1
|
Yoshimura Y, Mitani Y, Ikeda T, Tanaka S, Suda M, Yaoi K, Hasegawa C, An KM, Iwasaki S, Kumazaki H, Saito DN, Ohta H, Ando A, Cho K, Kikuchi M, Wada T. Language and sensory characteristics are reflected in voice-evoked responses in low birth weight children. Pediatr Res 2025; 97:120-127. [PMID: 38902452 DOI: 10.1038/s41390-024-03270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Children born with very low birth weight (VLBW) are at higher risk for cognitive impairment, including language deficits and sensorimotor difficulties. Voice-evoked response (P1m), which has been suggested as a language development biomarker in young children, remains unexplored for its efficacy in VLBW children. Furthermore, the relation between P1m and sensory difficulties in VLBW children remains unclear. METHODS 40 children with VLBW were recruited at 5-to-6 years old (26 male, 14 female, mean age of months ± SD, 80.0 ± 4.9). We measured their voice-evoked brain response using child-customized magnetoencephalography (MEG) and examined the relation between P1m and language conceptual inference ability and sensory characteristics. RESULTS The final sample comprised 36 children (23 boys, 13 girls; ages 61-86 months; gestational ages 24-36 weeks). As a result of multiple regression analysis, voice-evoked P1m in the left hemisphere was correlated significantly with language ability (β = 0.414 P = 0.015) and sensory hypersensitivity (β = 0.471 P = 0.005). CONCLUSION Our findings indicate that the relation between P1m and language conceptual inference ability observed in term children in earlier studies is replicated in VLBW children, and suggests P1m intensity as a biomarker of sensory sensitivity characteristics. IMPACT We investigated brain functions related to language development and sensory problems in very low birth-weight children. In very low birth weight children at early school age, brain responses to human voices are associated with language conceptual inference ability and sensory hypersensitivity. These findings promote a physiological understanding of both language development and sensory characteristics in very low birth weight children.
Collapse
Affiliation(s)
- Yuko Yoshimura
- Institute of Human and Social Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Yusuke Mitani
- Department of Pediatrics, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Momoka Suda
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Ken Yaoi
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Department of Psychology, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Kyung-Min An
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sumie Iwasaki
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Hirokazu Kumazaki
- Department of Future Psychiatric Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8521, Japan
| | - Daisuke N Saito
- Department of Psychology, Yasuda Women's University, 6-13-1 Kuyasu, Asaminami, Hiroshima, 731-0153, Japan
| | - Hidenobu Ohta
- Department of Occupational Therapy, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Akiko Ando
- Maternity and Perinatal Care Center, Hokkaido University Hospital, N15, W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Kazutoshi Cho
- Maternity and Perinatal Care Center, Hokkaido University Hospital, N15, W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Taizo Wada
- Department of Pediatrics, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| |
Collapse
|
2
|
Chen Y, Green HL, Berman JI, Putt ME, Otten K, Mol K, McNamee M, Allison O, Kuschner ES, Kim M, Bloy L, Liu S, Yount T, Roberts TPL, Christopher Edgar J. Functional and structural maturation of auditory cortex from 2 months to 2 years old. Clin Neurophysiol 2024; 166:232-243. [PMID: 39213880 PMCID: PMC11494624 DOI: 10.1016/j.clinph.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND In school-age children, the myelination of the auditory radiation thalamocortical pathway is associated with the latency of auditory evoked responses, with the myelination of thalamocortical axons facilitating the rapid propagation of acoustic information. Little is known regarding this auditory system function-structure association in infants and toddlers. METHODS AND PARTICIPANTS The present study tested the hypothesis that maturation of auditory radiation white-matter microstructure (e.g., fractional anisotropy (FA); measured using diffusion-weighted MRI) is associated with the latency of the infant auditory response (the P2m response, measured using magnetoencephalography, MEG) in a cross-sectional (N = 47, 2 to 24 months, 19 females) as well as longitudinal cohort (N = 18, 2 to 29 months, 8 females) of typically developing infants and toddlers. Of 18 longitudinal infants, 2 infants had data from 3 timepoints and 16 infants had data from 2 timepoints. RESULTS In the cross-sectional sample, non-linear maturation of P2m latency and auditory radiation diffusion measures were observed. Auditory radiation diffusion accounted for significant variance in P2m latency, even after removing the variance associated with age in both P2m latency and auditory radiation diffusion measures. In the longitudinal sample, latency and FA associations could be observed at the level of a single child. CONCLUSIONS Findings provide strong support for the hypothesis that an increase in thalamocortical neural conduction velocity, due to increased axon diameter and/or myelin maturation, contributes to a decrease in the infant P2m auditory evoked response latency. SIGNIFICANCE Infant multimodal brain imaging identifies brain mechanisms contributing to the rapid changes in neural circuit activity during the first two years of life.
Collapse
Affiliation(s)
- Yuhan Chen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Heather L Green
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jeffrey I Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mary E Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katharina Otten
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, Aachen, 52074, Germany
| | - Kylie Mol
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Marybeth McNamee
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Olivia Allison
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tess Yount
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Chen Y, Green HL, Berman JI, Putt ME, Otten K, Mol KL, McNamee M, Allison O, Kuschner ES, Kim M, Bloy L, Liu S, Yount T, Roberts TPL, Edgar JC. Functional and structural maturation of auditory cortex from 2 months to 2 years old. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597426. [PMID: 38895425 PMCID: PMC11185738 DOI: 10.1101/2024.06.05.597426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In school-age children, the myelination of the auditory radiation thalamocortical pathway is associated with the latency of auditory evoked responses, with the myelination of thalamocortical axons facilitating the rapid propagation of acoustic information. Little is known regarding this auditory system function-structure association in infants and toddlers. The present study tested the hypothesis that maturation of auditory radiation white-matter microstructure (e.g., fractional anisotropy (FA); measured using diffusion-weighted MRI) is associated with the latency of the infant auditory response (P2m measured using magnetoencephalography, MEG) in a cross-sectional (2 to 24 months) as well as longitudinal cohort (2 to 29 months) of typically developing infants and toddlers. In the cross-sectional sample, non-linear maturation of P2m latency and auditory radiation diffusion measures were observed. After removing the variance associated with age in both P2m latency and auditory radiation diffusion measures, auditory radiation still accounted for significant variance in P2m latency. In the longitudinal sample, latency and FA associations could be observed at the level of a single child. Findings provide strong support for a contribution of auditory radiation white matter to rapid cortical auditory encoding processes in infants.
Collapse
|
4
|
Chen Y, Green HL, Putt ME, Allison O, Kuschner ES, Kim M, Blaskey L, Mol K, McNamee M, Bloy L, Liu S, Huang H, Roberts TPL, Edgar JC. Maturation of auditory cortex neural responses during infancy and toddlerhood. Neuroimage 2023; 275:120163. [PMID: 37178820 PMCID: PMC11463054 DOI: 10.1016/j.neuroimage.2023.120163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
The infant auditory system rapidly matures across the first years of life, with a primary goal of obtaining ever-more-accurate real-time representations of the external world. Our understanding of how left and right auditory cortex neural processes develop during infancy, however, is meager, with few studies having the statistical power to detect potential hemisphere and sex differences in primary/secondary auditory cortex maturation. Using infant magnetoencephalography (MEG) and a cross-sectional study design, left and right auditory cortex P2m responses to pure tones were examined in 114 typically developing infants and toddlers (66 males, 2 to 24 months). Non-linear maturation of P2m latency was observed, with P2m latencies decreasing rapidly as a function of age during the first year of life, followed by slower changes between 12 and 24 months. Whereas in younger infants auditory tones were encoded more slowly in the left than right hemisphere, similar left and right P2m latencies were observed by ∼21 months of age due to faster maturation rate in the left than right hemisphere. No sex differences in the maturation of the P2m responses were observed. Finally, an earlier left than right hemisphere P2m latency predicted better language performance in older infants (12 to 24 months). Findings indicate the need to consider hemisphere when examining the maturation of auditory cortex neural activity in infants and toddlers and show that the pattern of left-right hemisphere P2m maturation is associated with language performance.
Collapse
Affiliation(s)
- Yuhan Chen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States.
| | - Heather L Green
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Mary E Putt
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Olivia Allison
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Lisa Blaskey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kylie Mol
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Marybeth McNamee
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Hao Huang
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
5
|
Shorter P1m Response in Children with Autism Spectrum Disorder without Intellectual Disabilities. Int J Mol Sci 2021; 22:ijms22052611. [PMID: 33807635 PMCID: PMC7961676 DOI: 10.3390/ijms22052611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/01/2022] Open
Abstract
(1) Background: Atypical auditory perception has been reported in individuals with autism spectrum disorder (ASD). Altered auditory evoked brain responses are also associated with childhood ASD. They are likely to be associated with atypical brain maturation. (2) Methods: This study examined children aged 5–8 years old: 29 with ASD but no intellectual disability and 46 age-matched typically developed (TD) control participants. Using magnetoencephalography (MEG) data obtained while participants listened passively to sinusoidal pure tones, bilateral auditory cortical response (P1m) was examined. (3) Results: Significantly shorter P1m latency in the left hemisphere was found for children with ASD without intellectual disabilities than for children with TD. Significant correlation between P1m latency and language conceptual ability was found in children with ASD, but not in children with TD. (4) Conclusions: These findings demonstrated atypical brain maturation in the auditory processing area in children with ASD without intellectual disability. Findings also suggest that ASD has a common neural basis for pure-tone sound processing and language development. Development of brain networks involved in language concepts in early childhood ASD might differ from that in children with TD.
Collapse
|
6
|
Yoshimura Y, Hasegawa C, Ikeda T, Saito DN, Hiraishi H, Takahashi T, Kumazaki H, Kikuchi M. The maturation of the P1m component in response to voice from infancy to 3 years of age: A longitudinal study in young children. Brain Behav 2020; 10:e01706. [PMID: 32573987 PMCID: PMC7428512 DOI: 10.1002/brb3.1706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/06/2020] [Accepted: 05/17/2020] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION In the early development of human infants and toddlers, remarkable changes in brain cortical function for auditory processing have been reported. Knowing the maturational trajectory of auditory cortex responses to human voice in typically developing young children is crucial for identifying voice processing abnormalities in children at risk for neurodevelopmental disorders and language impairment. An early prominent positive component in the cerebral auditory response in newborns has been reported in previous electroencephalography and magnetoencephalography (MEG) studies. However, it is not clear whether this prominent component in infants less than 1 year of age corresponds to the auditory P1m component that has been reported in young children over 2 years of age. METHODS To test the hypothesis that the early prominent positive component in infants aged 0 years is an immature manifestation of P1m that we previously reported in children over 2 years of age, we performed a longitudinal MEG study that focused on this early component and examined the maturational changes over three years starting from age 0. Five infants participated in this 3-year longitudinal study. RESULTS This research revealed that the early prominent component in infants aged 3 month corresponded to the auditory P1m component in young children over 2 years old, which we had previously reported to be related to language development and/or autism spectrum disorders. CONCLUSION Our data revealed the development of the auditory-evoked field in the left and right hemispheres from 0- to 3-year-old children. These results contribute to the elucidation of the development of brain functions in infants.
Collapse
Affiliation(s)
- Yuko Yoshimura
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan.,Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Daisuke N Saito
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Hirotoshi Hiraishi
- Institute for Medical Photonics research, Hamamatsu University school of medicine, Hamamatsu, Japan
| | | | - Hirokazu Kumazaki
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan.,Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|