALDH2) knockout, formaldehyde accumulation due to hypofunctional ALDH2 impairs memory, consistent with observations of Alzheimerʼs disease patients. We also find that formaldehyde deficiency caused by mutation of the mitochondrial SARDH gene in children with sarcosinemia or in mice with Sardh deletion leads to cognitive deficits. Hence, we conclude that endogenous formaldehyde regulates learning and memory via the NMDA receptor. Ai et al. report that endogenous formaldehyde bidirectionally modulates cognition via the NMDA-R receptor, with both insufficiency and overabundance resulting in cognitive defects. The target site of formaldehyde enhancing NMDA-currents is cysteine C232 residue in amino terminal domain sequence of the NR2B subunit of NMDA-R and excessive formaldehyde suppresses NMDA-R activity by cross-linking NR1 to NR2B residues.
Collapse
|
19
|
Zhao Y, Chan CK, Chan KKJ, Chan W. Quantitation of N6-Formyl-lysine Adduct Following Aristolochic Acid Exposure in Cells and Rat Tissues by Liquid Chromatography-Tandem Mass Spectrometry Coupled with Stable Isotope-Dilution Method. Chem Res Toxicol 2019; 32:2086-2094. [DOI: 10.1021/acs.chemrestox.9b00272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Andersen ME, Gentry PR, Swenberg JA, Mundt KA, White KW, Thompson C, Bus J, Sherman JH, Greim H, Bolt H, Marsh GM, Checkoway H, Coggon D, Clewell HJ. Considerations for refining the risk assessment process for formaldehyde: Results from an interdisciplinary workshop. Regul Toxicol Pharmacol 2019; 106:210-223. [PMID: 31059732 DOI: 10.1016/j.yrtph.2019.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 01/06/2023]
Abstract
Anticipating the need to evaluate and integrate scientific evidence to inform new risk assessments or to update existing risk assessments, the Formaldehyde Panel of the American Chemistry Council (ACC), in collaboration with the University of North Carolina, convened a workshop: "Understanding Potential Human Health Cancer Risk - From Data Integration to Risk Evaluation" in October 2017. Twenty-four (24) invited-experts participated with expertise in epidemiology, toxicology, science integration and risk evaluation. Including members of the organizing committee, there were 29 participants. The meeting included eleven presentations encompassing an introduction and three sessions: (1) "integrating the formaldehyde science on nasal/nasopharyngeal carcinogenicity and potential for causality"; (2) "integrating the formaldehyde science on lymphohematopoietic cancer and potential for causality; and, (3) "formaldehyde research-data suitable for risk assessment". Here we describe key points from the presentations on epidemiology, toxicology and mechanistic studies that should inform decisions about the potential carcinogenicity of formaldehyde in humans and the discussions about approaches for structuring an integrated, comprehensive risk assessment for formaldehyde. We also note challenges expected when attempting to reconcile divergent results observed from research conducted within and across different scientific disciplines - especially toxicology and epidemiology - and in integrating diverse, multi-disciplinary mechanistic evidence.
Collapse
Affiliation(s)
- Melvin E Andersen
- ScitoVation LLC, 100 Capitola Drive, Drive 106, Durham, NC, 27713, USA.
| | | | - James A Swenberg
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kenneth A Mundt
- Ramboll US Corporation, Amherst, MA (currently with Cardno Chemrisk, Boston, MA, USA
| | | | | | - James Bus
- Center for Toxicology and Mechanistic Biology, Exponent, Alexandria, VA, USA
| | | | | | - Hermann Bolt
- Leibniz Institute for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Gary M Marsh
- Department of Biostatistics, Center for Occupational Biostatistics and Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Harvey Checkoway
- University of California, San Diego, Department of Family Medicine and Public Health, USA
| | - David Coggon
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
| | - Harvey J Clewell
- Ramboll US Corporation, 6 Davis Drive, Suite 13, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
21
|
Review of the evidence for thresholds for DNA-Reactive and epigenetic experimental chemical carcinogens. Chem Biol Interact 2019; 301:88-111. [DOI: 10.1016/j.cbi.2018.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 01/01/2023]
|
22
|
Ai L, Wang J, Li T, Zhao C, Tang Y, Wang W, Zhao S, Jiang W, Di Y, Fei X, Luo H, Li H, Luo W, Yu Y, Lin W, He R, Tong Z. A rapid and sensitive fluorescence method for detecting urine formaldehyde in patients with Alzheimer's disease. Ann Clin Biochem 2019; 56:210-218. [PMID: 30373389 PMCID: PMC6415487 DOI: 10.1177/0004563218812986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Morning urine formaldehyde concentrations could predict the severe degree of dementia in patients with post-stroke dementia and Alzheimer's disease. However, the routinely available technique of high-performance liquid chromatography (HPLC) for detecting urine formaldehyde requires expensive and sophisticated equipment. METHODS We established a fluorescence spectrophotometric method by using a formaldehyde-specific fluorescent probe-NaFA (λex/em = 430/543 nm). As a standard reference method, the same batch of urine samples was analysed by HPLC with a fluorescence detector (λex/em = 346/422 nm). Then we compared the limits of detection and the limits of quantization detected by these two methods and addressed the relationship between urine formaldehyde and human cognitive ability. The Mini-Mental State Examination (MMSE), Clinical Dementia Rating and Activities of Daily Living scale were used to evaluate cognition function in 30 Alzheimer's disease patients and 52 healthy age-matched controls. RESULTS Limits of detection and limits of quantization (1.27 and 2.48 μM) of the NaFA probe method were more accurate than Fluo-HPLC (1.52 and 2.91 μM). There was no difference in the detected formaldehyde values within day and day-to-day. Notably, only 3/82 urine formaldehyde concentrations detected by NaFA probe were below zero, while 12/82 of the values analysed by Fluo-HPLC were abnormal. More importantly, there were negatively correlated between urine formaldehyde concentrations detected by NaFA probe and MMSE scores, but positively correlated with Clinical Dementia Rating scores in Alzheimer's disease patients. CONCLUSIONS This detecting urine formaldehyde method by NaFA probe was more rapid, sensitive and accurate than Fluo-HPLC.
Collapse
Affiliation(s)
- Li Ai
- Laboratory of Alzheimer’s Optoelectric Therapy, Alzheimer’s Disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Jun Wang
- Beijing No. 12 Laboratory of Brain and Cognitive Sciences, Beijing, China
| | - Tingting Li
- Beijing No. 12 Laboratory of Brain and Cognitive Sciences, Beijing, China
| | - Chang Zhao
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong, China
| | - Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong, China
| | - Weishan Wang
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Shengjie Zhao
- Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Wenjing Jiang
- Laboratory of Alzheimer’s Optoelectric Therapy, Alzheimer’s Disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Yalan Di
- Laboratory of Alzheimer’s Optoelectric Therapy, Alzheimer’s Disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Xuechao Fei
- Laboratory of Alzheimer’s Optoelectric Therapy, Alzheimer’s Disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Hongjun Luo
- Central Laboratory, Shantou University Medical College, Guangdong, China
| | - Hui Li
- Central Laboratory, Shantou University Medical College, Guangdong, China
| | - Wenhong Luo
- Central Laboratory, Shantou University Medical College, Guangdong, China
| | - Yan Yu
- Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong, China
| | - Rongqiao He
- Laboratory of Alzheimer’s Optoelectric Therapy, Alzheimer’s Disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
- State Key Laboratory of Brain & Cognitive Science, Institute of Biophysics, CAS Key Laboratory of Mental Health, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Zhiqian Tong
- Laboratory of Alzheimer’s Optoelectric Therapy, Alzheimer’s Disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
- Zhiqian Tong, Alzheimer’s Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
23
|
Luong J, Yang X, Hua Y, Yang P, Gras R. Gas Chromatography with In Situ Catalytic Hydrogenolysis and Flame Ionization Detection for the Direct Measurement of Formaldehyde and Acetaldehyde in Challenging Matrices. Anal Chem 2018; 90:13855-13859. [DOI: 10.1021/acs.analchem.8b04563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jim Luong
- Dow Chemical Canada ULC, Highway 15, Fort Saskatchewan, Alberta T8L 2P4, Canada
- Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Xiuhan Yang
- Dow Chemical China Investment Company, Ltd., Number 936 Zhangheng Road, Shanghai 201203, China
| | - Yujuan Hua
- Dow Chemical Canada ULC, Highway 15, Fort Saskatchewan, Alberta T8L 2P4, Canada
| | - Peilin Yang
- Analytical Science, Dow Chemical USA, Collegeville, Pennsylvania 19426, United States
| | - Ronda Gras
- Dow Chemical Canada ULC, Highway 15, Fort Saskatchewan, Alberta T8L 2P4, Canada
- Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Private Bag 75, Hobart 7001, Australia
| |
Collapse
|
24
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
25
|
Chaiendoo K, Sooksin S, Kulchat S, Promarak V, Tuntulani T, Ngeontae W. A new formaldehyde sensor from silver nanoclusters modified Tollens’ reagent. Food Chem 2018; 255:41-48. [DOI: 10.1016/j.foodchem.2018.02.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 02/06/2018] [Indexed: 11/28/2022]
|
26
|
Shishodia S, Zhang D, El-Sagheer AH, Brown T, Claridge TDW, Schofield CJ, Hopkinson RJ. NMR analyses on N-hydroxymethylated nucleobases - implications for formaldehyde toxicity and nucleic acid demethylases. Org Biomol Chem 2018; 16:4021-4032. [PMID: 29767200 PMCID: PMC5977384 DOI: 10.1039/c8ob00734a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
Formaldehyde is produced in cells by enzyme-catalysed demethylation reactions, including those occurring on N-methylated nucleic acids. Formaldehyde reacts with nucleobases to form N-hydroxymethylated adducts that may contribute to its toxicity/carcinogenicity when added exogenously, but the chemistry of these reactions has been incompletely defined. We report NMR studies on the reactions of formaldehyde with canonical/modified nucleobases. The results reveal that hydroxymethyl hemiaminals on endocyclic nitrogens, as observed with thymidine and uridine monophosphates, are faster to form than equivalent hemiaminals on exocyclic nitrogens; however, the exocyclic adducts, as formed with adenine, guanine and cytosine, are more stable in solution. Nucleic acid demethylase (FTO)-catalysed hydroxylation of (6-methyl)adenosine results in (6-hydroxymethyl)adenosine as the major observed product; by contrast no evidence for a stable 3-hydroxymethyl adduct was accrued with FTO-catalysed oxidation of (3-methyl)thymidine. Collectively, our results imply N-hydroxymethyled adducts of nucleic acid bases, formed either by reactions with formaldehyde or via demethylase catalysis, have substantially different stabilities, with some being sufficiently stable to have functional roles in disease or the regulation of nucleic acid/nucleobase activity.
Collapse
Affiliation(s)
- S. Shishodia
- Chemistry Research Laboratory
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
| | - D. Zhang
- Chemistry Research Laboratory
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
| | - A. H. El-Sagheer
- Chemistry Research Laboratory
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
- Chemistry Branch, Department of Science and Mathematics
, Faculty of Petroleum and Mining Engineering
, Suez University
,
43721 Suez
, Egypt
| | - T. Brown
- Chemistry Research Laboratory
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
| | - T. D. W. Claridge
- Chemistry Research Laboratory
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
| | - C. J. Schofield
- Chemistry Research Laboratory
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
| | - R. J. Hopkinson
- Chemistry Research Laboratory
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
- Leicester Institute of Structural and Chemical Biology and Department of Chemistry
, University of Leicester
,
Henry Wellcome Building
, Lancaster Road
, Leicester
, LE1 7RH
, UK
.
| |
Collapse
|
27
|
Lee YH, Tang Y, Verwilst P, Lin W, Kim JS. A biotin-guided formaldehyde sensor selectively detecting endogenous concentrations in cancerous cells and tissues. Chem Commun (Camb) 2018; 52:11247-11250. [PMID: 27722498 DOI: 10.1039/c6cc06158c] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A biotin appended formaldehyde sensor was found to specifically visualise both exogenous and endogenous levels of formaldehyde in biotin receptor positive cells over biotin negative cells by means of one- and two-photon excitation. The probe furthermore visualised endogenous levels of formaldehyde in tumour tissue slices up to 70 μm depth.
Collapse
Affiliation(s)
- Yun Hak Lee
- Department of Chemistry, Korea University, Seoul 136-701, Korea.
| | - Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan, Shandong 250022, P. R. China.
| | - Peter Verwilst
- Department of Chemistry, Korea University, Seoul 136-701, Korea.
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan, Shandong 250022, P. R. China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 136-701, Korea.
| |
Collapse
|
28
|
A Sensitive and Rapid Method for Detecting Formaldehyde in Brain Tissues. Anal Cell Pathol (Amst) 2017; 2017:9043134. [PMID: 29147638 PMCID: PMC5632857 DOI: 10.1155/2017/9043134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/05/2017] [Indexed: 12/28/2022] Open
Abstract
The existing methods for detecting formaldehyde (FA) in brain samples are expensive and require sophisticated experimental procedures. Here, we established a highly sensitive and selective spectrophotometric method, which is based on a reaction in which FA reacts with colorless reagent 4-amino-3-penten-2-one (Fluoral-P) to produce a yellow compound, 3,5-diacetyl-1,4-dihydrolutidine (DDL), which can be detected by a spectrophotometer at 420 nm at room temperature. The sensitive response time point was found to be at the first hour, and the optimal pH of derivative reaction was pH 6.0. The limit of detection (LOD) and the limits of quantization (LOQ) for detecting FA were 0.5 μM and 2.5 μM, respectively. Using this method, an abnormally high level of FA was detected in both the brains of FA-injected mice and autopsy hippocampus tissues from patients with Alzheimer's disease. This finding suggests that the modified Fluoral-P method is effective for measuring levels of FA in the brains.
Collapse
|
29
|
Chen D, Fang L, Mei S, Li H, Xu X, Des Marais TL, Lu K, Liu XS, Jin C. Regulation of Chromatin Assembly and Cell Transformation by Formaldehyde Exposure in Human Cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:097019. [PMID: 28937961 PMCID: PMC5915180 DOI: 10.1289/ehp1275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Formaldehyde (FA) is an environmental and occupational chemical carcinogen. Recent studies have shown that exogenous FA causes only a modest increase in DNA adduct formation compared with the amount of adducts formed by endogenous FA, raising the possibility that epigenetic mechanisms may contribute to FA-mediated carcinogenicity. OBJECTIVES We investigated the effects of FA exposure on histone modifications and chromatin assembly. We also examined the role of defective chromatin assembly in FA-mediated transcription and cell transformation. METHODS Cellular fractionation and Western blot analysis were used to measure the levels of histone modifications in human bronchial epithelial BEAS-2B cells and human nasal RPMI2650 cells in the presence of FA. Chromatin immunoprecipitation (ChIP) and micrococcal nuclease (MNase) digest assays were performed to examine the changes in chromatin assembly and accessibility after FA exposure. RNA sequencing (RNA-seq) and real-time polymerase chain reaction (PCR) were used to examine transcriptional dysregulation. Finally, anchorage-independent cell growth ability was tested by soft agar assay following FA exposure. RESULTS Exposure to FA dramatically decreased the acetylation of the N-terminal tails of cytosolic histones. These modifications are important for histone nuclear import and subsequent chromatin assembly. Histone proteins were depleted in both the chromatin fraction and at most of the genomic loci tested following FA exposure, suggesting that FA compromises chromatin assembly. Moreover, FA increased chromatin accessibility and altered the expression of hundreds of cancer-related genes. Knockdown of the histone H3.3 gene (an H3 variant), which mimics inhibition of chromatin assembly, facilitated FA-mediated anchorage-independent cell growth. CONCLUSIONS We propose that the inhibition of chromatin assembly represents a novel mechanism of cell transformation induced by the environmental and occupational chemical carcinogen FA. https://doi.org/10.1289/EHP1275.
Collapse
Affiliation(s)
- Danqi Chen
- Department of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Lei Fang
- Department of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Shenglin Mei
- Department of Bioinformatics, School of Life Sciences, Tongji University, Shanghai, China
| | - Hongjie Li
- Department of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Xia Xu
- Department of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Thomas L Des Marais
- Department of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Chunyuan Jin
- Department of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
30
|
Backe WJ. A novel mass spectrometric method for formaldehyde in children's personal-care products and water via derivatization with acetylacetone. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1047-1056. [PMID: 28386963 DOI: 10.1002/rcm.7874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE New legislation in the state of Minnesota prohibits the sale of children's personal-care products (PCPs) that contain more than 500 ng/mg formaldehyde. Previous attempts to quantify formaldehyde in PCPs use nonspecific derivatization procedures that employ harsh reagents and/or nonspecific detection. Derivatization of formaldehyde by acetylacetone occurs under mild conditions and is specific for formaldehyde but it has not been investigated using high-performance liquid chromatography/tandem mass-spectrometry (HPLC/MS/MS). METHODS To determine formaldehyde, PCPs were dissolved and then interferences were minimized by graphitized-carbon solid-phase extraction. Formaldehyde was derivatized to 3,5-diacetyl-1,4-dihydrolutidine (DDL) using an acetylacetone solution. Post-derivatization, samples were diluted and analyzed by HPLC/MS/MS. Quantification was performed by isotopic dilution. Product-ion spectra were acquired for DDL and D12 -DDL. The mass shifts between the two product-ion spectra were used to assign fragment structures. To confirm molecular formulas, high-resolution accurate-mass analysis of the DDL product ions was performed by quadrupole time-of-flight MS. RESULTS Structures were proposed for all product ions of DDL above 10% relative intensity. Method accuracy ranged between 96-104% for all matrices at all concentrations tested. Method precision was less than 4% relative standard deviation. The reporting limit was 10 ng/mg in PCPs and 100 μg/L in water. Twenty children's PCPs were tested to demonstrate the method and formaldehyde was reported in five from 23-1500 ng/mg. Of those five, two samples contained formaldehyde above the Minnesota regulatory limit. CONCLUSIONS The developed method allows for the accurate quantification of formaldehyde in PCPs at levels below those required by a new regulation on children's products in Minnesota. The method includes a derivatization procedure that is newly adapted to HPLC/MS/MS; therefore, structures were proposed for the product ions of the derivative (DDL). Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Will J Backe
- 601 Robert St. N., P.O. Box 64899, Public Health Laboratory, Minnesota Department of Health, Saint Paul, MN, 55164-0899, USA
| |
Collapse
|
31
|
Jiménez-Villarreal J, Betancourt-Martínez ND, Carranza-Rosales P, Viveros-Valdez E, Guzmán-Delgado NE, López-Márquez FC, Martíneza JM. Formaldehyde induces DNA strand breaks on spermatozoa and lymphocytes of Wistar rats. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Singha S, Jun YW, Bae J, Ahn KH. Ratiometric Imaging of Tissue by Two-Photon Microscopy: Observation of a High Level of Formaldehyde around Mouse Intestinal Crypts. Anal Chem 2017; 89:3724-3731. [DOI: 10.1021/acs.analchem.7b00044] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Subhankar Singha
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Yong Woong Jun
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Juryang Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| |
Collapse
|
33
|
The lower alkyl methacrylates: Genotoxic profile of non-carcinogenic compounds. Regul Toxicol Pharmacol 2017; 84:77-93. [PMID: 28087335 DOI: 10.1016/j.yrtph.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
Abstract
All of the lower alkyl methacrylates are high production chemicals with potential for human exposure. The genotoxicity of seven mono-functional alkyl esters of methacrylic acid, i.e. methyl methacrylate, ethyl methacrylate, hydroxyethyl methacrylate, n-, i- and t-butyl methacrylate and 2 ethyl hexyl methacrylate, as well as methacrylic acid itself, the acyl component common to all, is reviewed and compared with the lack of carcinogenicity of methyl methacrylate, the representative member of the series so evaluated. Also reviewed are the similarity of structure, chemical and biological reactivity, metabolism and common metabolic products of this group of compounds which allows a category approach for assessing genotoxicity. As a class, the lower alkyl methacrylates are universally negative for gene mutations in prokaryotes but do exhibit high dose clastogenicity in mammalian cells in vitro. There is no convincing evidence that these compounds induce genotoxic effects in vivo in either sub-mammalian or mammalian species. This dichotomy of effects can be explained by the potential genotoxic intermediates generated in vitro. This genotoxic profile of the lower alkyl methacrylates is consistent with the lack of carcinogenicity of methyl methacrylate.
Collapse
|
34
|
Albertini RJ, Kaden DA. Do chromosome changes in blood cells implicate formaldehyde as a leukemogen? Crit Rev Toxicol 2016; 47:145-184. [DOI: 10.1080/10408444.2016.1211987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Bogen KT, Heilman JM. Reassessment of MTBE cancer potency considering modes of action for MTBE and its metabolites. Crit Rev Toxicol 2016; 45 Suppl 1:1-56. [PMID: 26414780 DOI: 10.3109/10408444.2015.1052367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A 1999 California state agency cancer potency (CP) evaluation of methyl tert-butyl ether (MTBE) assumed linear risk extrapolations from tumor data were plausible because of limited evidence that MTBE or its metabolites could damage DNA, and based such extrapolations on data from rat gavage and rat and mouse inhalation studies indicating elevated tumor rates in male rat kidney, male rat Leydig interstitial cells, and female rat leukemia/lymphomas. More recent data bearing on MTBE cancer potency include a rodent cancer bioassay of MTBE in drinking water; several new studies of MTBE genotoxicity; several similar evaluations of MTBE metabolites, formaldehyde, and tert-butyl alcohol or TBA; and updated evaluations of carcinogenic mode(s) of action (MOAs) of MTBE and MTBE metabolite's. The lymphoma/leukemia data used in the California assessment were recently declared unreliable by the U.S. Environmental Protection Agency (EPA). Updated characterizations of MTBE CP, and its uncertainty, are currently needed to address a variety of decision goals concerning historical and current MTBE contamination. To this end, an extensive review of data sets bearing on MTBE and metabolite genotoxicity, cytotoxicity, and tumorigenicity was applied to reassess MTBE CP and related uncertainty in view of MOA considerations. Adopting the traditional approach that cytotoxicity-driven cancer MOAs are inoperative at very low, non-cytotoxic dose levels, it was determined that MTBE most likely does not increase cancer risk unless chronic exposures induce target-tissue toxicity, including in sensitive individuals. However, the corresponding expected (or plausible upper bound) CP for MTBE conditional on a hypothetical linear (e.g., genotoxic) MOA was estimated to be ∼2 × 10(-5) (or 0.003) per mg MTBE per kg body weight per day for adults exposed chronically over a lifetime. Based on this conservative estimate of CP, if MTBE is carcinogenic to humans, it is among the weakest 10% of chemical carcinogens evaluated by EPA.
Collapse
|
36
|
Lai Y, Yu R, Hartwell HJ, Moeller BC, Bodnar WM, Swenberg JA. Measurement of Endogenous versus Exogenous Formaldehyde-Induced DNA-Protein Crosslinks in Animal Tissues by Stable Isotope Labeling and Ultrasensitive Mass Spectrometry. Cancer Res 2016; 76:2652-61. [PMID: 26984759 DOI: 10.1158/0008-5472.can-15-2527] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/14/2016] [Indexed: 12/24/2022]
Abstract
DNA-protein crosslinks (DPC) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Because of their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([(13)CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous ((13)CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues but were absent in tissues distant to the site of contact. This observation, together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined, suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for the persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde and may inform improved disease prevention and treatment strategies. Cancer Res; 76(9); 2652-61. ©2016 AACR.
Collapse
Affiliation(s)
- Yongquan Lai
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rui Yu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hadley J Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Wanda M Bodnar
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James A Swenberg
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
37
|
Mei Y, Duan C, Li X, Zhao Y, Cao F, Shang S, Ding S, Yue X, Gao G, Yang H, Shen L, Feng X, Jia J, Tong Z, Yang X. Reduction of Endogenous Melatonin Accelerates Cognitive Decline in Mice in a Simulated Occupational Formaldehyde Exposure Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13030258. [PMID: 26938543 PMCID: PMC4808921 DOI: 10.3390/ijerph13030258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 01/10/2023]
Abstract
Individuals afflicted with occupational formaldehyde (FA) exposure often suffer from abnormal behaviors such as aggression, depression, anxiety, sleep disorders, and in particular, cognitive impairments. Coincidentally, clinical patients with melatonin (MT) deficiency also complain of cognitive problems associated with the above mental disorders. Whether and how FA affects endogenous MT metabolism and induces cognitive decline need to be elucidated. To mimic occupational FA exposure environment, 16 healthy adult male mice were exposed to gaseous FA (3 mg/m3) for 7 consecutive days. Results showed that FA exposure impaired spatial memory associated with hippocampal neuronal death. Biochemical analysis revealed that FA exposure elicited an intensive oxidative stress by reducing systemic glutathione levels, in particular, decreasing brain MT concentrations. Inversely, intraperitoneal injection of MT markedly attenuated FA-induced hippocampal neuronal death, restored brain MT levels, and reversed memory decline. At tissue levels, injection of FA into the hippocampus distinctly reduced brain MT concentrations. Furthermore, at cellular and molecular levels, we found that FA directly inactivated MT in vitro and in vivo. These findings suggest that MT supplementation contributes to the rescue of cognitive decline, and may alleviate mental disorders in the occupational FA-exposed human populations.
Collapse
Affiliation(s)
- Yufei Mei
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China.
- Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Chunli Duan
- Department of Neuobiology, Capital Medical University, Beijing 100069, China.
| | - Xiaoxiao Li
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Yun Zhao
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Fenghua Cao
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Shuai Shang
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Shumao Ding
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Xiangpei Yue
- Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Ge Gao
- Department of Neuobiology, Capital Medical University, Beijing 100069, China.
| | - Hui Yang
- Department of Neuobiology, Capital Medical University, Beijing 100069, China.
| | - Luxi Shen
- Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Xueyan Feng
- Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Jianping Jia
- Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Zhiqian Tong
- Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Xu Yang
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
38
|
Clewell RA, Andersen ME. Approaches for characterizing threshold dose-response relationships for DNA-damage pathways involved in carcinogenicity in vivo and micronuclei formation in vitro. Mutagenesis 2016; 31:333-40. [PMID: 26846943 DOI: 10.1093/mutage/gev078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Assessing the shape of dose-response curves for DNA-damage in cellular systems and for the consequences of DNA damage in intact animals remains a controversial topic. This overview looks at aspects of the pharmacokinetics (PK) and pharmacodynamics (PD) of cellular DNA-damage/repair and their role in defining the shape of dose-response curves using an in vivo example with formaldehyde and in vitro examples for micronuclei (MN) formation with several test compounds. Formaldehyde is both strongly mutagenic and an endogenous metabolite in cells. With increasing inhaled concentrations, there were transitions in gene changes, from activation of selective stress pathway genes at low concentrations, to activation of pathways for cell-cycle control, p53-DNA damage, and stem cell niche pathways at higher exposures. These gene expression changes were more consistent with dose-dependent transitions in the PD responses to formaldehyde in epithelial cells in the intact rat rather than the low-dose linear extrapolation methods currently used for carcinogens. However, more complete PD explanations of non-linear dose response for creation of fixed damage in cells require detailed examination of cellular responses in vitro using measures of DNA damage and repair that are not easily accessible in the intact animal. In the second section of the article, we illustrate an approach from our laboratory that develops fit-for-purpose, in vitro assays and evaluates the PD of DNA damage and repair through studies using prototypical DNA-damaging agents. Examination of a broad range of responses in these cells showed that transcriptional upregulation of cell cycle control and DNA repair pathways only occurred at doses higher than those causing overt damage fixed damage-measured as MN formation. Lower levels of damage appear to be handled by post-translational repair process using pre-existing proteins. In depth evaluation of the PD properties of one such post-translational process (formation of DNA repair centers; DRCs) has indicated that the formation of DRCs and their ability to complete repair before replication are consistent with threshold behaviours for mutagenesis and, by extension, with chemical carcinogenesis.
Collapse
Affiliation(s)
- Rebecca A Clewell
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709-2137 , USA
| | - Melvin E Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709-2137 , USA
| |
Collapse
|
39
|
Tong Z, Han C, Qiang M, Wang W, Lv J, Zhang S, Luo W, Li H, Luo H, Zhou J, Wu B, Su T, Yang X, Wang X, Liu Y, He R. Age-related formaldehyde interferes with DNA methyltransferase function, causing memory loss in Alzheimer's disease. Neurobiol Aging 2015; 36:100-10. [PMID: 25282336 DOI: 10.1016/j.neurobiolaging.2014.07.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 02/05/2023]
Abstract
Hippocampus-related topographic amnesia is the most common symptom of memory disorders in Alzheimer's disease (AD) patients. Recent studies have revealed that experience-mediated DNA methylation, which is regulated by enzymes with DNA methyltransferase (DNMT) activity, is required for the formation of recent memory as well as the maintenance of remote memory. Notably, overexpression of DNMT3a in the hippocampus can reverse spatial memory deficits in aged mice. However, a decline in global DNA methylation was found in the autopsied hippocampi of patients with AD. Exactly, what endogenous factors that affect DNA methylation still remain to be elucidated. Here, we report a marked increase in endogenous formaldehyde levels is associated with a decline in global DNA methylation in the autopsied hippocampus from AD patients. In vitro and in vivo results show that formaldehyde in excess of normal physiological levels reduced global DNA methylation by interfering DNMTs. Interestingly, intrahippocampal injection of excess formaldehyde before spatial learning in healthy adult rats can mimic the learning difficulty of early stage of AD. Moreover, injection of excess formaldehyde after spatial learning can mimic the loss of remote spatial memory observed in late stage of AD. These findings suggest that aging-associated formaldehyde contributes to topographic amnesia in AD patients.
Collapse
Affiliation(s)
- Zhiqian Tong
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Chanshuai Han
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Min Qiang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | | | - Jihui Lv
- Beijing Geriatric Hospital, Beijing, China
| | | | - Wenhong Luo
- Central Laboratory, Shantou University Medical College, Guangdong, China
| | - Hui Li
- Central Laboratory, Shantou University Medical College, Guangdong, China
| | - Hongjun Luo
- Central Laboratory, Shantou University Medical College, Guangdong, China
| | - Jiangning Zhou
- University of Science and Technology of China, Anhui, China
| | - Beibei Wu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Tao Su
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan, China
| | - Xiaomin Wang
- Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ying Liu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
40
|
Zhang J, Sun R, Chen Y, Tan K, Wei H, Yin L, Pu Y. Small molecule metabolite biomarker candidates in urine from mice exposed to formaldehyde. Int J Mol Sci 2014; 15:16458-68. [PMID: 25233128 PMCID: PMC4200854 DOI: 10.3390/ijms150916458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/22/2014] [Accepted: 09/02/2014] [Indexed: 01/16/2023] Open
Abstract
Formaldehyde (FA) is a ubiquitous compound used in a wide variety of industries, and is also a major indoor pollutant emitted from building materials, furniture, etc. Because FA is rapidly metabolized and endogenous to many materials, specific biomarkers for exposure have not been identified. In this study, we identified small metabolite biomarkers in urine that might be related FA exposure. Mice were allowed to inhale FA (0, 4, 8 mg/m3) 6 h per day for 7 consecutive days, and urine samples were collected on the 7th day of exposure. Liquid chromatography coupled with time of flight-mass spectrometry and principal component analysis (PCA) was applied to determine alterations of endogenous metabolites in urine. Additionally, immune toxicity studies were conducted to ensure that any resultant toxic effects could be attributed to inhalation of FA. The results showed a significant decrease in the relative rates of T lymphocyte production in the spleen and thymus of mice exposed to FA. Additionally, decreased superoxide dismutase activity and increased reactive oxygen species levels were found in the isolated spleen cells of exposed mice. A total of 12 small molecules were found to be altered in the urine, and PCA analysis showed that urine from the control and FA exposed groups could be distinguished from each other based on the altered molecules. Hippuric acid and cinnamoylglycine were identified in urine using exact mass and fragment ions. Our results suggest that the pattern of metabolites found in urine is significantly changed following FA inhalation, and hippuric acid and cinnamoylglycine might represent potential biomarker candidates for FA exposure.
Collapse
Affiliation(s)
- Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yue Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Kehong Tan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Haiyan Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
41
|
Doane M, Sarenbo S. Exposure of farm laborers and dairy cattle to formaldehyde from footbath use at a dairy farm in New York State. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 487:65-71. [PMID: 24768913 DOI: 10.1016/j.scitotenv.2014.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
Formalin footbaths are commonly used in the dairy industry to prevent cattle hoof diseases. Although formalin is a well-documented disinfectant, it is also a carcinogen and irritant. The aim of this study was to estimate the exposure of farm workers and dairy cattle to formaldehyde from footbaths located in a milking facility and a heifer facility at a dairy farm in western New York, USA. The dairy farm included approximately 3900 dairy cattle including young stock; of these, 1670 cows were milked three times per day in a 60-stall carousel milking parlor, and approximately 800 heifers were located at the heifer facility where footbaths with formalin were in use. The formaldehyde concentration of the air was measured using a Formaldemeter™ htV approximately 50cm above the 3% formalin footbaths in the milking (one footbath location) and heifer (three footbath locations) facilities on three consecutive days. The measured formaldehyde concentrations varied between 0.00 and 2.28ppm, falling within the safety guidelines established by the Occupation Safety and Health Administration (OSHA) of the United States. Significant differences were found in the formaldehyde concentrations at the different footbath locations in the heifer facility, potentially due to the varying levels of ventilation at each location. Changes in the ambient temperature during the 3-day sampling period did not significantly affect the concentrations. We believe that the substantial ventilation at both the heifer and milking facilities ensured that the formaldehyde concentrations did not exceed OSHA guidelines, thus permitting the safe use of formalin footbaths in this farm.
Collapse
Affiliation(s)
- M Doane
- University of Linnaeus, Faculty of Health and Life Sciences, Department of Biology and Environmental Sciences, Barlastgatan 11, SE-39182 Kalmar, Sweden
| | - S Sarenbo
- University of Linnaeus, Faculty of Health and Life Sciences, Department of Biology and Environmental Sciences, Barlastgatan 11, SE-39182 Kalmar, Sweden.
| |
Collapse
|
42
|
Lang BC, Yang J, Wang Y, Luo Y, Kang Y, Liu J, Zhang WS. An improved design of water-soluble propofol prodrugs characterized by rapid onset of action. Anesth Analg 2014; 118:745-54. [PMID: 24651228 DOI: 10.1213/ane.0000000000000124] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Phosphate ester prodrugs of propofol (fospropofol, HX0969W) were designed to avoid the unsatisfactory water solubility of the parent drug. However, in previous clinical trials, there were reported prodrug side effects such as paresthesia and pruritus. The accumulation of a phosphate ester component was found to be the main culprit. To exclude this potential risk, we designed 2 amino acid propofol prodrugs (HX0969-Gly-F3, HX0969-Ala-HCl) based on the lead compound (HX0969) by introducing the amino acid group into the structures of the propofol prodrugs. We hypothesized that the improved propofol prodrugs could not only eliminate those adverse effects but also retain their rapid action and good water solubility. METHODS The lead compound HX0969 was synthesized by the sodium borohydride-iodine system. HX0969W, HX0969-Gly-F3, and HX0969-Ala-HCl were synthesized from HX0969. The solubility of fospropofol, HX0969W, HX0969-Gly-F3, and HX0969-Ala-HCl in normal saline was tested. The bioconversions from those prodrugs to propofol in different physiological media (rat plasma, rhesus monkey plasma, and rat hepatic microsomes) were determined in vitro. An in vivo test in the rats was performed to measure the 50% effective dose (ED50) of the 4 propofol prodrugs. Their action onset time and duration time were also measured after their equipotent doses were given. RESULTS (1) The water solubility of fospropofol, HX0969W, HX0969-Gly-F3, and HX0969-Ala-HCl was 461.46 ± 26.40 mg/mL, 189.45 ± 5.02 mg/mL, 49.88 ± 0.58 mg/mL, and 245.99 ± 4.83 mg/mL, respectively; (2) The hydrolysis tests in both the rat plasma and the rhesus monkey plasma revealed that the 2 amino acid prodrugs released propofol to a greater extent at a more rapid rate than the 2 phosphate prodrugs during the testing period of 5 hours. All 4 prodrugs released propofol rapidly in the presence of rat hepatic enzymes; (3) Compared with the previous prodrugs (fospropofol, HX0969W), the 2 novel compounds (HX0969-Gly-F3, HX0969-Ala-HCl) had a much shorter onset time when a much lower dose was given. CONCLUSIONS Application of the amino acid group to the propofol prodrug can make the prodrug have good water solubility and a more rapid onset of action. In rat plasma, the 2 improved amino acid prodrugs (HX0969-Ala-HCl, HX0969-Gly-F3) had a more rapid rate of propofol release than the 2 phosphate ester prodrugs (fospropofol, HX0969W). The in vivo tests showed that HX0969-Ala-HCl and HX0969-Gly-F3 given IV could have a more rapid onset of action in a smaller dose than fospropofol and HX0969W. This novel design can enhance the efficiency of prodrugs converting to propofol.
Collapse
Affiliation(s)
- Bing-Chen Lang
- From the *Regenerative Medicine Research Center, West China Hospital of Sichuan University; †Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University; and ‡State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
43
|
Scientific Opinion on the safety and efficacy of formaldehyde for all animal species based on a dossier submitted by Regal BV. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
44
|
Scientific Opinion on the safety and efficacy of formaldehyde for all animal species based on a dossier submitted by Adiveter S.L. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
45
|
Endogenous formaldehyde turnover in humans compared with exogenous contribution from food sources. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3550] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
46
|
Schroeter JD, Campbell J, Kimbell JS, Conolly RB, Clewell HJ, Andersen ME. Effects of endogenous formaldehyde in nasal tissues on inhaled formaldehyde dosimetry predictions in the rat, monkey, and human nasal passages. Toxicol Sci 2014; 138:412-24. [PMID: 24385418 DOI: 10.1093/toxsci/kft333] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Formaldehyde is a nasal carcinogen in rodents at high doses and is an endogenous compound that is present in all living cells. Due to its high solubility and reactivity, quantitative risk estimates for inhaled formaldehyde have relied on internal dose estimates in the upper respiratory tract. Dosimetry calculations are complicated by the presence of endogenous formaldehyde concentrations in the respiratory mucosa. Anatomically accurate computational fluid dynamics (CFD) models of the rat, monkey, and human nasal passages were used to simulate uptake of inhaled formaldehyde. An epithelial structure was implemented in the nasal CFD models to estimate formaldehyde absorption from air:tissue partitioning, species-specific metabolism, first-order clearance, DNA binding, and endogenous formaldehyde production. At an exposure concentration of 1 ppm, predicted formaldehyde nasal uptake was 99.4, 86.5, and 85.3% in the rat, monkey, and human, respectively. Endogenous formaldehyde in nasal tissues did not significantly affect wall mass flux or nasal uptake predictions at exposure concentrations > 500 ppb; however, reduced nasal uptake was predicted at lower exposure concentrations. At an exposure concentration of 1 ppb, predicted nasal uptake was 17.5 and 42.8% in the rat and monkey; net desorption of formaldehyde was predicted in the human model. The nonlinear behavior of formaldehyde nasal absorption will affect the dose-response analysis and subsequent risk estimates at low exposure concentrations. Updated surface area partitioning of nonsquamous epithelium and average flux values in regions where DNA-protein cross-links and cell proliferation rates were measured in rats and monkeys are reported for use in formaldehyde risk models of carcinogenesis.
Collapse
|
47
|
Aging-associated excess formaldehyde leads to spatial memory deficits. Sci Rep 2013; 3:1807. [PMID: 23657727 PMCID: PMC3648839 DOI: 10.1038/srep01807] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/23/2013] [Indexed: 01/24/2023] Open
Abstract
Recent studies show that formaldehyde participates in DNA demethylation/methylation cycle. Emerging evidence identifies that neuronal activity induces global DNA demethylation and re-methylation; and DNA methylation is a critical step for memory formation. These data suggest that endogenous formaldehyde may intrinsically link learning-responsive DNA methylation status and memory formation. Here, we report that during spatial memory formation process, spatial training induces an initial global DNA demethylation and subsequent re-methylation associated with hippocampal formaldehyde elevation then decline to baseline level in Sprague Dawley rats. Scavenging this elevated formaldehyde by formaldehyde-degrading enzyme (FDH), or enhancing DNA demethylation by a DNA demethylating agent, both led to spatial memory deficits by blocking DNA re-methylation in rats. Furthermore, we found that the normal adult rats intrahippocampally injected with excess formaldehyde can imitate the aged-related spatial memory deficits and global DNA methylation decline. These findings indicate that aging-associated excess formaldheyde contributes to cognitive decline during aging.
Collapse
|
48
|
Tong Z, Han C, Luo W, Wang X, Li H, Luo H, Zhou J, Qi J, He R. Accumulated hippocampal formaldehyde induces age-dependent memory decline. AGE (DORDRECHT, NETHERLANDS) 2013; 35:583-96. [PMID: 22382760 PMCID: PMC3636394 DOI: 10.1007/s11357-012-9388-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 01/31/2012] [Indexed: 05/25/2023]
Abstract
Aging is an important factor in memory decline in aged animals and humans and in Alzheimer's disease and is associated with the impairment of hippocampal long-term potentiation (LTP) and down-regulation of NR1/NR2B expression. Gaseous formaldehyde exposure is known to induce animal memory loss and human cognitive decline; however, it is unclear whether the concentrations of endogenous formaldehyde are elevated in the hippocampus and how excess formaldehyde affects LTP and memory formation during the aging process. In the present study, we report that hippocampal formaldehyde accumulated in memory-deteriorating diseases such as age-related dementia. Spatial memory performance was gradually impaired in normal Sprague-Dawley rats by persistent intraperitoneal injection with formaldehyde. Furthermore, excess formaldehyde treatment suppressed the hippocampal LTP formation by blocking N-methyl-D-aspartate (NMDA) receptor. Chronic excess formaldehyde treatment over a period of 30 days markedly decreased the viability of the hippocampus and down-regulated the expression of the NR1 and NR2B subunits of the NMDA receptor. Our results indicate that excess endogenous formaldehyde is a critical factor in memory loss in age-related memory-deteriorating diseases.
Collapse
Affiliation(s)
- Zhiqian Tong
- />State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Beijing, 100101 China
| | - Chanshuai Han
- />State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Beijing, 100101 China
| | - Wenhong Luo
- />Central Laboratory, Shantou University Medical College, Guangdong, 515041 China
| | - Xiaohui Wang
- />Department of Neurobiology and National Key Discipline of Physiology, Shanxi Medical University, Taiyuan, 030001 China
| | - Hui Li
- />Central Laboratory, Shantou University Medical College, Guangdong, 515041 China
| | - Hongjun Luo
- />Central Laboratory, Shantou University Medical College, Guangdong, 515041 China
| | - Jiangning Zhou
- />University of Science and Technology of China, Anhui, 230026 China
| | - Jinshun Qi
- />Department of Neurobiology and National Key Discipline of Physiology, Shanxi Medical University, Taiyuan, 030001 China
| | - Rongqiao He
- />State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- />Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
49
|
Postoperative cognitive dysfunction is correlated with urine formaldehyde in elderly noncardiac surgical patients. Neurochem Res 2012; 37:2125-34. [PMID: 22869018 DOI: 10.1007/s11064-012-0834-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/25/2012] [Accepted: 06/23/2012] [Indexed: 12/18/2022]
Abstract
Post-operative cognitive dysfunction (POCD), especially in elderly patients, has been reported in many studies. Although increasing age, duration of anesthesia, postoperative infections, and respiratory complications were regarded as the risk factors for POCD, no extracerebral diagnostic biomarkers have been identified as indicators of POCD. Ninety-five patients, ages 65-80 years, scheduled for major orthopedic or abdominal surgery were enrolled. Twenty-two patients aged between 20 and 40 years undergoing the same procedures served as controls. Subjects received neuropsychological tests one-day prior and one week post procedure. To determine the presence of POCD, the criteria were used as described in most previous studies. Morning urine samples were obtained one day before surgery and on day 1, day 2 and day 7 post operatively. Urine formaldehyde was determined with high-performance liquid chromatography. The urine formaldehyde level of all patients with and without POCD increased on the first 2 days after surgery. But the formaldehyde concentration (on day 7) in patients with POCD was significantly higher than that in patients without POCD (p < 0.01). In the young control group, no patient was diagnosed with POCD. Although the changes in urine formaldehyde of young patients during perioperative period were similar to those in elderly patients without POCD, the formaldehyde concentrations measured at four time points were all significantly lower than those in elderly patients (p < 0.05). Levels of urine formaldehyde were elevated in the perioperative period, with the highest levels at day 7 in patients with POCD. This suggests that the increase on day 7 may provide a new physiologic marker along with neuropsychological assessments to assist in the diagnosis of POCD.
Collapse
|
50
|
Assay of Brain Endogenous Formaldehyde With 2, 4-Dinitrophenylhydrazine Through UV-HPLC*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|