1
|
Yamaoka H, Yamaoka K, Ishii H, Tanaka H, Yasuda M, Watanabe S, Hosoyamada M, Komuro Y. Collagen isolated from human adipose tissue and its cellular affinity. J Biochem 2025; 177:45-56. [PMID: 39468421 DOI: 10.1093/jb/mvae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
The use of collagen in cell cultures promotes cell proliferation and differentiation, and it has been commercialized. In this study, we separated and purified collagen from adipose tissue discarded during liposuction and prepared collagen-coated dishes. After collagen was identified from human adipose tissue, type identification and quantification were performed using SDS-PAGE and FPLC. Collagen type I was used to coat culture dishes. Human skin fibroblasts and human adipose tissue-derived stem cells were seeded at a density of 2.5 × 105 cells/ml on prepared dishes at a collagen concentration of 3 mg/ml and cultured for 7 days. Cell viability was then measured and analyzed. The WST-1 assay was used to evaluate the results. The amount of collagen in 300 g of adipose tissue was 25.5 mg for type I, 41.4 mg for type III, 10.6 mg for type IV, 6.5 mg for type V and 15 mg for type VI. The highest rates were observed for adipose stem cells cultured on human adipose tissue-derived collagen-coated dishes. In cell cultures, cell affinity was higher when cells and the substrate used were of the same origin, and affinity was stronger when the tissue of origin was the same.
Collapse
Affiliation(s)
- Hisayo Yamaoka
- Department of Plastic Surgery, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Keiko Yamaoka
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hidenori Ishii
- Department of Plastic Surgery, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hideyuki Tanaka
- Department of Anatomy, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Makoto Yasuda
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Shigekazu Watanabe
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Makoto Hosoyamada
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yuzo Komuro
- Department of Plastic Surgery, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
2
|
Abedi M, Shafiee M, Afshari F, Mohammadi H, Ghasemi Y. Collagen-Based Medical Devices for Regenerative Medicine and Tissue Engineering. Appl Biochem Biotechnol 2024; 196:5563-5603. [PMID: 38133881 DOI: 10.1007/s12010-023-04793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Assisted reproductive technologies are key to solving the problems of aging and organ defects. Collagen is compatible with living tissues and has many different chemical properties; it has great potential for use in reproductive medicine and the engineering of reproductive tissues. It is a natural substance that has been used a lot in science and medicine. Collagen is a substance that can be obtained from many different animals. It can be made naturally or created using scientific methods. Using pure collagen has some drawbacks regarding its physical and chemical characteristics. Because of this, when collagen is processed in various ways, it can better meet the specific needs as a material for repairing tissues. In simpler terms, collagen can be used to help regenerate bones, cartilage, and skin. It can also be used in cardiovascular repair and other areas. There are different ways to process collagen, such as cross-linking it, making it more structured, adding minerals to it, or using it as a carrier for other substances. All of these methods help advance the field of tissue engineering. This review summarizes and discusses the current progress of collagen-based materials for reproductive medicine.
Collapse
Affiliation(s)
- Mehdi Abedi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran.
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran.
| | - Mina Shafiee
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran
| | - Farideh Afshari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Mohammadi
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Major G, Ahn M, Cho WW, Santos M, Wise J, Phillips E, Wise SG, Jang J, Rnjak-Kovacina J, Woodfield T, Lim KS. Programming temporal stiffness cues within extracellular matrix hydrogels for modelling cancer niches. Mater Today Bio 2024; 25:101004. [PMID: 38420142 PMCID: PMC10900776 DOI: 10.1016/j.mtbio.2024.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Extracellular matrix (ECM) stiffening is a common occurrence during the progression of many diseases, such as breast cancer. To accurately mimic the pathophysiological context of disease within 3D in vitro models, there is high demand for smart biomaterials which replicate the dynamic and temporal mechanical cues of diseased states. This study describes a preclinical disease model, using breast cancer as an example, which replicates the dynamic plasticity of the tumour microenvironment by incorporating temporal (3-week progression) biomechanical cues within a tissue-specific hydrogel microenvironment. The composite hydrogel formulation, integrating adipose-derived decellularised ECM (AdECM) and silk fibroin, was initially crosslinked using a visible light-mediated system, and then progressively stiffened through spontaneous secondary structure interactions inherent between the polymer chains (∼10-15 kPa increase, with a final stiffness of 25 kPa). When encapsulated and cultured in vitro, MCF-7 breast cancer cells initially formed numerous, large spheroids (>1000 μm2 in area), however, with progressive temporal stiffening, cells demonstrated growth arrest and underwent phenotypic changes resulting in intratumoral heterogeneity. Unlike widely-investigated static mechanical models, this stiffening hydrogel allowed for progressive phenotypic changes to be observed, and fostered the development of mature organoid-like spheroids, which mimicked both the organisation and acinar-structures of mature breast epithelium. The spheroids contained a central population of cells which expressed aggressive cellular programs, evidenced by increased fibronectin expression and reduction of E-cadherin. The phenotypic heterogeneity observed using this model is more reflective of physiological tumours, demonstrating the importance of establishing temporal cues within preclinical models in future work. Overall, the developed model demonstrated a novel strategy to uncouple ECM biomechanical properties from the cellular complexities of the disease microenvironment and offers the potential for wide applicability in other 3D in vitro disease models through addition of tissue-specific dECM materials.
Collapse
Affiliation(s)
- Gretel Major
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
| | - Minjun Ahn
- Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Won-Woo Cho
- Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Miguel Santos
- Applied Materials Group, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Jessika Wise
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Steven G Wise
- Applied Materials Group, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Jinah Jang
- Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
- Tyree Institute of Health Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tim Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
| | - Khoon S Lim
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
- Light-Activated Materials Group, School of Medical Sciences, University of Sydney, Australia
| |
Collapse
|
4
|
Zhou N, Liu YD, Zhang Y, Gu TW, Peng LH. Pharmacological Functions, Synthesis, and Delivery Progress for Collagen as Biodrug and Biomaterial. Pharmaceutics 2023; 15:pharmaceutics15051443. [PMID: 37242685 DOI: 10.3390/pharmaceutics15051443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Collagen has been widely applied as a functional biomaterial in regulating tissue regeneration and drug delivery by participating in cell proliferation, differentiation, migration, intercellular signal transmission, tissue formation, and blood coagulation. However, traditional extraction of collagen from animals potentially induces immunogenicity and requires complicated material treatment and purification steps. Although semi-synthesis strategies such as utilizing recombinant E. coli or yeast expression systems have been explored as alternative methods, the influence of unwanted by-products, foreign substances, and immature synthetic processes have limited its industrial production and clinical applications. Meanwhile, macromolecule collagen products encounter a bottleneck in delivery and absorption by conventional oral and injection vehicles, which promotes the studies of transdermal and topical delivery strategies and implant methods. This review illustrates the physiological and therapeutic effects, synthesis strategies, and delivery technologies of collagen to provide a reference and outlook for the research and development of collagen as a biodrug and biomaterial.
Collapse
Affiliation(s)
- Nan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Da Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
5
|
Optimized Collagen Extraction Process to Obtain High Purity and Large Quantity of Collagen from Human Perirenal Adipose Tissue. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3628543. [PMID: 35402618 PMCID: PMC8989554 DOI: 10.1155/2022/3628543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022]
Abstract
There is growing interest in human adipose tissue-derived collagen as a replacement for animal origin or synthetic materials. Large amounts of adipose tissues around the kidney are being discarded after kidney surgery; thus, we planned to use this tissue as a potentially ideal source of human collagen. Optimization of the collagen extraction process can contribute to the quality, quantity, supply, and cost of collagen production. To extract highly purified and concentrated collagen from human perirenal adipose tissue, we developed a novel extraction process that is superior to the conventional methods in terms of extraction yield, in vitro cytocompatibility, and physicochemical aspects. The sequence of the process and optimized conditions are as follows: (1) destaining with 0.5% H2O2 for 1 h at 4°C, (2) noncollagenous proteins elimination with 1.5 M NaOH for 24 h at 4°C, (3) atelocollagen preparation with 1.0% pepsin for 48 h at 25°C, and (4) collagen hydrolysis with 1.0 M NaOH for 10 min at 60°C. The final product showed significantly increased hydroxyproline (
pg/mL) and glycine (22.752 μg/mL) content than the conventional acetic acid hydrolyzed collagen (
pg/mL and 0.947 μg/mL, respectively). The lyophilized collagen showed more specific peaks for amides A, B, I, II, and III on FT-IR analysis and showed a further native architecture of collagen fibrils in scanning electron microscope images. Therefore, the optimized process can be an effective protocol for extracting collagen from human perirenal adipose tissue.
Collapse
|
6
|
Hackethal J, Dungel P, Teuschl AH. Frequently used strategies to isolate ECM proteins from human placenta and adipose tissue. Tissue Eng Part C Methods 2021; 27:649-660. [PMID: 34751590 DOI: 10.1089/ten.tec.2021.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The natural extracellular matrix (ECM) provides the optimal environment for cells. Many enzymatic or non-enzymatic based strategies to extract ECM proteins from tissues were published over the last years. However, every single isolation strategy reported so far is associated with specific bottlenecks. Experiment: In this study, frequently used strategies to isolate extracellular matrix (ECM) from human placenta or adipose tissue using Tris-, serum, or pepsin-based buffers were compared. The resulting ECM proteins were biochemically characterized by analysis of cellular remnants using HOECHST DNA staining, glycosaminoglycan (GAG) content by dimethylemethylene blue (DMMB), visualization of protein bands using SDS PAGE analysis combined with amino acid quantification and assessment of the pro-angiogenic profile using an angiogenesis array. RESULTS Tris-NaCl extracted ECM proteins showed a high heterogenic degree of extracted proteins, bioactive growth factors and GAGS, but no collagen-I. Active serum extracted ECM showed significant lower DNA remnants when compared to the Tris-NaCl isolation strategy. Pepsin-extracted ECM was rich in collagen-I and low amounts of remaining bioactive growth factors. This strategy was most effective to reduce DNA amounts when compared to the other isolation strategies. Pepsin-extracted ECM from both tissues easily gelled at 37°C, whereas the other extracted ECM strategies did not gel at 37°C (Tris-NaCl: liquid; serum: sponge). CONCLUSIONS All relevant characteristics (DNA residues, ECM diversity and bioactivity, shape) of the extracted ECM proteins highly depend on its isolation strategy and could still be optimized.
Collapse
Affiliation(s)
- Johannes Hackethal
- THT Biomaterials, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria;
| | - Peter Dungel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 497572, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria;
| | - Andreas Herbert Teuschl
- University of Applied Sciences Technikum Wien, Department of Biochemical Engineering, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria;
| |
Collapse
|
7
|
Wang H. A Review of the Effects of Collagen Treatment in Clinical Studies. Polymers (Basel) 2021; 13:polym13223868. [PMID: 34833168 PMCID: PMC8620403 DOI: 10.3390/polym13223868] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Collagen, an abundant extracellular matrix protein, has been found to have a lot of pharmaceuticals, medicine, food, and cosmetics applications. Increased knowledge of collagen sources, extraction techniques, structure, and properties in the last decades has helped develop more collagen-based products and tissue engineering biomaterials. Collagen products have been playing an important role in benefiting the health of the human body, especially for aging people. In this paper, the effects of collagen treatment in different clinical studies including skin regeneration, bone defects, sarcopenia, wound healing, dental therapy, gastroesophageal reflux, osteoarthritis, and rheumatoid arthritis have been reviewed. The collagen treatments were significant in these clinical studies. In addition, the associations between these diseases were discussed. The comorbidity of these diseases might be closely related to collagen deficiency, and collagen treatment might be a good choice when a patient has more than one of these diseases, including the coronavirus disease 2019 (COVID-19). It concludes that collagen-based medication is useful in treating comorbid diseases and preventing complications.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
8
|
Hu T, Lo ACY. Collagen-Alginate Composite Hydrogel: Application in Tissue Engineering and Biomedical Sciences. Polymers (Basel) 2021; 13:1852. [PMID: 34199641 PMCID: PMC8199729 DOI: 10.3390/polym13111852] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Alginate (ALG), a polysaccharide derived from brown seaweed, has been extensively investigated as a biomaterial not only in tissue engineering but also for numerous biomedical sciences owing to its wide availability, good compatibility, weak cytotoxicity, low cost, and ease of gelation. Nevertheless, alginate lacks cell-binding sites, limiting long-term cell survival and viability in 3D culture. Collagen (Col), a major component protein found in the extracellular matrix (ECM), exhibits excellent biocompatibility and weak immunogenicity. Furthermore, collagen contains cell-binding motifs, which facilitate cell attachment, interaction, and spreading, consequently maintaining cell viability and promoting cell proliferation. Recently, there has been a growing body of investigations into collagen-based hydrogel trying to overcome the poor mechanical properties of collagen. In particular, collagen-alginate composite (CAC) hydrogel has attracted much attention due to its excellent biocompatibility, gelling under mild conditions, low cytotoxicity, controllable mechanic properties, wider availability as well as ease of incorporation of other biomaterials and bioactive agents. This review aims to provide an overview of the properties of alginate and collagen. Moreover, the application of CAC hydrogel in tissue engineering and biomedical sciences is also discussed.
Collapse
Affiliation(s)
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
9
|
Chun SY, Lee JN, Ha YS, Yoon BH, Lee EH, Kim BM, Gil H, Han MH, Oh WS, Kwon TG, Kim TH, Kim BS. Optimization of extracellular matrix extraction from human perirenal adipose tissue. J Biomater Appl 2021; 35:1180-1191. [PMID: 33435802 DOI: 10.1177/0885328220984594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Human adipose tissue includes useful substrates for regenerative medicine such as the extracellular matrix (ECM), but most perirenal fat tissue is wasted after kidney surgery. Since a lot of adipose tissue can be procured after a kidney, we extracted ECM from human perirenal adipose tissue and optimized the extraction process. To verify the efficacy for ECM extraction, we compared the products in several steps. Perirenal adipose tissue was either finely homogenized or underwent crude manual dissection. The amount of extracted ECM was quantified with ELISA for verification of the initial tissue downsizing effect. To validate the drying effect for fast and complete delipidation, tissues were prepared in a dry or wet phase, and residual lipids were visualized with Oil-Red-O staining. The extracted lipid was assayed at each time point to quantify the appropriate delipidation time. To select the optimal decellularization method, tissues were treated with physical, chemical, or enzymatic method, and the residual cell debris were identified with histological staining. The biochemical properties of the ECM extracted by the above methods were analyzed. The ECM extracted by fine homogenization showed a significantly enhanced amount of collagen, laminin and fibronectin compared to the crude dissection method. The dried tissue showed fast and complete lipid elimination compared to the wet tissue. Complete delipidation was achieved at 45 min after acetone treatment. Additionally, 1% triton X-100 chemical treatment showed complete decellularization with well-preserved collagen fibers. Biochemical analysis revealed preserved ECM proteins, a high cell proliferation rate and normal cell morphology without cell debris or lipids. The established process of homogenization, drying, delipidation with acetone, and decellularization with Triton X-100 treatment can be an optimal method for ECM extraction from human perirenal adipose tissue. Using this technique, human perirenal adipose tissue may be a valuable source for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Bo Hyun Yoon
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | - Eun Hye Lee
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | - Bo Mi Kim
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | - Haejung Gil
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | - Man-Hoon Han
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Woo Seok Oh
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Tae-Hwan Kim
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Bum Soo Kim
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
10
|
Alipoor E, Hosseinzadeh-Attar MJ, Rezaei M, Jazayeri S, Chapman M. White adipose tissue browning in critical illness: A review of the evidence, mechanisms and future perspectives. Obes Rev 2020; 21:e13085. [PMID: 32608573 DOI: 10.1111/obr.13085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Observational studies suggest better clinical outcomes following critical illness in patients with overweight and obesity (obesity paradox). An understanding of the morphologic, physiologic and metabolic changes in adipose tissue in critical illness may provide an explanation. Recent studies have demonstrated the transformation of white to brown-like adipocytes due to the "browning process," which has been of interest as a potential novel therapy in obesity during the last decade. The characteristics of the browning of white adipose tissue (WAT) include the appearance of smaller, multilocular adipocytes, increased UCP1 mRNA expression, mitochondrial density and respiratory capacity. These changes have been identified in some critical illnesses, which specifically refers to burns, sepsis and cancer cachexia in this study. The pathophysiological nature of WAT browning, underlying mechanisms, main regulators and potential benefits and harms of this process are interesting new areas that warrants further investigations. In this review, we discuss emerging scientific discipline of adipose tissue physiology in metabolic stress, available data, gaps of knowledge and future perspectives. Future investigations in this field may provide insights into the underlying mechanisms and clinical aspects of browning that may further our understanding of the proposed obesity paradox following critical illness, which may in turn open up opportunities for novel therapies to save lives and improve recovery.
Collapse
Affiliation(s)
- Elham Alipoor
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Cardiac Primary Prevention Research Center (CPPRC), Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Rezaei
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Jazayeri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Marianne Chapman
- Discipline of Acute Care Medicine, School of Medicine, University of Adelaide, Adelaide, Australia.,Intensive Care Research Unit, Royal Adelaide Hospital, Adelaide, Australia.,National Health and Medical Research Council of Australia Centre for Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| |
Collapse
|
11
|
Zhou C, Zhou L, Liu J, Xu L, Xu Z, Chen Z, Ge Y, Zhao F, Wu R, Wang X, Jiang N, Mao L, Jia R. Kidney extracellular matrix hydrogel enhances therapeutic potential of adipose-derived mesenchymal stem cells for renal ischemia reperfusion injury. Acta Biomater 2020; 115:250-263. [PMID: 32771597 DOI: 10.1016/j.actbio.2020.07.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Stem cell-based therapy has been suggested as a promising option for the treatment of renal ischemia-reperfusion injury (IRI). However, how to efficiently deliver stem cells remains a challenge. In the present study, we firstly proposed the utilization of kidney extracellular matrix hydrogel (ECMH) as an injectable scaffold for delivering adipose-derived mesenchymal stem cells (ad-MSCs) into ischemic kidneys. A modified strategy of decellularization and gelation was introduced to prepare the ECMH, by which the bioactive ingredients were retained as much as possible. Bioluminescence living imaging and immunofluorescence revealed that ECMH could significantly elevate the retention and survival rate of transplanted ad-MSCs in damaged kidneys and reduce their escape rate to other organs, which consequently resulted to the enhanced therapeutic effect of ad-MSCs on renal IRI. Further, in vitro evidence demonstrated that ECMH could remarkably reduce the oxidative stress and apoptosis, promote the proliferation, secretion, and epithelial differentiation of ad-MSCs, as well as facilitate cell migration while acting as a sustained-release scaffold. This study establishes an effective approach to enhance the therapeutic potential of ad-MSCs for renal IRI. Our findings suggest that ECMH derived from organs or tissues would be a promising injectable scaffold for stem cell-based therapy. STATEMENT OF SIGNIFICANCE: It remains a challenge to efficiently deliver stem cells to target tissues, which may limit the clinical application of stem cell-based therapy. In this study, we developed a modified strategy of decellularization and gelation to prepare the kidney extracellular matrix hydrogel (ECMH). In vivo and in vitro evidence indicated that the kidney ECMH could improve the retention and survival rate, as well as multiple biological functions of adipose-derived mesenchymal stem cells, thereby contributing to the histological and functional recovery of injured kidneys induced by ischemia-reperfusion. Our findings highlight the use of organs or tissues derived ECMH as a promising stem cell delivery scaffold for tissue repair.
Collapse
Affiliation(s)
- Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China; Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China; Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China; Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China; Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Zaozao Chen
- Institute of Biomaterials and Medical Devices, School of Biological Science and Medical Engineering, Southeast University, Dingjiaqiao 87, Nanjing 210009, China
| | - Yuzheng Ge
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China; Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Ran Wu
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Xinning Wang
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Nan Jiang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Liang Mao
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China; Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| |
Collapse
|
12
|
Peng W, Peng Z, Tang P, Sun H, Lei H, Li Z, Hui D, Du C, Zhou C, Wang Y. Review of Plastic Surgery Biomaterials and Current Progress in Their 3D Manufacturing Technology. MATERIALS 2020; 13:ma13184108. [PMID: 32947925 PMCID: PMC7560273 DOI: 10.3390/ma13184108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/05/2023]
Abstract
Plastic surgery is a broad field, including maxillofacial surgery, skin flaps and grafts, liposuction and body contouring, breast surgery, and facial cosmetic procedures. Due to the requirements of plastic surgery for the biological safety of materials, biomaterials are widely used because of its superior biocompatibility and biodegradability. Currently, there are many kinds of biomaterials clinically used in plastic surgery and their applications are diverse. Moreover, with the rise of three-dimensional printing technology in recent years, the macroscopically more precise and personalized bio-scaffolding materials with microporous structure have made good progress, which is thought to bring new development to biomaterials. Therefore, in this paper, we reviewed the plastic surgery biomaterials and current progress in their 3D manufacturing technology.
Collapse
Affiliation(s)
- Wei Peng
- Department of Palliative Care, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China;
- Occupational Health Emergency Key Laboratory of West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyu Peng
- Department of Thoracic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Pei Tang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (P.T.); (Z.L.)
| | - Huan Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (H.S.); (H.L.); (C.Z.)
| | - Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (H.S.); (H.L.); (C.Z.)
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (P.T.); (Z.L.)
| | - Didi Hui
- Innovatus Oral Cosmetic & Surgical Institute, Norman, OK 73069, USA; (D.H.); (C.D.)
| | - Colin Du
- Innovatus Oral Cosmetic & Surgical Institute, Norman, OK 73069, USA; (D.H.); (C.D.)
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (H.S.); (H.L.); (C.Z.)
| | - Yongwei Wang
- Department of Palliative Care, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China;
- Occupational Health Emergency Key Laboratory of West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
13
|
Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model. Acta Biomater 2020; 114:104-116. [PMID: 32682057 DOI: 10.1016/j.actbio.2020.07.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
Regeneration of the gradient structure of the tendon-to-bone interface (TBI) is a crucial goal after rotator cuff repair. The purpose of this study was to investigate the efficacy of a biomimetic hydroxyapatite-gradient scaffold (HA-G scaffold) isolated from adipose tissue (AD) with umbilical cord derived mesenchymal stem cells (UC MSCs) on the regeneration of the structure of the TBI by analyzing the histological and biomechanical changes in a rat repair model. As a result, the HA-G scaffold had progressively increased numbers of hydroxyapatite (HA) particles from the tendon to the bone phase. After seeding UC MSCs to the scaffold, specific matrices, such as collagen, glycoaminoglycan, and calcium, were synthesized with respect to the HA density. In a rat repair model, compared to the repair group, the UC MSCs seeded HA-G scaffold group had improved collagen organization and cartilage formation by 52% at 8 weeks and 262.96% at 4 weeks respectively. Moreover, ultimate failure load also increased by 30.71% at 4 weeks in the UC MSCs seeded HA-G scaffold group compared to the repair group. Especially, the improved values were comparable to values in normal tissue. This study demonstrated that HA-G scaffold isolated from AD induced UC MSCs to form tendon, cartilage and bone matrices similar to the TBI structure according to the HA density. Furthermore, UC MSC-seeded HA-G scaffold regenerated the TBI of the rotator cuff in a rat repair model in terms of histological and biomechanical properties similar to the normal TBI. Statement of Significance We found specific extracellular matrix (ECM) formation in the biomimetic-hydroxyapatite-gradient-scaffold (HA-G-scaffold) in vitro as well as improved histological and biomechanical results of repaired rotator cuff after the scaffold implantation in a rat model. This study has four strengths; An ECM scaffold derived from human adipose tissue; only one-layer used for a gradient scaffold not a multilayer used to mimic the unique structure of the gradient tendon-to-bone-interface (TBI) of the rotator cuff; UC-MSCs as a new cell source for TBI regeneration; and the UC-MSCs synthesized specific matrices with respect to the HA density without any other stimuli. This study suggested that the UC-MSC seeded HA-G-scaffold could be used as a promising strategy for the regeneration of rotator cuff tears.
Collapse
|
14
|
Advances in biomaterials for adipose tissue reconstruction in plastic surgery. NANOTECHNOLOGY REVIEWS 2020. [DOI: 10.1515/ntrev-2020-0028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Adipose tissue reconstruction is an important technique for soft tissue defects caused by facial plastic surgery and trauma. Adipose tissue reconstruction can be repaired by fat transplantation and biomaterial filling, but there are some problems in fat transplantation, such as second operation and limited resources. The application of advanced artificial biomaterials is a promising strategy. In this paper, injectable biomaterials and three-dimensional (3D) tissue-engineered scaffold materials for adipose tissue reconstruction in plastic surgery are reviewed. Injectable biomaterials include natural biomaterials and artificial biomaterials, which generally have problems such as high absorptivity of fillers, repeated injection, and rejection. In recent years, the technology of new 3D tissue-engineering scaffold materials with adipose-derived stem cells (ADSCs) and porous scaffold as the core has made good progress in fat reconstruction, which is expected to solve the current problem of clinical adipose tissue reconstruction, and various biomaterials preparation technology and transformation research also provide the basis for clinical transformation of fat tissue reconstruction.
Collapse
|
15
|
Cho KH, Uthaman S, Park IK, Cho CS. Injectable Biomaterials in Plastic and Reconstructive Surgery: A Review of the Current Status. Tissue Eng Regen Med 2018; 15:559-574. [PMID: 30603579 PMCID: PMC6171701 DOI: 10.1007/s13770-018-0158-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Injectable biomaterials have attracted increasing attention for volume restoration and tissue regeneration. The main aim of this review is to discuss the current status of the injectable biomaterials for correction of tissue defects in plastic and reconstructive surgery. METHODS Requirements of injectable biomaterials, mechanism of in situ gelation, characteristics, and the combinational usage of adipose-derived stem cells (ADSCs) and growth factors were reviewed. RESULTS The ideal injectable biomaterials should be biocompatible, non-toxic, easy to use, and cost-effective. Additionally, it should possess adequate mechanical properties and stability. In situ gelation method includes physical, chemical, enzymatic and photo-initiated methods. Natural and synthetic biomaterials carry their pros and cons due to their inherent properties. The combined use of ADSCs and growth factors provides enhanced potential for adipose tissue regeneration. CONCLUSIONS The usage of injectable biomaterials has been increasing for the tissue restoration and regeneration. The future of incorporating ADSCs and growth factors into the injectable biomaterials is promising.
Collapse
Affiliation(s)
- Ki-Hyun Cho
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju, 61469 Republic of Korea
| | - Chong-Su Cho
- Research Institute for Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| |
Collapse
|
16
|
Aydogdu MO, Chou J, Altun E, Ekren N, Cakmak S, Eroglu M, Osman AA, Kutlu O, Oner ET, Avsar G, Oktar FN, Yilmaz I, Gunduz O. Production of the biomimetic small diameter blood vessels for cardiovascular tissue engineering. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1443930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mehmet Onur Aydogdu
- Advanced Nanomaterials Research Laboratory, Department of Metallurgical and Materials Engineering, Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Master of Science, Institute of Pure and Applied Sciences, Marmara University, Istanbul, Turkey
| | - Joshua Chou
- Advanced Tissue Regeneration and Drug Delivery Group, School of Medical and Molecular Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Esra Altun
- Advanced Nanomaterials Research Laboratory, Department of Metallurgical and Materials Engineering, Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Master of Science, Institute of Pure and Applied Sciences, Marmara University, Istanbul, Turkey
| | - Nazmi Ekren
- Advanced Nanomaterials Research Laboratory, Department of Metallurgical and Materials Engineering, Marmara University, Istanbul, Turkey
- Department of Electrical and Electronics Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Selami Cakmak
- Orthopedics and Traumatology Clinic, Acibadem Kadikoy Hospital, Istanbul, Turkey
| | - Mehmet Eroglu
- Department of Chemical Engineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Asila A. Osman
- Department of Chemical Engineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center, & (EFSUN) Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics, Sabanci University, Istanbul, Turkey
| | - Ebru Toksoy Oner
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Gulben Avsar
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Faik Nuzhet Oktar
- Advanced Nanomaterials Research Laboratory, Department of Metallurgical and Materials Engineering, Marmara University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ismail Yilmaz
- Pathology Department, Istanbul Sultan Abdulhamid Han Training Hospital, Istanbul, Turkey
| | - Oguzhan Gunduz
- Advanced Nanomaterials Research Laboratory, Department of Metallurgical and Materials Engineering, Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Master of Science, Institute of Pure and Applied Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
17
|
Avila Rodríguez MI, Rodríguez Barroso LG, Sánchez ML. Collagen: A review on its sources and potential cosmetic applications. J Cosmet Dermatol 2017; 17:20-26. [PMID: 29144022 DOI: 10.1111/jocd.12450] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 12/29/2022]
Abstract
Collagen is a fibrillar protein that conforms the conjunctive and connective tissues in the human body, essentially skin, joints, and bones. This molecule is one of the most abundant in many of the living organisms due to its connective role in biological structures. Due to its abundance, strength and its directly proportional relation with skin aging, collagen has gained great interest in the cosmetic industry. It has been established that the collagen fibers are damaged with the pass of time, losing thickness and strength which has been strongly related with skin aging phenomena [Colágeno para todo. 60 y más. 2016. http://www.revista60ymas.es/InterPresent1/groups/revistas/documents/binario/ses330informe.pdf.]. As a solution, the cosmetic industry incorporated collagen as an ingredient of different treatments to enhance the user youth and well-being, and some common presentations are creams, nutritional supplement for bone and cartilage regeneration, vascular and cardiac reconstruction, skin replacement, and augmentation of soft skin among others [J App Pharm Sci. 2015;5:123-127]. Nowadays, the biomolecule can be obtained by extraction from natural sources such as plants and animals or by recombinant protein production systems including yeast, bacteria, mammalian cells, insects or plants, or artificial fibrils that mimic collagen characteristics like the artificial polymer commercially named as KOD. Because of its increased use, its market size is valued over USD 6.63 billion by 2025 [Collagen Market By Source (Bovine, Porcine, Poultry, Marine), Product (Gelatin, Hydrolyzed Collagen), Application (Food & Beverages, Healthcare, Cosmetics), By Region, And Segment Forecasts, 2014 - 2025. Grand View Research. http://www.grandviewresearch.com/industry-analysis/collagen-market. Published 2017.]. Nevertheless, there has been little effort on identifying which collagen types are the most suitable for cosmetic purposes, for which the present review will try to enlighten in a general scope this unattended matter.
Collapse
Affiliation(s)
| | | | - Mirna Lorena Sánchez
- Dpto. de Ciencia y Tecnología, Laboratorio de Ingeniería Genética y Biología Celular y Molecular - Área Virosis Emergentes y Zoonóticas, Universidad Nacional Quilmes, Bernal, Argentina
| |
Collapse
|
18
|
Hackethal J, Mühleder S, Hofer A, Schneider KH, Prüller J, Hennerbichler S, Redl H, Teuschl A. An Effective Method ofAtelocollagenType 1/3 Isolation from Human Placenta and ItsIn VitroCharacterization in Two-Dimensional and Three-Dimensional Cell Culture Applications. Tissue Eng Part C Methods 2017; 23:274-285. [DOI: 10.1089/ten.tec.2017.0016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Johannes Hackethal
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Severin Mühleder
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Alexandra Hofer
- Research Area Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Karl Heinrich Schneider
- Center of Biomedical Research, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| | - Johanna Prüller
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Simone Hennerbichler
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Teuschl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| |
Collapse
|
19
|
Hellewell AL, Rosini S, Adams JC. A Rapid, Scalable Method for the Isolation, Functional Study, and Analysis of Cell-derived Extracellular Matrix. J Vis Exp 2017. [PMID: 28117783 PMCID: PMC5351878 DOI: 10.3791/55051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is recognized as a diverse, dynamic, and complex environment that is involved in multiple cell-physiological and pathological processes. However, the isolation of ECM, from tissues or cell culture, is complicated by the insoluble and cross-linked nature of the assembled ECM and by the potential contamination of ECM extracts with cell surface and intracellular proteins. Here, we describe a method for use with cultured cells that is rapid and reliably removes cells to isolate a cell-derived ECM for downstream experimentation. Through use of this method, the isolated ECM and its components can be visualized by in situ immunofluorescence microscopy. The dynamics of specific ECM proteins can be tracked by tracing the deposition of a tagged protein using fluorescence microscopy, both before and after the removal of cells. Alternatively, the isolated ECM can be extracted for biochemical analysis, such as sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. At larger scales, a full proteomics analysis of the isolated ECM by mass spectrometry can be conducted. By conducting ECM isolation under sterile conditions, sterile ECM layers can be obtained for functional or phenotypic studies with any cell of interest. The method can be applied to any adherent cell type, is relatively easy to perform, and can be linked to a wide repertoire of experimental designs.
Collapse
|
20
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
21
|
Ramírez-Rodríguez GB, Iafisco M, Tampieri A, Gómez-Morales J, Delgado-López JM. pH-responsive collagen fibrillogenesis in confined droplets induced by vapour diffusion. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2305-2312. [PMID: 24652593 DOI: 10.1007/s10856-014-5189-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
A novel methodology for the assembly of collagen fibrils in microliter drops is proposed. It consists in the gradual increase of pH by means of vapour diffusion coming from the decomposition of NH4HCO3 solutions. The pH increase rate as well as the final steady pH of solutions containing collagen can be adjusted by varying the concentration of NH4HCO3. Both parameters are of predominant importance in collagen fibrillogenesis. The effect of these parameters on the kinetic of the fibrillogenesis process and on the fibrils morphology was studied. We found that both the kinetic and the morphology are mainly driven by electrostatic interactions. A gradual increase of pH slows down the formation of collagen fibres and favours the lateral interaction between fibrils producing broader fibres. On the other hand, a rapid increase of pH reduces the lateral electrostatic interactions favouring the formation of thinner fibres. The formation of the D-band periodicity is also a pH-dependent process that occurs after fibrillogenesis when the most stable state of fibres formation has been reached.
Collapse
Affiliation(s)
- Gloria Belén Ramírez-Rodríguez
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (IACT, CSIC-UGR), Avda. de las Palmeras 4, 18100, Armilla (Granada), Spain
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Soo Kim B, Ji Kim E, Suk Choi J, Hoon Jeong J, Hyunchul Jo C, Woo Cho Y. Human collagen-based multilayer scaffolds for tendon-to-bone interface tissue engineering. J Biomed Mater Res A 2014; 102:4044-54. [DOI: 10.1002/jbm.a.35057] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/06/2013] [Accepted: 12/06/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Beob Soo Kim
- Department of Chemical Engineering; Hanyang University, Hanyangdaehak-ro 55, Ansan; Kyeonggi-do 426-791 Republic of Korea
- Center for Theragnosis; Biomedical Research Institute, Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 5 Seoul 136-791 Republic of Korea
| | - Eun Ji Kim
- Department of Chemical Engineering; Hanyang University, Hanyangdaehak-ro 55, Ansan; Kyeonggi-do 426-791 Republic of Korea
| | - Ji Suk Choi
- Department of Chemical Engineering; Hanyang University, Hanyangdaehak-ro 55, Ansan; Kyeonggi-do 426-791 Republic of Korea
| | - Ji Hoon Jeong
- School of Pharmacy; Sungkyunkwan University; Suwon 440-746 Republic of Korea
| | - Chris Hyunchul Jo
- Department of Orthopedic Surgery; Joint and Spine Center, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine; 20 Boramae-ro 5-gil Seoul 156-707 Republic of Korea
| | - Yong Woo Cho
- Department of Chemical Engineering; Hanyang University, Hanyangdaehak-ro 55, Ansan; Kyeonggi-do 426-791 Republic of Korea
- Center for Theragnosis; Biomedical Research Institute, Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 5 Seoul 136-791 Republic of Korea
| |
Collapse
|
24
|
Chan Choi Y, Choi JS, Jung YJ, Cho YW. Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe3+ion crosslinking. J Mater Chem B 2014; 2:201-209. [DOI: 10.1039/c3tb20696c] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|