1
|
Montgomery VA, Wood‐Yang AJ, Styczynski MP, Prausnitz MR. Feasibility of engineered Bacillus subtilis for use as a microbiome-based topical drug delivery platform. Bioeng Transl Med 2024; 9:e10645. [PMID: 39036074 PMCID: PMC11256169 DOI: 10.1002/btm2.10645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 07/23/2024] Open
Abstract
Non-adherence to medication is a major challenge in healthcare that results in worsened treatment outcomes for patients. Reducing the frequency of required administrations could improve adherence but is challenging for topical drug delivery due to the generally short residence time of topical formulations on the skin. In this study, we sought to determine the feasibility of developing a microbiome-based, long-acting, topical delivery platform using Bacillus subtilis for drug production and delivery on the skin, which was assessed using green fluorescent protein as a model heterologous protein for delivery. We developed a computational model of bacteria population dynamics on the skin and used its qualitative predictions to guide experimental design choices. Using an ex vivo pig skin model and a human skin tissue culture model, we saw persistence of delivered bacteria for multiple days and observed little evidence of cytotoxicity to human keratinocyte cells in vitro. Finally, using an in vivo mouse model, we found that the delivered bacteria persisted on the skin for at least 1 day during every-other-day application and did not appear to present safety concerns. Taken together, our results support the feasibility of using engineered B. subtilis for topical drug delivery.
Collapse
Affiliation(s)
- Veronica A. Montgomery
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia TechGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Amy J. Wood‐Yang
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Mark P. Styczynski
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Mark R. Prausnitz
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia TechGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
2
|
Zhu L, Yu T, Wang W, Xu T, Geng W, Li N, Zan X. Responsively Degradable Nanoarmor-Assisted Super Resistance and Stable Colonization of Probiotics for Enhanced Inflammation-Targeted Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308728. [PMID: 38241751 DOI: 10.1002/adma.202308728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/09/2023] [Indexed: 01/21/2024]
Abstract
Manipulation of the gut microbiota using oral microecological preparations has shown great promise in treating various inflammatory disorders. However, delivering these preparations while maintaining their disease-site specificity, stability, and therapeutic efficacy is highly challenging due to the dynamic changes associated with pathological microenvironments in the gastrointestinal tract. Herein, a superior armored probiotic with an inflammation-targeting capacity is developed to enhance the efficacy and timely action of bacterial therapy against inflammatory bowel disease (IBD). The coating strategy exhibits suitability for diverse probiotic strains and has negligible influence on bacterial viability. This study demonstrates that these armored probiotics have ultraresistance to extreme intraluminal conditions and stable mucoadhesive capacity. Notably, the HA-functionalized nanoarmor equips the probiotics with inflamed-site targetability through multiple interactions, thus enhancing their efficacy in IBD therapy. Moreover, timely "awakening" of ingested probiotics through the responsive transferrin-directed degradation of the nanoarmor at the site of inflammation is highly beneficial for bacterial therapy, which requires the bacterial cells to be fully functional. Given its easy preparation and favorable biocompatibility, the developed single-cell coating approach provides an effective strategy for the advanced delivery of probiotics for biomedical applications at the cellular level.
Collapse
Affiliation(s)
- Limeng Zhu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tiantian Yu
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Wenchao Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tong Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wujun Geng
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Na Li
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
3
|
Zhang L, Ye P, Zhu H, Zhu L, Ren Y, Lei J. Bioinspired and biomimetic strategies for inflammatory bowel disease therapy. J Mater Chem B 2024; 12:3614-3635. [PMID: 38511264 DOI: 10.1039/d3tb02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease with high morbidity and an increased risk of cancer or death, resulting in a heavy societal medical burden. While current treatment modalities have been successful in achieving long-term remission and reducing the risk of complications, IBD remains incurable. Nanomedicine has the potential to address the high toxic side effects and low efficacy in IBD treatment. However, synthesized nanomedicines typically exhibit some degree of immune rejection, off-target effects, and a poor ability to cross biological barriers, limiting the development of clinical applications. The emergence of bionic materials and bionic technologies has reshaped the landscape in novel pharmaceutical fields. Biomimetic drug-delivery systems can effectively improve biocompatibility and reduce immunogenicity. Some bioinspired strategies can mimic specific components, targets or immune mechanisms in pathological processes to produce targeting effects for precise disease control. This article highlights recent research on bioinspired and biomimetic strategies for the treatment of IBD and discusses the challenges and future directions in the field to advance the treatment of IBD.
Collapse
Affiliation(s)
- Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
4
|
Fu Y, Li J, Cai W, Huang Y, Liu X, Ma Z, Tang Z, Bian X, Zheng J, Jiang J, Li C. The emerging tumor microbe microenvironment: From delineation to multidisciplinary approach-based interventions. Acta Pharm Sin B 2024; 14:1560-1591. [PMID: 38572104 PMCID: PMC10985043 DOI: 10.1016/j.apsb.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Intratumoral microbiota has become research hotspots, and emerges as a non-negligent new component of tumor microenvironments (TME), due to its powerful influence on tumor initiation, metastasis, immunosurveillance and prognosis despite in low-biomass. The accumulations of microbes, and their related components and metabolites within tumor tissues, endow TME with additional pluralistic features which are distinct from the conventional one. Therefore, it's definitely necessary to comprehensively delineate the sophisticated landscapes of tumor microbe microenvironment, as well as their functions and related underlying mechanisms. Herein, in this review, we focused on the fields of tumor microbe microenvironment, including the heterogeneity of intratumor microbiota in different types of tumors, the controversial roles of intratumoral microbiota, the basic features of tumor microbe microenvironment (i.e., pathogen-associated molecular patterns (PAMPs), typical microbial metabolites, autophagy, inflammation, multi-faceted immunomodulation and chemoresistance), as well as the multidisciplinary approach-based intervention of tumor microbiome for cancer therapy by applying wild-type or engineered live microbes, microbiota metabolites, antibiotics, synthetic biology and rationally designed biomaterials. We hope our work will provide valuable insight to deeply understand the interplay of cancer-immune-microbial, and facilitate the development of microbes-based tumor-specific treatments.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Wang S, Ju D, Zeng X. Mechanisms and Clinical Implications of Human Gut Microbiota-Drug Interactions in the Precision Medicine Era. Biomedicines 2024; 12:194. [PMID: 38255298 PMCID: PMC10813426 DOI: 10.3390/biomedicines12010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
The human gut microbiota, comprising trillions of microorganisms residing in the gastrointestinal tract, has emerged as a pivotal player in modulating various aspects of human health and disease. Recent research has shed light on the intricate relationship between the gut microbiota and pharmaceuticals, uncovering profound implications for drug metabolism, efficacy, and safety. This review depicted the landscape of molecular mechanisms and clinical implications of dynamic human gut Microbiota-Drug Interactions (MDI), with an emphasis on the impact of MDI on drug responses and individual variations. This review also discussed the therapeutic potential of modulating the gut microbiota or harnessing its metabolic capabilities to optimize clinical treatments and advance personalized medicine, as well as the challenges and future directions in this emerging field.
Collapse
Affiliation(s)
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China;
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China;
| |
Collapse
|
6
|
Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther 2023; 8:418. [PMID: 37919282 PMCID: PMC10622502 DOI: 10.1038/s41392-023-01642-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023] Open
Abstract
Smart nanoparticles, which can respond to biological cues or be guided by them, are emerging as a promising drug delivery platform for precise cancer treatment. The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in smart nanoparticles for safer and more effective cancer therapy. In this review, we will highlight recent advancements in smart nanoparticles, including polymeric nanoparticles, dendrimers, micelles, liposomes, protein nanoparticles, cell membrane nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, carbon nanotubes, black phosphorus, MOF nanoparticles, and others. We will focus on their classification, structures, synthesis, and intelligent features. These smart nanoparticles possess the ability to respond to various external and internal stimuli, such as enzymes, pH, temperature, optics, and magnetism, making them intelligent systems. Additionally, this review will explore the latest studies on tumor targeting by functionalizing the surfaces of smart nanoparticles with tumor-specific ligands like antibodies, peptides, transferrin, and folic acid. We will also summarize different types of drug delivery options, including small molecules, peptides, proteins, nucleic acids, and even living cells, for their potential use in cancer therapy. While the potential of smart nanoparticles is promising, we will also acknowledge the challenges and clinical prospects associated with their use. Finally, we will propose a blueprint that involves the use of artificial intelligence-powered nanoparticles in cancer treatment applications. By harnessing the potential of smart nanoparticles, this review aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.
Collapse
Affiliation(s)
- Leming Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqi Ye
- Sorrento Therapeutics Inc., 4955 Directors Place, San Diego, CA, 92121, USA
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rehmat Islam
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
7
|
Abstract
Live biotherapeutic products (LBPs), including symbiotic and genetically engineered bacteria, are a promising class of emerging therapeutics that are widely investigated both preclinically and clinically for their oral delivery to the gastrointestinal (GI) tract. One emergent delivery strategy involves the direct functionalization of LBP surfaces through noncovalent or covalent modifications to control LBP interactions with the GI microenvironment, thereby improving their viability, attachment, or therapeutic effect. However, unlike other therapeutic modalities, LBPs are living organisms which present two unique challenges for surface modifications: (1) this approach can directly interfere with key LBP biological processes (e.g., colonization, metabolite secretion) and (2) modification can be variable due to the dynamic nature of LBP surfaces. Collectively, these factors remain uncharacterized as they relate to the oral delivery of LBPs. Herein, we leverage our previously reported surface modification platform, which enables LBP surface-presentation of targeting ligands, to broadly evaluate and characterize surface modifications on LBPs. Specifically, we evaluate how LBP growth affects the dilution of surface-presented targeting ligands and the subsequent loss of specific target attachment over time. Next, we describe key surface modification parameters (e.g., concentration, residence time) that can be optimized to facilitate LBP target attachment. We then characterize how bioconjugation influences the suitability of LBPs for oral delivery by evaluating their growth, viability, storage, toxicity against mammalian cells, and in vivo colonization. Broadly, we describe key parameters that influence the performance of surface modified LBPs and subsequently outline an experimental pipeline for characterizing and evaluating their suitability for oral delivery.
Collapse
Affiliation(s)
- Ava M. Vargason
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron C. Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Anand S, Hallsworth JE, Timmis J, Verstraete W, Casadevall A, Ramos JL, Sood U, Kumar R, Hira P, Dogra Rawat C, Kumar A, Lal S, Lal R, Timmis K. Weaponising microbes for peace. Microb Biotechnol 2023; 16:1091-1111. [PMID: 36880421 PMCID: PMC10221547 DOI: 10.1111/1751-7915.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 03/08/2023] Open
Abstract
There is much human disadvantage and unmet need in the world, including deficits in basic resources and services considered to be human rights, such as drinking water, sanitation and hygiene, healthy nutrition, access to basic healthcare, and a clean environment. Furthermore, there are substantive asymmetries in the distribution of key resources among peoples. These deficits and asymmetries can lead to local and regional crises among peoples competing for limited resources, which, in turn, can become sources of discontent and conflict. Such conflicts have the potential to escalate into regional wars and even lead to global instability. Ergo: in addition to moral and ethical imperatives to level up, to ensure that all peoples have basic resources and services essential for healthy living and to reduce inequalities, all nations have a self-interest to pursue with determination all available avenues to promote peace through reducing sources of conflicts in the world. Microorganisms and pertinent microbial technologies have unique and exceptional abilities to provide, or contribute to the provision of, basic resources and services that are lacking in many parts of the world, and thereby address key deficits that might constitute sources of conflict. However, the deployment of such technologies to this end is seriously underexploited. Here, we highlight some of the key available and emerging technologies that demand greater consideration and exploitation in endeavours to eliminate unnecessary deprivations, enable healthy lives of all and remove preventable grounds for competition over limited resources that can escalate into conflicts in the world. We exhort central actors: microbiologists, funding agencies and philanthropic organisations, politicians worldwide and international governmental and non-governmental organisations, to engage - in full partnership - with all relevant stakeholders, to 'weaponise' microbes and microbial technologies to fight resource deficits and asymmetries, in particular among the most vulnerable populations, and thereby create humanitarian conditions more conducive to harmony and peace.
Collapse
Affiliation(s)
- Shailly Anand
- Department of ZoologyDeen Dayal Upadhyaya College, University of DelhiDelhiIndia
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - James Timmis
- Athena Institute for Research on Innovation and Communication in Health and Life SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium
| | - Arturo Casadevall
- Department of MedicineJohns Hopkins School of Public Health and School of MedicineBaltimoreMarylandUSA
| | | | - Utkarsh Sood
- Department of ZoologyKirori Mal College, University of DelhiDelhiIndia
| | - Roshan Kumar
- Post‐Graduate Department of ZoologyMagadh UniversityBodh GayaBiharIndia
| | - Princy Hira
- Department of ZoologyMaitreyi College, University of DelhiNew DelhiIndia
| | | | - Abhilash Kumar
- Department of ZoologyRamjas College, University of DelhiDelhiIndia
| | - Sukanya Lal
- PhiXgen Pvt. LtdGurugram, GurgaonHaryanaIndia
| | - Rup Lal
- Acharya Narendra Dev College, University of DelhiGovindpuri, Kalkaji, New DelhiIndia
| | - Kenneth Timmis
- Institute of Microbiology, Technical University BraunschweigBraunschweigGermany
| |
Collapse
|
9
|
Sen S, Kunjapur AM. Coordinated microbial lysis bursts into the drug delivery scene. Trends Biotechnol 2023; 41:295-297. [PMID: 36710129 DOI: 10.1016/j.tibtech.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
To address limitations in dosing and releasing cargo from engineered microbes, Din et al. harnessed a previously designed oscillatory genetic circuit to achieve the synchronized release of cancer-killing protein payloads. Here, we briefly recap this study published in 2016 and its transformative impact on the field.
Collapse
Affiliation(s)
- Sabyasachi Sen
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
10
|
Stiepel RT, Duggan E, Batty CJ, Ainslie KM. Micro and nanotechnologies: The little formulations that could. Bioeng Transl Med 2023; 8:e10421. [PMID: 36925714 PMCID: PMC10013823 DOI: 10.1002/btm2.10421] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/22/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
Abstract
The first publication of micro- and nanotechnology in medicine was in 1798 with the use of the Cowpox virus by Edward Jenner as an attenuated vaccine against Smallpox. Since then, there has been an explosion of micro- and nanotechnologies for medical applications. The breadth of these micro- and nanotechnologies is discussed in this piece, presenting the date of their first report and their latest progression (e.g., clinical trials, FDA approval). This includes successes such as the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines from Pfizer, Moderna, and Janssen (Johnson & Johnson) as well as the most popular nanoparticle therapy, liposomal Doxil. However, the enormity of the success of these platforms has not been without challenges. For example, we discuss why the production of Doxil was halted for several years, and the bankruptcy of BIND therapeutics, which relied on a nanoparticle drug carrier. Overall, the field of micro- and nanotechnology has advanced beyond these challenges and continues advancing new and novel platforms that have transformed therapies, vaccines, and imaging. In this review, a wide range of biomedical micro- and nanotechnology is discussed to serve as a primer to the field and provide an accessible summary of clinically relevant micro- and nanotechnology platforms.
Collapse
Affiliation(s)
- Rebeca T. Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Eliza Duggan
- North Carolina School of Science and MathematicsDurhamNorth CarolinaUSA
| | - Cole J. Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
- Department of Microbiology and Immunology, UNC School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
11
|
Blanch-Asensio M, Dey S, Sankaran S. In vitro assembly of plasmid DNA for direct cloning in Lactiplantibacillus plantarum WCSF1. PLoS One 2023; 18:e0281625. [PMID: 36795741 PMCID: PMC9934402 DOI: 10.1371/journal.pone.0281625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Lactobacilli are gram-positive bacteria that are growing in importance for the healthcare industry and genetically engineering them as living therapeutics is highly sought after. However, progress in this field is hindered since most strains are difficult to genetically manipulate, partly due to their complex and thick cell walls limiting our capability to transform them with exogenous DNA. To overcome this, large amounts of DNA (>1 μg) are normally required to successfully transform these bacteria. An intermediate host, like E. coli, is often used to amplify recombinant DNA to such amounts although this approach poses unwanted drawbacks such as an increase in plasmid size, different methylation patterns and the limitation of introducing only genes compatible with the intermediate host. In this work, we have developed a direct cloning method based on in-vitro assembly and PCR amplification to yield recombinant DNA in significant quantities for successful transformation in L. plantarum WCFS1. The advantage of this method is demonstrated in terms of shorter experimental duration and the possibility to introduce a gene incompatible with E. coli into L. plantarum WCFS1.
Collapse
Affiliation(s)
- Marc Blanch-Asensio
- Bioprogrammable Materials, INM—Leibniz Institute for New Materials Campus D2 2, Saarbrücken, Germany
| | - Sourik Dey
- Bioprogrammable Materials, INM—Leibniz Institute for New Materials Campus D2 2, Saarbrücken, Germany
| | - Shrikrishnan Sankaran
- Bioprogrammable Materials, INM—Leibniz Institute for New Materials Campus D2 2, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
12
|
Huang X, Guo H, Wang L, Shao Z. Engineered microorganism-based delivery systems for targeted cancer therapy: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:201-212. [PMID: 36654778 PMCID: PMC9840089 DOI: 10.12336/biomatertransl.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 01/20/2023]
Abstract
Microorganisms with innate and artificial advantages have been regarded as intelligent drug delivery systems for cancer therapy with the help of engineering technology. Although numerous studies have confirmed the promising prospects of microorganisms in cancer, several problems such as immunogenicity and toxicity should be addressed before further clinical applications. This review aims to investigate the development of engineered microorganism-based delivery systems for targeted cancer therapy. The main types of microorganisms such as bacteria, viruses, fungi, microalgae, and their components and characteristics are introduced in detail. Moreover, the engineering strategies and biomaterials design of microorganisms are further discussed. Most importantly, we discuss the innovative attempts and therapeutic effects of engineered microorganisms in cancer. Taken together, engineered microorganism-based delivery systems hold tremendous promise for biomedical applications in targeted cancer therapy.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Haoyu Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lutong Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding author: Zengwu Shao,
| |
Collapse
|
13
|
Vieira-Baptista P, De Seta F, Verstraelen H, Ventolini G, Lonnee-Hoffmann R, Lev-Sagie A. The Vaginal Microbiome: V. Therapeutic Modalities of Vaginal Microbiome Engineering and Research Challenges. J Low Genit Tract Dis 2022; 26:99-104. [PMID: 34928260 PMCID: PMC8719494 DOI: 10.1097/lgt.0000000000000647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This series of articles, titled The Vaginal Microbiome (VMB), written on behalf of the International Society for the Study of Vulvovaginal Disease, aims to summarize the recent findings and understanding of the vaginal bacterial microbiota, mainly regarding areas relevant to clinicians specializing in vulvovaginal disorders. MATERIALS AND METHODS A search of PubMed database was performed, using the search terms "vaginal microbiome" with "treatment," "diagnosis," and "research." Full article texts were reviewed. Reference lists were screened for additional articles. RESULTS The currently available approaches for treating vaginitis or attempting to modulate the VMB are often insufficient. It has traditionally relied on the use of antibiotics, antiseptics, and antifungals. The fifth and last article of this series discusses the new and/or alternative therapeutic modalities. It addresses the role of probiotics, prebiotics and symbiotics, activated charcoal, biofilm disrupting agents, acidifying agents, phage therapy, and the concept of vaginal microbiome transplant. The challenges facing the research of VMB, including the clinical impact of microbiome manipulation, classification, and new diagnostic approaches are discussed. CONCLUSIONS Microbiome research has grown dramatically in recent years, motivated by innovations in technology and decrease in analysis costs. This research has yielded huge insight into the nature of microbial communities, their interactions, and effects with their hosts and other microbes. Further understanding of the bacterial, fungal, phage, and viral microbiomes in combination with host genetics, immunologic status, and environmental factors is needed to better understand and provide personalized medical diagnostics and interventions to improve women's health.
Collapse
Affiliation(s)
- Pedro Vieira-Baptista
- Hospital Lusíadas Porto, Porto
- Lower Genital Tract Unit, Centro Hospitalar de São João, Porto
- LAP, a Unilabs Company, Porto, Portugal
| | - Francesco De Seta
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, Trieste
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Hans Verstraelen
- Department of Obstetrics & Gynaecology, Ghent University Hospital, Ghent
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Gary Ventolini
- Professor of Obstetrics and Gynecology, Distinguish University Professor, School of Medicine, Texas Tech University Health Sciences Center, Permian Basin, Odessa, Texas, USA
| | - Risa Lonnee-Hoffmann
- Department of Obstetrics and Gynecology, St Olavs University Hospital, Trondheim
- Institute for Clinical and Molekular Medicine, Norwegian University for Science and Technology, Trondheim, Norway
| | - Ahinoam Lev-Sagie
- Faculty of Medicine, Hebrew University of Jerusalem, Israel
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
14
|
Perez M, Ntemiri A, Tan H, Harris HMB, Roager HM, Ribière C, O’Toole PW. A synthetic consortium of 100 gut commensals modulates the composition and function in a colon model of the microbiome of elderly subjects. Gut Microbes 2021; 13:1-19. [PMID: 33993839 PMCID: PMC8128205 DOI: 10.1080/19490976.2021.1919464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Administration of cultured gut isolates holds promise for modulating the altered composition and function of the microbiota in older subjects, and for promoting their health. From among 692 initial isolates, we selected 100 gut commensal strains (MCC100) based on emulating the gut microbiota of healthy subjects, and retaining strain diversity within selected species. MCC100 susceptibility to seven antibiotics was determined, and their genomes were screened for virulence factor, antimicrobial resistance and bacteriocin genes. Supplementation of healthy and frail elderly microbiota types with the MCC100 in an in vitro colon model increased alpha-diversity, raised relative abundance of taxa including Blautia luti, Bacteroides fragilis, and Sutterella wadsworthensis; and introduced taxa such as Bifidobacterium spp. Microbiota changes correlated with higher levels of branched chain amino acids, which are health-associated in elderly. The study establishes that the MCC100 consortium can modulate older subjects' microbiota composition and associated metabolome in vitro, paving the way for pre-clinical and human trials.
Collapse
Affiliation(s)
- Marta Perez
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Alexandra Ntemiri
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Huizi Tan
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hugh M. B. Harris
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Henrik M. Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Céline Ribière
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul W. O’Toole
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland,CONTACT Paul W. O’Toole School of Microbiology & APC Microbiome Ireland, Food Science Building, University College Cork, CorkT12 YN60, Ireland
| |
Collapse
|
15
|
Vargason AM, Anselmo AC. Live Biotherapeutic Products and Probiotics for the Skin. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ava M. Vargason
- Division of Pharmacoengineering and Molecular Pharmaceutics Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Aaron C. Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
16
|
Qiu K, Anselmo AC. Enhanced Storage of Anaerobic Bacteria through Polymeric Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46282-46290. [PMID: 34558893 DOI: 10.1021/acsami.1c11785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Live microbes such as lactobacilli have long been used as probiotic supplements and, more recently, have been explored as live biotherapeutic products with the potential to treat a range of conditions. Among these microbes is a category of anaerobes that possess therapeutic potential while exhibiting unique oxygen sensitivity and thus requiring careful considerations in the formulation and storage processes. Existing microbial formulation development has focused on facultative anaerobes with natural oxygen tolerance; a few strategies have been reported for anaerobes with demonstrated oxygen intolerance, warranting novel approaches toward addressing the challenges for these oxygen-sensitive anaerobes. Here, we develop a polymeric encapsulation system for the formulation and storage of Bifidobacterium adolescentis (B. adolescentis), a model anaerobe that loses viability in aerobic incubation at 37 °C within 1 day. We discover that this strain remains viable under aerobic conditions for 14 days at 4 °C, enabling formulation development such as solution casting and air drying in an aerobic environment. Next, through a systematic selection of polymer encapsulants and excipients, we show that encapsulation with poly(vinyl alcohol) (PVA) acts as an oxygen barrier and facilitates long-term storage of B. adolescentis, which is partially attributed to reduced generation of reactive oxygen species. Lastly, PVA-based formulations can produce oral capsule-loaded films and edible gummy bears, demonstrating its compatibility with both pharmaceutical and food dosage forms.
Collapse
Affiliation(s)
- Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
17
|
Qiu K, Huang Y, Anselmo AC. Polymer and Crosslinker Content Influences Performance of Encapsulated Live Biotherapeutic Products. Cell Mol Bioeng 2021; 14:487-499. [PMID: 34777606 PMCID: PMC8548438 DOI: 10.1007/s12195-021-00674-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Live biotherapeutic products (LBPs), or therapeutic microbes, are an emerging therapeutic modality for prevention and treatment of gastrointestinal diseases. Since LBPs are living, they are uniquely sensitive to external stresses (e.g., oxygen, acid) encountered during manufacturing, storage, and delivery. Here, we systematically evaluate how polymer and crosslinker concentration affects the performance of an encapsulated LBP toward developing a comprehensive framework for the characterization and optimization of LBP delivery systems. METHODS We encapsulate a model LBP, Lactobacillus casei ATCC 393, in calcium chloride (CaCl2)-crosslinked alginate beads, and evaluate how alginate and CaCl2 concentrations influence LBP formulation performance, including: (i) encapsulation efficiency, (ii) shrinkage upon drying, (iii) survival upon lyophilization, (iv) acid resistance, (v) release, and (vi) metabolite secretion. Approaches from microbiology (e.g., colony forming unit enumeration), materials science (e.g., scanning electron microscopy), and pharmaceutical sciences (e.g., release assays) are employed. RESULTS LBP-encapsulating alginate beads were systematically evaluated as a function of alginate and CaCl2 concentrations. Specifically: (i) encapsulation efficiency of all formulations was >50%, (ii) all alginate beads shrunk (after lyophilization) and recovered (after rehydration) similarly, (iii) at 10% alginate concentration, lower CaCl2 concentration decreased survival upon lyophilization, (iv) 10% alginate improved acid resistance, (v) sustained release was enabled by increasing alginate and CaCl2 concentrations, and (vi) encapsulation did not impair secretion of l-lactate as compared to free LBP. CONCLUSIONS This research demonstrates that polymer content and crosslinking extent modulate the performance of polymer-based LBP delivery systems, motivating research into the optimization of material properties for LBP delivery systems.
Collapse
Affiliation(s)
- Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 United States
| | - Yirui Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 United States
| | - Aaron C. Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 United States
| |
Collapse
|
18
|
Li Z, Wang Y, Liu J, Rawding P, Bu J, Hong S, Hu Q. Chemically and Biologically Engineered Bacteria-Based Delivery Systems for Emerging Diagnosis and Advanced Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102580. [PMID: 34347325 DOI: 10.1002/adma.202102580] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Bacteria are one of the main groups of organisms, which dynamically and closely participate in human health and disease development. With the integration of chemical biotechnology, bacteria have been utilized as an emerging delivery system for various biomedical applications. Given the unique features of bacteria such as their intrinsic biocompatibility and motility, bacteria-based delivery systems have drawn wide interest in the diagnosis and treatment of various diseases, including cancer, infectious diseases, kidney failure, and hyperammonemia. Notably, at the interface of chemical biotechnology and bacteria, many research opportunities have been initiated, opening a promising frontier in biomedical application. Herein, the current synergy of chemical biotechnology and bacteria, the design principles for bacteria-based delivery systems, the microbial modulation, and the clinical translation are reviewed, with a special focus on the emerging advances in diagnosis and therapy.
Collapse
Affiliation(s)
- Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Jun Liu
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Piper Rawding
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| |
Collapse
|
19
|
The evolution of commercial drug delivery technologies. Nat Biomed Eng 2021; 5:951-967. [PMID: 33795852 DOI: 10.1038/s41551-021-00698-w] [Citation(s) in RCA: 498] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Drug delivery technologies have enabled the development of many pharmaceutical products that improve patient health by enhancing the delivery of a therapeutic to its target site, minimizing off-target accumulation and facilitating patient compliance. As therapeutic modalities expanded beyond small molecules to include nucleic acids, peptides, proteins and antibodies, drug delivery technologies were adapted to address the challenges that emerged. In this Review Article, we discuss seminal approaches that led to the development of successful therapeutic products involving small molecules and macromolecules, identify three drug delivery paradigms that form the basis of contemporary drug delivery and discuss how they have aided the initial clinical successes of each class of therapeutic. We also outline how the paradigms will contribute to the delivery of live-cell therapies.
Collapse
|
20
|
Clark RL, Connors BM, Stevenson DM, Hromada SE, Hamilton JJ, Amador-Noguez D, Venturelli OS. Design of synthetic human gut microbiome assembly and butyrate production. Nat Commun 2021; 12:3254. [PMID: 34059668 PMCID: PMC8166853 DOI: 10.1038/s41467-021-22938-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 02/04/2023] Open
Abstract
The capability to design microbiomes with predictable functions would enable new technologies for applications in health, agriculture, and bioprocessing. Towards this goal, we develop a model-guided approach to design synthetic human gut microbiomes for production of the health-relevant metabolite butyrate. Our data-driven model quantifies microbial interactions impacting growth and butyrate production separately, providing key insights into ecological mechanisms driving butyrate production. We use our model to explore a vast community design space using a design-test-learn cycle to identify high butyrate-producing communities. Our model can accurately predict community assembly and butyrate production across a wide range of species richness. Guided by the model, we identify constraints on butyrate production by high species richness and key molecular factors driving butyrate production, including hydrogen sulfide, environmental pH, and resource competition. In sum, our model-guided approach provides a flexible and generalizable framework for understanding and accurately predicting community assembly and metabolic functions.
Collapse
Affiliation(s)
- Ryan L Clark
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Bryce M Connors
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Susan E Hromada
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J Hamilton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
21
|
Heavey MK, Anselmo AC. Modulating Oral Delivery and Gastrointestinal Kinetics of Recombinant Proteins via Engineered Fungi. AAPS J 2021; 23:76. [PMID: 34009532 PMCID: PMC8195623 DOI: 10.1208/s12248-021-00606-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
A new modality in microbe-mediated drug delivery has recently emerged wherein genetically engineered microbes are used to locally deliver recombinant therapeutic proteins to the gastrointestinal tract. These engineered microbes are often referred to as live biotherapeutic products (LBPs). Despite advanced genetic engineering and recombinant protein expression approaches, little is known on how to control the spatiotemporal dynamics of LBPs and their secreted therapeutics within the gastrointestinal tract. To date, the fundamental pharmacokinetic analyses for microbe-mediated drug delivery systems have not been described. Here, we explore the pharmacokinetics of an engineered, model protein-secreting Saccharomyces cerevisiae, which serves as an ideal organism for the oral delivery of complex, post-translationally modified proteins. We establish three methods to modulate the pharmacokinetics of an engineered, recombinant protein-secreting fungi system: (i) altering oral dose of engineered fungi, (ii) co-administering antibiotics, and (iii) altering recombinant protein secretion titer. Our findings establish the fundamental pharmacokinetics which will be essential in controlling downstream therapeutic response for this new delivery modality.
Collapse
Affiliation(s)
- Mairead K Heavey
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, North Carolina, 27599, Chapel Hill, USA
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, North Carolina, 27599, Chapel Hill, USA.
| |
Collapse
|
22
|
Wang LL, Janes ME, Kumbhojkar N, Kapate N, Clegg JR, Prakash S, Heavey MK, Zhao Z, Anselmo AC, Mitragotri S. Cell therapies in the clinic. Bioeng Transl Med 2021; 6:e10214. [PMID: 34027097 PMCID: PMC8126820 DOI: 10.1002/btm2.10214] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/30/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Cell therapies have emerged as a promising therapeutic modality with the potential to treat and even cure a diverse array of diseases. Cell therapies offer unique clinical and therapeutic advantages over conventional small molecules and the growing number of biologics. Particularly, living cells can simultaneously and dynamically perform complex biological functions in ways that conventional drugs cannot; cell therapies have expanded the spectrum of available therapeutic options to include key cellular functions and processes. As such, cell therapies are currently one of the most investigated therapeutic modalities in both preclinical and clinical settings, with many products having been approved and many more under active clinical investigation. Here, we highlight the diversity and key advantages of cell therapies and discuss their current clinical advances. In particular, we review 28 globally approved cell therapy products and their clinical use. We also analyze >1700 current active clinical trials of cell therapies, with an emphasis on discussing their therapeutic applications. Finally, we critically discuss the major biological, manufacturing, and regulatory challenges associated with the clinical translation of cell therapies.
Collapse
Affiliation(s)
- Lily Li‐Wen Wang
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Morgan E. Janes
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ninad Kumbhojkar
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Neha Kapate
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - John R. Clegg
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Supriya Prakash
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Mairead K. Heavey
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Zongmin Zhao
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Aaron C. Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
23
|
Qiu K, Anselmo AC. Batch Culture Formulation of Live Biotherapeutic Products. ADVANCED THERAPEUTICS 2021; 4:2000226. [PMID: 33709021 PMCID: PMC7942761 DOI: 10.1002/adtp.202000226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Indexed: 12/31/2022]
Abstract
Live biotherapeutic products (LBPs) are an emerging therapeutic modality that are clinically investigated for treating pathogenic infections and inflammatory diseases. A major class of LBPs are feces derived microbial consortiums which require numerous process development steps (e.g. separation, purification, blending) to facilitate LBP formulation into oral dosage forms. A subset of these LBPs circumvent the need for continuous fecal processing by batch culture for individual strains of microbes that are rationally defined and combined in the final LBP formulation. Separately, delivery formulations (e.g. polymer encapsulation) are being developed for LBPs to improve storage and intestinal engraftment; however, formulation requires additional manufacturing processes distinct from fecal processing or batch culture. Here, a streamlined approach termed batch culture formulation (BCF) is developed to combine the individual batch culture and formulation processes into a single-step process. Based on a previously described polymeric film formulation that encapsulates LBPs, BCF is shown to reduce the number of required processes to formulate LBP-films without altering LBP phenotype, function, or storage profiles compared to the standard LBP-film formulation approach. Additionally, it is demonstrated that BCF facilitates scaled-fabrication from the milligram to gram scale with predictable loading, highlighting the potential that BCF has for clinical translation.
Collapse
Affiliation(s)
- Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
24
|
Riaz Rajoka MS, Mehwish HM, Xiong Y, Song X, Hussain N, Zhu Q, He Z. Gut microbiota targeted nanomedicine for cancer therapy: Challenges and future considerations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Bishehsari F, Voigt RM, Keshavarzian A. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nat Rev Endocrinol 2020; 16:731-739. [PMID: 33106657 PMCID: PMC8085809 DOI: 10.1038/s41574-020-00427-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
The metabolic syndrome is prevalent in developed nations and accounts for the largest burden of non-communicable diseases worldwide. The metabolic syndrome has direct effects on health and increases the risk of developing cancer. Lifestyle factors that are known to promote the metabolic syndrome generally cause pro-inflammatory alterations in microbiota communities in the intestine. Indeed, alterations to the structure and function of intestinal microbiota are sufficient to promote the metabolic syndrome, inflammation and cancer. Among the lifestyle factors that are associated with the metabolic syndrome, disruption of the circadian system, known as circadian dysrhythmia, is increasingly common. Disruption of the circadian system can alter microbiome communities and can perturb host metabolism, energy homeostasis and inflammatory pathways, which leads to the metabolic syndrome. This Perspective discusses the role of intestinal microbiota and microbial metabolites in mediating the effects of disruption of circadian rhythms on human health.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA.
- Department of Physiology, Rush University Medical Center, Chicago, IL, USA.
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
26
|
Chang SC, Shen MH, Liu CY, Pu CM, Hu JM, Huang CJ. A gut butyrate-producing bacterium Butyricicoccus pullicaecorum regulates short-chain fatty acid transporter and receptor to reduce the progression of 1,2-dimethylhydrazine-associated colorectal cancer. Oncol Lett 2020; 20:327. [PMID: 33101496 PMCID: PMC7577080 DOI: 10.3892/ol.2020.12190] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Gut microbes influence tumor development and progression in the intestines and may provide a novel paradigm for the treatment of colorectal cancer (CRC). Gut dysbiosis may be associated with the development and progression of CRC. Identifying the interactions between the colonic tract and gut microbiota may provide novel information relevant to CRC prevention. The present study examined the effects of butyrate-producing Butyricicoccus pullicaecorum (B. pullicaecorum) on mice with 1,2-dimethylhydrazine (DMH)-induced CRC and the microbial metabolite of B. pullicaecorum on CRC cells. Immunohistochemical staining of the mouse colon tissues and reverse transcription PCR of CRC cells were used to determine the protein and mRNA expression levels of the short-chain fatty acid (SCFA) transporter solute carrier family 5 member 8 (SLC5A8) and G-protein-coupled receptor 43 (GPR43). In CRC-bearing mice fed B. pullicaecorum, DMH-induced CRC regressed, body weight increased and serum carcinoembryonic antigen levels decreased. Notably, SLC5A8 and GPR43 were diffusely and moderately to strongly expressed in the neoplastic epithelial cells and underlying muscularis propria in the colons of the mice. In conclusion, administration of B. pullicaecorum or its metabolites improved the clinical outcome of CRC by activating the SCFA transporter and/or receptor. These results indicated that B. pullicaecorum was a probiotic with anti-CRC potential.
Collapse
Affiliation(s)
- Shih-Chang Chang
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Ming-Hung Shen
- Department of Surgery, Fu Jen Catholic University Hospital, New Taipei City 24352, Taiwan, R.O.C.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Chih-Yi Liu
- Department of Pathology, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan, R.O.C
| | - Chi-Ming Pu
- Division of Plastic Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Je-Ming Hu
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, Taipei 11490, Taiwan, R.O.C.,School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C
| | - Chi-Jung Huang
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| |
Collapse
|
27
|
Challenges & opportunities for phage-based in situ microbiome engineering in the gut. J Control Release 2020; 326:106-119. [DOI: 10.1016/j.jconrel.2020.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
|
28
|
Gulati M, Singh SK, Corrie L, Chandwani L, Singh A, Kapoor B, Kumar R, Pandey NK, Kumar B, Awasthi A, Khursheed R. Fecal Microbiota Transplant: Latest Addition to Arsenal Against Recurrent Clostridium Difficile Infection. RECENT PATENTS ON ANTI-INFECTIVE DRUG DISCOVERY 2020; 16:PRI-EPUB-110215. [PMID: 32981509 DOI: 10.2174/1574891x15666200925092354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
An infectious disease of colon, recurrent Clostridium difficile infection (RCDI) is hitherto considered insurmountable leading to significant morbidity and mortality. Gut dysbiosis, generally resulting from frequent use of antibiotics is considered to be responsible for the etiopathogenesis of rCDI. Ironically, the conventional treatment strategies for the disease also include the use of anti-infective drugs such as metronidazole, vancomycin and fidaxomycin. As a result of the efforts to overcome the limitations of these treatment options to control recurrence of disease, Fecal Microbiota Transplant (FMT) has emerged as an effective and safe alternative. It is pertinent to add here that FMT is defined as the process of engraftment of fecal suspension from the healthy person into the gastrointestinal tract of the diseased individual aiming at the restoration of gut microbiota. FMT has proved to be quite successful in the treatment of recurrent and resistant Clostridium difficile infections (RCDI). In last three decades a lot of information has been generated on the use of FMT for RCDI. A number of clinical trials have been reported with generally very high success rates. However, very small number of patents could be found in the area indicating that there still exists lacuna in the knowledge about FMT with respect to its preparation, regulation, mode of delivery and safety. The current review attempts to dive deeper to discuss the patents available in the area while supporting the information contained therein with the non-patent literature.
Collapse
Affiliation(s)
- Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Lipika Chandwani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Apoorva Singh
- Department of Anaesthesiology and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh-160012. India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Narendra K Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| |
Collapse
|
29
|
Moskovicz V, Gross A, Mizrahi B. Extrinsic Factors Shaping the Skin Microbiome. Microorganisms 2020; 8:E1023. [PMID: 32664353 PMCID: PMC7409027 DOI: 10.3390/microorganisms8071023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Human skin, our most environmentally exposed organ, is colonized by a vast array of microorganisms constituting its microbiome. These bacterial communities are crucial for the fulfillment of human physiological functions such as immune system modulation and epidermal development and differentiation. The structure of the human skin microbiome is established during the early life stages, starting even before birth, and continues to be modulated throughout the entire life cycle, by multiple host-related and environmental factors. This review focuses on extrinsic factors, ranging from cosmetics to the environment and antibacterial agents, as forces that impact the human skin microbiome and well-being. Assessing the impact of these factors on the skin microbiome will help elucidate the forces that shape the microbial populations we coexist with. Furthermore, we will gain additional insight into their tendency to stimulate a healthy environment or to increase the propensity for skin disorder development.
Collapse
Affiliation(s)
| | | | - Boaz Mizrahi
- Faculty of Biotechnology and Food Engineering, Technion, Haifa 3200003, Israel; (V.M.); (A.G.)
| |
Collapse
|
30
|
Vargason AM, Santhosh S, Anselmo AC. Surface Modifications for Improved Delivery and Function of Therapeutic Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001705. [PMID: 32410314 DOI: 10.1002/smll.202001705] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Live therapeutic bacteria (LTBs) hold promise to treat microbiome-related diseases. However, few approaches to improve the colonization of LTBs in the gastrointestinal tract exist, despite colonization being a prerequisite for efficacy of many LTBs. Here, a modular platform to rapidly modify the surface of LTBs to enable receptor-specific interactions with target surfaces is reported. Inspired by bacterial adhesins that facilitate colonization, synthetic adhesins (SAs) are developed for LTBs in the form of antibodies conjugated to their surface. The SA platform is nontoxic, does not alter LTB growth kinetics, and can be used with any antibody or bacterial strain combination. By improving adhesion, SA-modified bacteria demonstrate enhanced in vitro pathogen exclusion from cell monolayers. In vivo kinetics of SA-modified LTBs is tracked in the feces and intestines of treated mice, demonstrating that SA-modified bacteria alter short-term intestinal transit and improve LTB colonization and pharmacokinetics. This platform enables rapid formation of an intestinal niche, leading to an increased maximum concentration and a 20% improvement in total LTB exposure. This work is the first application of traditional pharmacokinetic analysis to design and evaluate LTB drug delivery systems and provides a platform toward controlling adhesion, colonization, and efficacy of LTBs.
Collapse
Affiliation(s)
- Ava M Vargason
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - Shruti Santhosh
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| |
Collapse
|
31
|
Qiu K, Young I, Woodburn BM, Huang Y, Anselmo AC. Polymeric Films for the Encapsulation, Storage, and Tunable Release of Therapeutic Microbes. Adv Healthc Mater 2020; 9:e1901643. [PMID: 32080981 PMCID: PMC7293827 DOI: 10.1002/adhm.201901643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/27/2020] [Indexed: 12/12/2022]
Abstract
Microbe-based therapeutics (MBTs) are an emerging therapeutic modality for treating gastrointestinal infections and inflammatory bowel diseases. Current formulations for oral delivery of MBTs use capsules to achieve safe gastric transit, but oral formulations that control the spatiotemporal concentration of MBTs are yet to be developed, despite well-established connections between all therapeutics and their location, concentration, and distribution at sites of action. The development of a multi-functional polymer-based encapsulation system to formulate MBTs for enhanced storage and delivery through formulation of a model MBT, Lactobacillus casei ATCC393, is reported here. This approach enables the additive inclusion of excipients and polymers to grant specific functions, toward the development of a modular MBT platform. Through addition of established excipients, the formulation provides long-term storage of the encapsulated MBT. By adding higher molecular weight polymers, the release kinetics of the encapsulated MBTs can be modified. The inclusion of a mucoadhesive polymer significantly increases the adhesion force between the formulation and the intestinal tissue. Together, mucoadhesive and sustained release properties can be used to modulate the spatiotemporal concentration of MBTs. The formulation is compatible with standard oral capsules, thus maintaining existing clinical advantages of oral capsules while providing new functions from film encapsulation.
Collapse
Affiliation(s)
- Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Isabella Young
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Blaide M. Woodburn
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yirui Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron C. Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
32
|
Kumar R, Sood U, Gupta V, Singh M, Scaria J, Lal R. Recent Advancements in the Development of Modern Probiotics for Restoring Human Gut Microbiome Dysbiosis. Indian J Microbiol 2020; 60:12-25. [PMID: 32089570 PMCID: PMC7000592 DOI: 10.1007/s12088-019-00808-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
A healthy gut is predominantly occupied by bacteria which play a vital role in nutrition and health. Any change in normal gut homeostasis imposes gut dysbiosis. So far, efforts have been made to mitigate the gastrointestinal symptoms using modern day probiotics. The majority of the probiotics strains used currently belong to the genera Lactobacillus, Clostridium, Bifidobacterium and Streptococcus. Recent advancements in culturomics by implementing newer techniques coupled with the use of gnotobiotic animal models provide a subtle ground to develop novel host specific probiotics therapies. In this review article, the recent advances in the development of microbe-based therapies which can now be implemented to treat a wide spectrum of diseases have been discussed. However, these probiotics are not classified as drugs and there is a lack of stringent law enforcement to protect the end users against the pseudo-probiotic products. While modern probiotics hold strong promise for the future, more rigorous regulations are needed to develop genuine probiotic products and characterize novel probiotics using the latest research and technology. This article also highlights the possibility of reducing antibiotic usage by utilizing probiotics developed using the latest concepts of syn and ecobiotics.
Collapse
Affiliation(s)
- Roshan Kumar
- PhiXGen Private Limited, Gurugram, Haryana 122001 India
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA
- South Dakota Centre for Biologics Research and Commercialization, Brookings, SD USA
| | - Utkarsh Sood
- PhiXGen Private Limited, Gurugram, Haryana 122001 India
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Vipin Gupta
- PhiXGen Private Limited, Gurugram, Haryana 122001 India
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi 110067 India
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA
- South Dakota Centre for Biologics Research and Commercialization, Brookings, SD USA
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana 122001 India
- Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
33
|
Rottinghaus AG, Amrofell MB, Moon TS. Biosensing in Smart Engineered Probiotics. Biotechnol J 2020; 15:e1900319. [PMID: 31860168 DOI: 10.1002/biot.201900319] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/05/2019] [Indexed: 01/01/2023]
Abstract
Engineered microbes are exciting alternatives to current diagnostics and therapeutics. Researchers have developed a wide range of genetic tools and parts to engineer probiotic and commensal microbes. Among these tools and parts, biosensors allow the microbes to sense and record or to sense and respond to chemical and environmental signals in the body, enabling them to report on health conditions of the animal host and/or deliver therapeutics in a controlled manner. This review focuses on how biosensing is applied to engineer "smart" microbes for in vivo diagnostic, therapeutic, and biocontainment goals. Hurdles that need to be overcome when transitioning from high-throughput in vitro systems to low-throughput in vivo animal models, new technologies that can be implemented to alleviate this experimental gap, and areas where future advancements can be made to maximize the utility of biosensing for medical applications are also discussed. As technologies for engineering microbes continue to be developed, these engineered organisms will be used to address many medical challenges.
Collapse
Affiliation(s)
- Austin G Rottinghaus
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Matthew B Amrofell
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
34
|
Song W, Anselmo AC, Huang L. Nanotechnology intervention of the microbiome for cancer therapy. NATURE NANOTECHNOLOGY 2019; 14:1093-1103. [PMID: 31802032 DOI: 10.1038/s41565-019-0589-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/06/2019] [Indexed: 05/19/2023]
Abstract
The microbiome is emerging as a key player and driver of cancer. Traditional modalities to manipulate the microbiome (for example, antibiotics, probiotics and microbiota transplants) have been shown to improve efficacy of cancer therapies in some cases, but issues such as collateral damage to the commensal microbiota and consistency of these approaches motivates efforts towards developing new technologies specifically designed for the microbiome-cancer interface. Considering the success of nanotechnology in transforming cancer diagnostics and treatment, nanotechnologies capable of manipulating interactions that occur across microscopic and molecular length scales in the microbiome and the tumour microenvironment have the potential to provide innovative strategies for cancer treatment. As such, opportunities at the intersection of nanotechnology, the microbiome and cancer are massive. In this Review, we highlight key opportunistic areas for applying nanotechnologies towards manipulating the microbiome for the treatment of cancer, give an overview of seminal work and discuss future challenges and our perspective on this emerging area.
Collapse
Affiliation(s)
- Wantong Song
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, People's Republic of China
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Zhi X, Liu Y, Lin L, Yang M, Zhang L, Zhang L, Liu Y, Alfranca G, Ma L, Zhang Q, Fu H, Conde J, Ding X, Chen D, Ni J, Song J, Cui D. Oral pH sensitive GNS@ab nanoprobes for targeted therapy of Helicobacter pylori without disturbance gut microbiome. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:102019. [DOI: 10.1016/j.nano.2019.102019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
|
36
|
Abstract
The recognition over the past decade that nearly all diseases are associated with changes in the microbiome has raised hope that microbiome-based therapeutics may cure many human ailments. Billions of dollars are being poured into microbiome-oriented biotech companies, and the coming years will undoubtedly witness the approval of the first generation of these products. However, significant hurdles remain in expanding the pipeline and advancing these first-generation therapies. In this perspective, I will discuss the challenges related to identifying causal microbes, determining their mechanism of action, and characterizing the specific bacterial molecules required for disease protection. We are approaching these issues through a combination of clinical sampling, animal models, classic microbiology methodologies, and systems-based approaches. The field of microbiome research is on the cusp of being able to identify clinically actionable host-microbe relationships; increasing attention on identifying causal microbes and their bioactive factors will usher in the next generation of microbiome-based therapies.
Collapse
|