1
|
Laymon JL, Whitten CJ, Radford AF, Brewer AR, Deo YS, Hooker MK, Geddati AA, Cooper MA. Distinguishing neural ensembles in the infralimbic cortex that regulate stress vulnerability and coping behavior. Neurobiol Stress 2025; 36:100720. [PMID: 40230624 PMCID: PMC11994976 DOI: 10.1016/j.ynstr.2025.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Neural ensembles in the medial prefrontal cortex regulate several types of responses to stress. We used a Syrian hamster model to investigate the role of infralimbic (IL) neurons in coping with social defeat stress and vulnerability to subsequent anxiety-like behavior. We created social dominance relationships in male and female hamsters, used a robust activity marker (RAM) approach to label IL neural ensembles activated during social defeat stress, and employed light-dark (LD), social avoidance (SA), and conditioned defeat (CD) tests to assess anxiety-like behavior. We found that dominant animals were less anxious in LD tests compared to subordinate animals after achieving their higher status. Also, status-dependent differences in anxiety-like behavior were maintained following social defeat in males, but not females. Subordinate males showed greater RAM-mKate2 expression in IL parvalbumin (PV) cells during social defeat exposure compared to dominant males, and submissive behavior during CD testing was correlated with RAM/PV co-expression. In contrast, greater RAM-mKate2 expression in IL neurons was correlated with a longer latency to submit during social defeat in dominant females, although the correlation of RAM/PV co-expression and defeat-induced anxiety in females was mixed. Overall, these findings suggest that activation of IL PV cells during social defeat predicts the development stress vulnerability in males, whereas activation of IL neurons is associated with a proactive response to social defeat exposure in females. Understanding how social dominance generates plasticity in IL PV cells should improve our understanding of the mechanisms by which behavioral treatments prior to stress might promote stress resilience.
Collapse
Affiliation(s)
- Jenna L. Laymon
- Translational Neuroscience Program, Wayne State University School of Medicine, USA
| | | | - Anna F. Radford
- Department of Psychology, University of Tennessee Knoxville, USA
| | | | - Yash S. Deo
- Department of Psychology, University of Tennessee Knoxville, USA
| | | | - Akhil A. Geddati
- Department of Psychology, University of Tennessee Knoxville, USA
| | | |
Collapse
|
2
|
Zheng H, Chen D, Zhong Z, Li Z, Yuan M, Zhang Z, Zhou X, Zhu G, Sun H, Sun L. Behavioral tests for the assessment of social hierarchy in mice. Front Behav Neurosci 2025; 19:1549666. [PMID: 40110389 PMCID: PMC11920152 DOI: 10.3389/fnbeh.2025.1549666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Social hierarchy refers to the set of social ranks in a group of animals where individuals can gain priority access to resources through repeated social interactions. Key mechanisms involved in this process include conflict, social negotiation, prior experience, and physical advantages. The establishment and maintenance of social hierarchies not only promote group stability and well-being but also shape individual social behaviors by fostering cooperation and reducing conflict. Existing research indicates that social hierarchy is closely associated with immune responses, neural regulation, metabolic processes, and endocrine functions. These physiological systems collectively modulate an individual's sensitivity to stress and influence adaptive responses, thereby playing a critical role in the development of psychiatric disorders such as depression and anxiety. This review summarizes the primary behavioral methods used to assess social dominance in mice, evaluates their applicability and limitations, and discusses potential improvements. Additionally, it explores the underlying neural mechanisms associated with these methods to deepen our understanding of their biological basis. By critically assessing existing methodologies and proposing refinements, this study aims to provide a systematic reference framework and methodological guidance for future research, facilitating a more comprehensive exploration of the neural mechanisms underlying social behavior. The role of sex differences in social hierarchy formation remains underexplored. Most studies focus predominantly on males, while the distinct social strategies and physiological mechanisms of females are currently overlooked. Future studies should place greater emphasis on evaluating social hierarchy in female mice to achieve a more comprehensive understanding of sex-specific social behaviors and their impact on group structure and individual health. Advances in automated tracking technologies may help address this gap by improving behavioral assessments in female mice. Future research may also benefit from integrating physiological data (e.g., hormone levels) to gain deeper insights into the relationships between social status, stress regulation, and mental health. Additionally, developments in artificial intelligence and deep learning could enhance individual recognition and behavioral analysis, potentially reducing reliance on chemical markers or implanted devices.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Dantong Chen
- Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Zilong Zhong
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Ziyi Li
- Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Meng Yuan
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Zhenkun Zhang
- Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xiaoping Zhou
- Network Information Center, Shandong Second Medical University, Weifang, China
| | - Guohui Zhu
- Depression Treatment Center, Weifang Mental Health Center, Weifang, China
| | - Hongwei Sun
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Lin Sun
- Department of Psychology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
3
|
Tripathi A, Bartosh A, Mata J, Jacks C, Madeshiya AK, Hussein U, Hong LE, Zhao Z, Pillai A. Microglial type I interferon signaling mediates chronic stress-induced synapse loss and social behavior deficits. Mol Psychiatry 2025; 30:423-434. [PMID: 39095477 DOI: 10.1038/s41380-024-02675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Inflammation and synapse loss have been associated with deficits in social behavior and are involved in pathophysiology of many neuropsychiatric disorders. Synapse loss, characterized by reduction in dendritic spines can significantly disrupt synaptic connectivity and neural circuitry underlying social behavior. Chronic stress is known to induce loss of spines and dendrites in the prefrontal cortex (PFC), a brain region implicated in social behavior. However, the underlying mechanisms are not well understood. In the present study, we investigated the role of type I Interferon (IFN-I) signaling in chronic unpredictable stress (CUS)-induced synapse loss and behavior deficits in mice. We found increased expression of type I IFN receptor (IFNAR) in microglia following CUS. Conditional knockout of microglial IFNAR in adult mice rescued CUS-induced social behavior deficits and synapse loss. Bulk RNA sequencing data show that microglial IFNAR deletion attenuated CUS-mediated changes in the expression of genes such as Keratin 20 (Krt20), Claudin-5 (Cldn5) and Nuclear Receptor Subfamily 4 Group A Member 1 (Nr4a1) in the PFC. Cldn5 and Nr4a1 are known for their roles in synaptic plasticity. Krt20 is an intermediate filament protein responsible for the structural integrity of epithelial cells. The reduction in Krt20 following CUS presents a novel insight into the potential contribution of cytokeratin in stress-induced alterations in neuroplasticity. Overall, these results suggest that microglial IFNAR plays a critical role in regulating synaptic plasticity and social behavior deficits associated with chronic stress conditions.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alona Bartosh
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jocelyn Mata
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chale Jacks
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Amit Kumar Madeshiya
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Usama Hussein
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Elliot Hong
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
4
|
Choi TY, Jeong S, Koo JW. Mesocorticolimbic circuit mechanisms of social dominance behavior. Exp Mol Med 2024; 56:1889-1899. [PMID: 39218974 PMCID: PMC11447232 DOI: 10.1038/s12276-024-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024] Open
Abstract
Social animals, including rodents, primates, and humans, partake in competition for finite resources, thereby establishing social hierarchies wherein an individual's social standing influences diverse behaviors. Understanding the neurobiological underpinnings of social dominance is imperative, given its ramifications for health, survival, and reproduction. Social dominance behavior comprises several facets, including social recognition, social decision-making, and actions, indicating the concerted involvement of multiple brain regions in orchestrating this behavior. While extensive research has been dedicated to elucidating the neurobiology of social interaction, recent studies have increasingly delved into adverse social behaviors such as social competition and hierarchy. This review focuses on the latest advancements in comprehending the mechanisms of the mesocorticolimbic circuit governing social dominance, with a specific focus on rodent studies, elucidating the intricate dynamics of social hierarchies and their implications for individual well-being and adaptation.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Whitten CJ, King JE, Rodriguez RM, Hennon LM, Scarborough MC, Hooker MK, Jenkins MS, Katigbak IM, Cooper MA. Activation of androgen receptor-expressing neurons in the posterior medial amygdala is associated with stress resistance in dominant male hamsters. Horm Behav 2024; 164:105577. [PMID: 38878493 PMCID: PMC11330741 DOI: 10.1016/j.yhbeh.2024.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 08/20/2024]
Abstract
Social stress is a negative emotional experience that can increase fear and anxiety. Dominance status can alter the way individuals react to and cope with stressful events. The underlying neurobiology of how social dominance produces stress resistance remains elusive, although experience-dependent changes in androgen receptor (AR) expression is thought to play an essential role. Using a Syrian hamster (Mesocricetus auratus) model, we investigated whether dominant individuals activate more AR-expressing neurons in the posterior dorsal and posterior ventral regions of the medial amygdala (MePD, MePV), and display less social anxiety-like behavior following social defeat stress compared to subordinate counterparts. We allowed male hamsters to form and maintain a dyadic dominance relationship for 12 days, exposed them to social defeat stress, and then tested their approach-avoidance behavior using a social avoidance test. During social defeat stress, dominant subjects showed a longer latency to submit and greater c-Fos expression in AR+ cells in the MePD/MePV compared to subordinates. We found that social defeat exposure reduced the amount of time animals spent interacting with a novel conspecific 24 h later, although there was no effect of dominance status. The amount of social vigilance shown by dominants during social avoidance testing was positively correlated with c-Fos expression in AR+ cells in the MePV. These findings indicate that dominant hamsters show greater neural activity in AR+ cells in the MePV during social defeat compared to their subordinate counterparts, and this pattern of neural activity correlates with their proactive coping response. Consistent with the central role of androgens in experience-dependent changes in aggression, activation of AR+ cells in the MePD/MePV contributes to experience-dependent changes in stress-related behavior.
Collapse
Affiliation(s)
- C J Whitten
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - J E King
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - R M Rodriguez
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - L M Hennon
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M C Scarborough
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M K Hooker
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M S Jenkins
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - I M Katigbak
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M A Cooper
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States.
| |
Collapse
|
6
|
Zhai X, Ai L, Chen D, Zhou D, Han Y, Ji R, Hu M, Wang Q, Zhang M, Wang Y, Zhang C, Yang JX, Hu A, Liu H, Cao JL, Zhang H. Multiple integrated social stress induces depressive-like behavioral and neural adaptations in female C57BL/6J mice. Neurobiol Dis 2024; 190:106374. [PMID: 38097092 DOI: 10.1016/j.nbd.2023.106374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Despite women representing most of those affected by major depression, preclinical studies have focused almost exclusively on male subjects, partially due to a lack of ideal animal paradigms. As the persistent need regarding the sex balance of neuroscience research and female-specific pathology of mental disorders surges, the establishment of natural etiology-based and systematically validated animal paradigms for depression with female subjects becomes an urgent scientific problem. This study aims to establish, characterize, and validate a "Multiple Integrated Social Stress (MISS)" model of depression in female C57BL/6J mice by manipulating and integrating daily social stressors that females are experiencing. Female C57BL/6J mice randomly experienced social competition failure in tube test, modified vicarious social defeat stress, unescapable overcrowding stress followed by social isolation on each day, for ten consecutive days. Compared with their controls, female MISS mice exhibited a relatively decreased preference for social interaction and sucrose, along with increased immobility in the tail suspension test, which could last for at least one month. These MISS mice also exhibited increased levels of blood serum corticosterone, interleukin-6 L and 1β. In the pharmacological experiment, MISS-induced dysfunctions in social interaction, sucrose preference, and tail suspension tests were amended by systematically administrating a single dose of sub-anesthetic ketamine, a rapid-onset antidepressant. Compared with controls, MISS females exhibited decreased c-Fos activation in their anterior cingulate cortex, prefrontal cortex, nucleus accumbens and some other depression-related brain regions. Furthermore, 24 h after the last exposure to the paradigm, MISS mice demonstrated a decreased center zone time in the open field test and decreased open arm time in the elevated plus-maze test, indicating anxiety-like behavioral phenotypes. Interestingly, MISS mice developed an excessive nesting ability, suggesting a likely behavioral phenotype of obsessive-compulsive disorder. These data showed that the MISS paradigm was sufficient to generate pathological profiles in female mice to mimic core symptoms, serum biochemistry and neural adaptations of depression in clinical patients. The present study offers a multiple integrated natural etiology-based animal model tool for studying female stress susceptibility.
Collapse
Affiliation(s)
- Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lin Ai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dandan Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongyu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mengfan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qing Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Moruo Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuxin Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chunyan Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ankang Hu
- Laboratory Animal Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221004, PR China
| | - He Liu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine, Huzhou Central Hospital, Huzhou 313003, China; The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313003, China; The Fifth School of Clinical Medicine, Zhejiang Chinese Medical University, Huzhou 313003, China; The Affiliated Central Hospital, Huzhou University, Huzhou 313003, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
7
|
Coleman PT, Costanza-Chavez GW, Martin HN, Amat J, Frank MG, Sanchez RJ, Potter GJ, Mellert SM, Carter RK, Bonnici GN, Maier SF, Baratta MV. Prior experience with behavioral control over stress facilitates social dominance. Neurobiol Stress 2024; 28:100597. [PMID: 38213318 PMCID: PMC10783635 DOI: 10.1016/j.ynstr.2023.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
Dominance status has extensive effects on physical and mental health, and an individual's relative position can be shaped by experiential factors. A variety of considerations suggest that the experience of behavioral control over stressors should produce winning in dominance tests and that winning should blunt the impact of later stressors, as does prior control. To investigate the interplay between competitive success and stressor control, we first examined the impact of stressor controllability on subsequent performance in a warm spot competition test modified for rats. Prior experience of controllable, but not physically identical uncontrollable, stress increased later effortful behavior and occupation of the warm spot. Controllable stress subjects consistently ranked higher than did uncontrollable stress subjects. Pharmacological inactivation of the prelimbic (PL) cortex during behavioral control prevented later facilitation of dominance. Next, we explored whether repeated winning experiences produced later resistance against the typical sequelae of uncontrollable stress. To establish dominance status, triads of rats were given five sessions of warm spot competition. The development of stable dominance was prevented by reversible inactivation of the PL or NMDA receptor blockade in the dorsomedial striatum. Stable winning blunted the later stress-induced increase in dorsal raphe nucleus serotonergic activity, as well as prevented uncontrollable stress-induced social avoidance. In contrast, endocrine and neuroimmune responses to uncontrollable stress were unaffected, indicating a selective impact of prior dominance. Together, these data demonstrate that instrumental control over stress promotes later dominance, but also reveal that winning experiences buffer against the neural and behavioral outcomes of future adversity.
Collapse
Affiliation(s)
| | | | - Heather N. Martin
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Jose Amat
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Matthew G. Frank
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Rory J. Sanchez
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Garrett J. Potter
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Simone M. Mellert
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Rene K. Carter
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Gianni N. Bonnici
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Steven F. Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Michael V. Baratta
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| |
Collapse
|
8
|
Song BL, Zhou J, Jiang Y, Li LF, Liu YJ. Dopamine D2 receptor within the intermediate region of the lateral septum modulate social hierarchy in male mice. Neuropharmacology 2023; 241:109735. [PMID: 37788799 DOI: 10.1016/j.neuropharm.2023.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
The dopamine (DA) system has long been involved in social hierarchies; however, the specific mechanisms have not been elucidated. The lateral septum (LS) is a limbic brain structure that regulates various emotional, motivational, and social behaviors. DA receptors are abundantly expressed in the LS, modulating its functions. In this study, we evaluated the functions of DA receptors within different subregions of the LS in social dominance using a confrontation tube test in male mice. The results showed that mice living in social groups formed linear dominance hierarchies after a few days of cohousing, and the subordinates showed increased anxiety. Fos expressions was elevated in the entire LS after a confrontation tube test in the subordinates. However, DA neurons were more activated in the dominates within the ventral tegmental area and the dorsal raphe nucleus. Quantitative real-time polymerase chain reaction results showed that D2 receptor (D2R) within the intermediate region of the LS (LSi) were elevated in the subordinate. In the following pharmacological studies, we found simultaneous D2R activation in the dominants and D2R inhibition in the subordinates switched the original dominant-subordinate relationship. The aforementioned results suggested that D2R within the LSi plays an important role in social dominance in male mice. These findings improve our understanding of the neural mechanisms underlying the social hierarchy, which is closely related to our social life and happiness.
Collapse
Affiliation(s)
- Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Jie Zhou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Lai-Fu Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| | - Ying-Juan Liu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
9
|
Whitten CJ, Hooker MK, Wells AN, Kearney JN, Jenkins MS, Cooper MA. Sex differences in dominance relationships in Syrian hamsters. Physiol Behav 2023; 270:114294. [PMID: 37453726 PMCID: PMC10529893 DOI: 10.1016/j.physbeh.2023.114294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Dominance relationships are identified by changes in agonistic behavior toward specific individuals. While there are considerable individual and species differences in dominance relationships, sex differences are poorly understood in rodent models because aggression among female rodents is rare. The aim of this study was to characterize sex differences in the formation and maintenance of dominance relationships in same-sex pairs of male and female Syrian hamsters. We pooled data from multiple projects in our lab to evaluate dominance interactions in 68 male dyads and 88 female dyads. In each project, animals were matched with a partner similar in age, sex, and estrous cycle and we exposed animals to daily social encounters for two weeks in a resident-intruder format. We found that female hamsters were quicker to attack and attacked at higher rates compared to males regardless of dominance status. In addition, resident female hamsters were quicker to attack and attacked at higher rates than intruder females, but aggression in males did not depend on residency status. Female subordinates were quicker to submit and fled at higher rates from their dominant counterparts compared to male subordinates. Intruder subordinate females were quicker to submit and fled at higher rates than resident subordinate females. Females were also more resistant than males to becoming subordinate in that they fought back more consistently and were more likely to reverse their dominance status. These findings indicate that dominance relationships are less stable in females compared to males and that residency status has a larger impact on agonistic behavior in females than males. Overall, differences in how males and females display territorial aggression can lead to sex differences in the establishment and maintenance of dominance relationships.
Collapse
Affiliation(s)
- Conner J Whitten
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | | | - Ashley N Wells
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | - Jessica N Kearney
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | - Matthew S Jenkins
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | - Matthew A Cooper
- Department of Psychology, The University of Tennessee, Knoxville, USA.
| |
Collapse
|
10
|
Tripathi A, Bartosh A, Whitehead C, Pillai A. Activation of cell-free mtDNA-TLR9 signaling mediates chronic stress-induced social behavior deficits. Mol Psychiatry 2023; 28:3806-3815. [PMID: 37528226 PMCID: PMC10730412 DOI: 10.1038/s41380-023-02189-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Inflammation and social behavior deficits are associated with a number of neuropsychiatric disorders. Chronic stress, a major risk factor for depression and other mental health conditions is known to increase inflammatory responses and social behavior impairments. Disturbances in mitochondria function have been found in chronic stress conditions, however the mechanisms that link mitochondrial dysfunction to stress-induced social behavior deficits are not well understood. In this study, we found that chronic restraint stress (RS) induces significant increases in serum cell-free mitochondrial DNA (cf-mtDNA) levels in mice, and systemic Deoxyribonuclease I (DNase I) treatment attenuated RS-induced social behavioral deficits. Our findings revealed potential roles of mitophagy and Mitochondrial antiviral-signaling protein (MAVS) in mediating chronic stress-induced changes in cf-mtDNA levels and social behavior. Furthermore, we showed that inhibition of Toll-like receptor 9 (TLR9) attenuates mtDNA-induced social behavior deficits. Together, these findings show that cf-mtDNA-TLR9 signaling is critical in mediating stress-induced social behavior deficits.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Alona Bartosh
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Carl Whitehead
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, GA, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
11
|
Marcelino CM, Trindade PHE, García HDM, Pupulim AGR, Martins CL, Rizzoto G, Teixeira-Neto F, Macitelli F, Kastelic JP, Ferreira JCP. Wound inflammation post-orchiectomy affects the social dynamic of Nelore bulls. BMC Vet Res 2023; 19:84. [PMID: 37454070 DOI: 10.1186/s12917-023-03638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Confinement of cattle imposes spatial restrictions and predisposes to aversive social encounters that can lead to contusions, wounds, pain, stress, fright, and reduced productivity. Although endogenous testosterone concentrations are linked to agonistic dominance behaviors in males, it is unknown whether decreased blood testosterone concentrations after castration alter social hierarchy rank in Nelore bulls. Therefore, in this study, we investigated the impact of the surgical would inflammation post-orchiectomy on social dynamics in a group of Nelore bulls (Bos indicus). Fourteen Nelore (Bos indicus) bulls were castrated and assessed pre- and post-surgically. Parameters evaluated were agonistic (mounting, headbutting, and fighting) and affiliative (head-play) behavior, plasma testosterone concentrations, average daily weight gain (ADG), and a score for severity of post-surgical infection. Exploratory statistics included social network analysis (SNA), hierarchy rank delta (Δ), and principal component analysis (PCA). Furthermore, statistical inferences included the Wilcoxon test, multiple logistic regression models, and Spearman's correlation. RESULTS The social dynamic of Nelore bulls was modified after castration based on the findings of the SNA and the PCA. The moderate correlation between the postoperative inflammation level with the Δ, and the significant effect of this level in the logistic model post-castration were partially attributed to effects of pain on social relations. CONCLUSIONS Our findings suggest the severity of post-surgical inflammation, which has an association with pain intensity, was closely associated with changes in the social hierarchy.
Collapse
Affiliation(s)
- Caique Marques Marcelino
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Street Prof. Dr. Walter Maurício Correa, Botucatu, 18618-681, Brazil
| | - Pedro Henrique Esteves Trindade
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Street Prof. Dr. Walter Maurício Correa, Botucatu, 18618-681, Brazil.
| | - Henry David Mogollón García
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Street Prof. Dr. Walter Maurício Correa, Botucatu, 18618-681, Brazil
| | - Antonio Guilherme Roncada Pupulim
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Street Prof. Dr. Walter Maurício Correa, Botucatu, 18618-681, Brazil
| | - Cyntia Ludovico Martins
- Department of Animal Production and Preventive Veterinary Medine, School of Veterinary Medicine and Animal Science, São Paulo State University, Street Dr. José Barbosa de Barros, Botucatu, 18610-307, Brazil
| | - Guilherme Rizzoto
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Street Prof. Dr. Walter Maurício Correa, Botucatu, 18618-681, Brazil
| | - Francisco Teixeira-Neto
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Street Prof. Dr. Walter Maurício Correa, Botucatu, 18618-681, Brazil
| | - Fernanda Macitelli
- Institute of Health Sciences, Mato Grosso Federal University, Av. Alezandre Ferronato, Sinop, 78550-728, Brazil
| | - John Patrick Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Canada
| | - João Carlos Pinheiro Ferreira
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Street Prof. Dr. Walter Maurício Correa, Botucatu, 18618-681, Brazil
| |
Collapse
|
12
|
Yin YY, Lai ZK, Yan JZ, Wei QQ, Wang B, Zhang LM, Li YF. The interaction between social hierarchy and depression/anxiety: Involvement of glutamatergic pyramidal neurons in the medial prefrontal cortex (mPFC). Neurobiol Stress 2023; 24:100536. [PMID: 37057073 PMCID: PMC10085780 DOI: 10.1016/j.ynstr.2023.100536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
Social hierarchy greatly impacts physical and mental health, but the relationship between social hierarchy and depression/anxiety and the underlying neural mechanism remain unclear. The present study used the tube test to determine the social hierarchy status of mice and then performed several behavioral tests to evaluate depression-like and anxiety-like behaviors. Electrophysiological techniques were used to record the firing activities of glutamatergic pyramidal neurons and local field potentials in the medial prefrontal cortex (mPFC). The results suggested that the mice in each cage (4 per cage) established a stable social hierarchy after 2 weeks. Subordinate mice displayed significantly fewer pushing and advancing behaviors, and more retreat behaviors compared with dominant mice. Furthermore, subordinate mice had significantly more immobility durations in the TST, but significantly fewer distances, entries, and time into the center in the OFT, as well as significantly less percent of distances, entries, and time into the open arms in the EPMT, compared with dominant mice, which indicated that subordinate mice displayed depression- and anxiety-like behaviors. In addition, chronic restraint stress (CRS) significantly induced depression- and anxiety-like behaviors in mice and altered social dominance behaviors in the tube test. CRS mice displayed significantly fewer pushing and advancing behaviors, and more retreat behaviors compared with control mice. Furthermore, low social rank and CRS significantly decreased the firing of pyramidal neurons and γ-oscillation activity in the mPFC. Taken together, the present study revealed an inverse relationship between social hierarchy and depression/anxiety, and the neural basis underlying this association might be the excitability of pyramidal neurons and γ oscillation in the mPFC. These findings established an important foundation for a depression/anxiety model based on social hierarchy and provided a new avenue for the development of therapies for stress-related mood disorders.
Collapse
|
13
|
LeClair KB, Chan KL, Kaster MP, Parise LF, Burnett CJ, Russo SJ. Individual history of winning and hierarchy landscape influence stress susceptibility in mice. eLife 2021; 10:71401. [PMID: 34581271 PMCID: PMC8497051 DOI: 10.7554/elife.71401] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Social hierarchy formation is strongly evolutionarily conserved. Across species, rank within social hierarchy has large effects on health and behavior. To investigate the relationship between social rank and stress susceptibility, we exposed ranked male and female mice to social and non-social stressors and manipulated social hierarchy position. We found that rank predicts same sex social stress outcomes: dominance in males and females confers resilience while subordination confers susceptibility. Pre-existing rank does not predict non-social stress outcomes in females and weakly does so in males, but rank emerging under stress conditions reveals social interaction deficits in male and female subordinates. Both history of winning and rank of cage mates affect stress susceptibility in males: rising to the top rank through high mobility confers resilience and mice that lose dominance lose stress resilience, although gaining dominance over a subordinate animal does not confer resilience. Overall, we have demonstrated a relationship between social status and stress susceptibility, particularly when taking into account individual history of winning and the overall hierarchy landscape in male and female mice.
Collapse
Affiliation(s)
- Katherine B LeClair
- Nash Family Department of Neuroscience, New York, United States.,Friedman Brain Institute, New York, United States.,Graduate School of Biological Science, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Kenny L Chan
- Nash Family Department of Neuroscience, New York, United States.,Friedman Brain Institute, New York, United States
| | - Manuella P Kaster
- Nash Family Department of Neuroscience, New York, United States.,Friedman Brain Institute, New York, United States.,Department of Biochemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Lyonna F Parise
- Nash Family Department of Neuroscience, New York, United States.,Friedman Brain Institute, New York, United States
| | - Charles Joseph Burnett
- Nash Family Department of Neuroscience, New York, United States.,Friedman Brain Institute, New York, United States
| | - Scott J Russo
- Nash Family Department of Neuroscience, New York, United States.,Friedman Brain Institute, New York, United States.,Graduate School of Biological Science, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
14
|
Dos Santos Guilherme M, Tsoutsouli T, Todorov H, Teifel S, Nguyen VTT, Gerber S, Endres K. N 6 -Methyladenosine Modification in Chronic Stress Response Due to Social Hierarchy Positioning of Mice. Front Cell Dev Biol 2021; 9:705986. [PMID: 34490254 PMCID: PMC8417747 DOI: 10.3389/fcell.2021.705986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Appropriately responding to stressful events is essential for maintaining health and well-being of any organism. Concerning social stress, the response is not always as straightforward as reacting to physical stressors, e.g., extreme heat, and thus has to be balanced subtly. Particularly, regulatory mechanisms contributing to gaining resilience in the face of mild social stress are not fully deciphered yet. We employed an intrinsic social hierarchy stress paradigm in mice of both sexes to identify critical factors for potential coping strategies. While global transcriptomic changes could not be observed in male mice, several genes previously reported to be involved in synaptic plasticity, learning, and anxiety-like behavior were differentially regulated in female mice. Moreover, changes in N6-methyladenosine (m6A)-modification of mRNA occurred associated with corticosterone level in both sexes with, e.g., increased global amount in submissive female mice. In accordance with this, METTL14 and WTAP, subunits of the methyltransferase complex, showed elevated levels in submissive female mice. N6-adenosyl-methylation is the most prominent type of mRNA methylation and plays a crucial role in processes such as metabolism, but also response to physical stress. Our findings underpin its essential role by also providing a link to social stress evoked by hierarchy building within same-sex groups. As recently, search for small molecule modifiers for the respective class of RNA modifying enzymes has started, this might even lead to new therapeutic approaches against stress disorders.
Collapse
Affiliation(s)
- Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Theodora Tsoutsouli
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hristo Todorov
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sina Teifel
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
15
|
Amaral IM, Hofer A, El Rawas R. Is It Possible to Shift from Down to Top Rank? A Focus on the Mesolimbic Dopaminergic System and Cocaine Abuse. Biomedicines 2021; 9:877. [PMID: 34440081 PMCID: PMC8389638 DOI: 10.3390/biomedicines9080877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Impaired social behavior is a common feature of many psychiatric disorders, in particular with substance abuse disorders. Switching the preference of the substance-dependent individual toward social interaction activities remains one of the major challenges in drug dependence therapy. However, social interactions yield to the emergence of social ranking. In this review, we provide an overview of the studies that examined how social status can influence the dopaminergic mesolimbic system and how drug-seeking behavior is affected. Generally, social dominance is associated with an increase in dopamine D2/3 receptor binding in the striatum and a reduced behavioral response to drugs of abuse. However, it is not clear whether higher D2 receptor availability is a result of increased D2 receptor density and/or reduced dopamine release in the striatum. Here, we discuss the possibility of a potential shift from down to top rank via manipulation of the mesolimbic system. Identifying the neurobiology underlying a potential rank switch to a resilient phenotype is of particular interest in order to promote a positive coping behavior toward long-term abstinence from drugs of abuse and a protection against relapse to drugs. Such a shift may contribute to a more successful therapeutic approach to cocaine addiction.
Collapse
Affiliation(s)
- Inês M. Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (A.H.); (R.E.R.)
| | | | | |
Collapse
|
16
|
Zhao W, Li Q, Ma Y, Wang Z, Fan B, Zhai X, Hu M, Wang Q, Zhang M, Zhang C, Qin Y, Sha S, Gan Z, Ye F, Xia Y, Zhang G, Yang L, Zou S, Xu Z, Xia S, Yu Y, Abdul M, Yang JX, Cao JL, Zhou F, Zhang H. Behaviors Related to Psychiatric Disorders and Pain Perception in C57BL/6J Mice During Different Phases of Estrous Cycle. Front Neurosci 2021; 15:650793. [PMID: 33889070 PMCID: PMC8056075 DOI: 10.3389/fnins.2021.650793] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
Robust sex difference among humans regarding psychiatry- and pain-related behaviors is being researched; however, the use of female mice in preclinical research is relatively rare due to an unchecked potential behavioral variation over the estrous cycle. In the present study, a battery of psychiatry- and pain-related behaviors are examined under physiological condition in female C57BL/6J mice over different estrous cycle phases: proestrus, estrous, metestrous, diestrous. Our behavioral results reveal that there is no significant difference over different phases of the estrous cycle in social interaction test, sucrose preference test, tail suspension test, open field test, marble burying test, novelty-suppressed feeding test, Hargreaves thermal pain test, and Von Frey mechanical pain test. These findings implicate those psychiatry- and pain-related behaviors in normal female C57BL/6J mice appear to be relatively consistent throughout the estrous cycle; the estrous cycle might not be a main contributor to female C57BL/6J mice’s variability of behaviors.
Collapse
Affiliation(s)
- Weinan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.,School of Nursing, Xuzhou Medical University, Xuzhou, China.,Department of Nursing, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Intensive Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zhiyong Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Bingqian Fan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Mengfan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.,School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Qing Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.,School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Moruo Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.,School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Chunyan Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.,School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yixue Qin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.,School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Sha Sha
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.,School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhonghao Gan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.,School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Fan Ye
- The First Medical College, Xuzhou Medical University, Xuzhou, China
| | - Yihan Xia
- The First Medical College, Xuzhou Medical University, Xuzhou, China
| | - Guangchao Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Shiya Zou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Sunhui Xia
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yumei Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Mannan Abdul
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.,Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.,Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fang Zhou
- School of Nursing, Xuzhou Medical University, Xuzhou, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
17
|
Šabanović M, Liu H, Mlambo V, Aqel H, Chaudhury D. What it takes to be at the top: The interrelationship between chronic social stress and social dominance. Brain Behav 2020; 10:e01896. [PMID: 33070476 PMCID: PMC7749537 DOI: 10.1002/brb3.1896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Dominance hierarchies of social animal groups are very sensitive to stress. Stress experienced prior to social interactions between conspecifics may be a determinant of their future social dynamics. Additionally, long-term occupancy of a specific hierarchical rank can have psychophysiological effects which increase vulnerability to future stressors. METHODS We aimed to delineate differential effects of stress acting before or after hierarchy formation. We studied whether exposure to the chronic social defeat stress (CSDS) paradigm before a two-week-long hierarchy formation affected the attainment of a dominant status using the social confrontation tube test (TT). These animals were singly housed for at least one week before CSDS to decrease confounding effects of prior hierarchy experience. Additionally, we investigated whether social rank predicted vulnerability to CSDS, measured by a social interaction test. RESULTS In TT, mice termed as dominant (high rank) win the majority of social confrontations, while the subordinates (low rank) lose more often. Within newly established hierarchies of stress-naïve mice, the subordinate, but not dominant, mice exhibited significantly greater avoidance of novel social targets. However, following exposure to CSDS, both lowest- and highest-ranked mice exhibited susceptibility to stress as measured by decreased interactions with a novel social target. In contrast, after CSDS, both stress-susceptible (socially avoidant) and stress-resilient (social) mice were able to attain dominant ranks in newly established hierarchies. CONCLUSION These results suggest that the response to CSDS did not determine social rank in new cohorts, but low-status mice in newly established groups exhibited lower sociability to novel social targets. Interestingly, exposure of a hierarchical social group to chronic social stress led to stress susceptibility in both high- and low-status mice as measured by social interaction.
Collapse
Affiliation(s)
- Merima Šabanović
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - He Liu
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Vongai Mlambo
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Hala Aqel
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Dipesh Chaudhury
- The Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|